L. Freed, Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the framingham heart study, ACC Current Journal Review, vol.12, issue.1, pp.1298-304, 2002.
DOI : 10.1016/S1062-1458(02)01019-X

S. Disse, Mapping of a First Locus for Autosomal Dominant Myxomatous Mitral-Valve Prolapse to Chromosome 16p11.2-p12.1, The American Journal of Human Genetics, vol.65, issue.5, pp.1242-51, 1999.
DOI : 10.1086/302624

L. Freed, A Locus for Autosomal Dominant Mitral Valve Prolapse on Chromosome 11p15.4, The American Journal of Human Genetics, vol.72, issue.6, pp.1551-1560, 2003.
DOI : 10.1086/375452

F. Kyndt, Mapping of X-Linked Myxomatous Valvular Dystrophy to Chromosome Xq28, The American Journal of Human Genetics, vol.62, issue.3, pp.627-659, 1998.
DOI : 10.1086/301747

F. Nesta, New Locus for Autosomal Dominant Mitral Valve Prolapse on Chromosome 13: Clinical Insights From Genetic Studies, Circulation, vol.112, issue.13, pp.2022-2052, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.516930

N. Rath, Z. Wang, M. Lu, and E. Morrisey, LMCD1/Dyxin Is a Novel Transcriptional Cofactor That Restricts GATA6 Function by Inhibiting DNA Binding, Molecular and Cellular Biology, vol.25, issue.20, pp.8864-73, 2005.
DOI : 10.1128/MCB.25.20.8864-8873.2005

URL : http://mcb.asm.org/content/25/20/8864.full.pdf

J. Avierinos, Natural History of Asymptomatic Mitral Valve Prolapse in the Community, Circulation, vol.106, issue.11, pp.1355-61, 2002.
DOI : 10.1161/01.CIR.0000028933.34260.09

L. Freed, Prevalence and Clinical Outcome of Mitral-Valve Prolapse, New England Journal of Medicine, vol.341, issue.1, pp.1-7, 1999.
DOI : 10.1056/NEJM199907013410101

D. ,

N. Genet, Author manuscript; available in PMC, 2016.

R. Devereux, W. Brown, R. Kramer-fox, and I. Sachs, Inheritance of Mitral Valve Prolapse: Effect of Age and Sex on Gene Expression, Annals of Internal Medicine, vol.97, issue.6, pp.826-858, 1982.
DOI : 10.7326/0003-4819-97-6-826

F. Delling, Mild Expression of Mitral Valve Prolapse in the Framingham Offspring: Expanding the Phenotypic Spectrum, Journal of the American Society of Echocardiography, vol.27, issue.1, pp.17-23, 2014.
DOI : 10.1016/j.echo.2013.09.015

M. Glesby and R. Pyeritz, Association of mitral valve prolapse and systemic abnormalities of connective tissue. A phenotypic continuum, JAMA: The Journal of the American Medical Association, vol.262, issue.4, pp.523-531, 1989.
DOI : 10.1001/jama.262.4.523

A. Hagege, The Mitral Valve in Hypertrophic Cardiomyopathy, Journal of Cardiovascular Translational Research, vol.54, issue.Suppl, pp.757-66, 2011.
DOI : 10.1016/j.jacc.2009.07.050

F. Kyndt, Mutations in the Gene Encoding Filamin A as a Cause for Familial Cardiac Valvular Dystrophy, Circulation, vol.115, issue.1, pp.40-49, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.622621

URL : https://hal.archives-ouvertes.fr/hal-00172816

E. Hall, A. Daugherty, C. Choi, A. Horwitz, and D. Brautigan, Tensin1 Requires Protein Phosphatase-1?? in Addition to RhoGAP DLC-1 to Control Cell Polarization, Migration, and Invasion, Journal of Biological Chemistry, vol.6, issue.50, pp.34713-34735, 2009.
DOI : 10.1074/jbc.M511008200

A. Sureshbabu, IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells, Journal of Cell Science, vol.125, issue.7, pp.1693-705, 2012.
DOI : 10.1242/jcs.092882

C. Chang, S. Lin, W. Su, C. Ho, and Y. Jou, Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma, Oncogene, vol.9, issue.21, pp.2640-52, 2012.
DOI : 10.1042/BC20060126

Z. Bian, LIM and Cysteine-Rich Domains 1 Regulates Cardiac Hypertrophy by Targeting Calcineurin/Nuclear Factor of Activated T Cells Signaling, Hypertension, vol.55, issue.2, pp.257-63, 2010.
DOI : 10.1161/HYPERTENSIONAHA.109.135665

D. Beis, Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development, Development, vol.132, issue.18, pp.4193-204, 2005.
DOI : 10.1242/dev.01970

H. Schunkert, Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease, Nature Genetics, vol.6, issue.4, pp.333-341, 2011.
DOI : 10.1038/ng.291

M. Lockhart, Mef2c Regulates Transcription of the Extracellular Matrix Protein Cartilage Link Protein 1 in the Developing Murine Heart, PLoS ONE, vol.106, issue.2, p.57073, 2013.
DOI : 10.1371/journal.pone.0057073.t001

R. Vasan, Genetic Variants Associated With Cardiac Structure and Function, JAMA, vol.302, issue.2, pp.168-78, 2009.
DOI : 10.1001/jama.2009.978-a

URL : http://jama.jamanetwork.com/data/journals/jama/4471/joc90060_168_178.pdf

R. Pyeritz and M. Wappel, Mitral valve dysfunction in the Marfan syndrome, The American Journal of Medicine, vol.74, issue.5, pp.797-807, 1983.
DOI : 10.1016/0002-9343(83)91070-7

C. Ng, TGF-?????dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome, Journal of Clinical Investigation, vol.114, issue.11, pp.1586-92, 2004.
DOI : 10.1172/JCI200422715

E. Rabkin, Activated Interstitial Myofibroblasts Express Catabolic Enzymes and Mediate Matrix Remodeling in Myxomatous Heart Valves, Circulation, vol.104, issue.21, pp.2525-2557, 2001.
DOI : 10.1161/hc4601.099489

URL : http://circ.ahajournals.org/content/circulationaha/104/21/2525.full.pdf

A. Lee, Quantitative Analysis of Mitral Valve Morphology in Mitral Valve Prolapse With Real-Time 3-Dimensional Echocardiography: Importance of Annular Saddle Shape in the Pathogenesis of Mitral Regurgitation, Circulation, vol.127, issue.7, pp.832-873, 2013.
DOI : 10.1161/CIRCULATIONAHA.112.118083

M. Jensen, A. Hagege, Y. Otsuji, R. Levine, L. Transatlantic et al., The Unsaddled Annulus: Biomechanical Culprit in Mitral Valve Prolapse?, Circulation, vol.127, issue.7, pp.766-774, 2013.
DOI : 10.1161/CIRCULATIONAHA.112.000628

URL : http://circ.ahajournals.org/content/circulationaha/127/7/766.full.pdf

K. Sauls, Developmental basis for filamin-A-associated myxomatous mitral valve disease, Cardiovascular Research, vol.110, issue.1, pp.109-128, 2012.
DOI : 10.1016/S0092-8674(02)00971-6