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Solutions of the Aw-Rascle-Zhang system with point constraints

Boris P. Andreianov∗ Carlotta Donadello† Ulrich Razafison‡ Julien Y. Rolland§

Massimiliano D. Rosini

Abstract

We revisit the entropy formulation and the wave-front tracking construction of physically admissible

solutions of the Aw-Rascle and Zhang (ARZ) “second-order” model for vehicular traffic. A Kruzhkov-like

family of entropies is introduced to select the admissible shocks. This tool allows to define rigorously

the appropriate notion of admissible weak solution and to approximate the solutions of the ARZ model

with point constraint. Stability of solutions w.r.t. strong convergence is justified. We propose a finite

volumes numerical scheme for the constrained ARZ, and we show that it can correctly locate contact

discontinuities and take the constraint into account.

Keywords: road traffic modeling, point constraint, Aw-Rascle and Zhang model, entropies, renormaliza-

tion, admissible solutions, numerical experiments.

AMS Classification: Primary: 35L65; Secondary: 90B20

1 Introduction

Any macroscopic vehicular traffic model expresses the conservation of the number of vehicles along a high-

way without entrances or exists with the PDE ρt + (ρ v)x = 0, where ρ is the density and v is the velocity

of the vehicles. In addition to this PDE, the Lighthill-Whitham and Richards (LWR) model, [26, 28], as-

sumes that v = V (ρ). Recently, a particular attention was paid to incorporating point constraints of the

kind (ρ v)|x=xi ≤ qi (t ) into the LWR model. Here, xi are the locations of the road where a traffic light, a

sharply localized construction site or a toll gate, etc., are situated; and for each xi , qi (t ) is the maximal

value of the flux q
.= ρ v allowed through the point xi at time t . In this case, non-classical (w.r.t. the clas-

sical Kruzhkov theory [25]) stationary shocks may appear at x = xi , however, the problem is well-posed

both in the BV and the L∞ frameworks. As suggested in [13], the unilateral constraint is taken into account

via an additional singular “compensation term” in the Kruzhkov entropy inequalities supported at x = xi .

We refer to [5, 13, 15, 18, 29, 30] for the introduction, the fundamental analytic results and a simple ap-

proximation strategy for the locally constrained LWR model. Natural extensions of this model are proposed
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in [2, 3, 11, 14, 16, 17, 31] to reproduce the phenomenon called capacity drop at the exit in pedestrian flows.

These works focus on the description of the crowd behaviour when high density situations occur in a nar-

row corridor. In particular, in [3] non-local constraints of the form Fi (t ) =Qi [ρ(t , ·)] are considered. Let us

stress that the typical paradoxical features related to capacity drop (Faster is Slower and Braess paradox) can

be reproduced within this very simple model, see [1].

1.1 The objective of the paper

Although LWR can be used for rough modeling of vehicular or pedestrian traffic, it presents several non-

realistic features. Some of these issues are fixed in the “second-order” macroscopic model of Aw-Rascle and

Zhang (ARZ) for vehicular traffic, [7, 32], which writes as the hyperbolic 2×2 system of conservation lawsρt + (ρ v)x = 0,

(ρw)t + (ρ v w)x = 0,
w = v +p(ρ), (1.1)

where p : R+ 7→ R+ is a function whose properties will be specified later on (typically, p(ρ) = ργ, γ> 0). The

additional unknown w is a phenomenological quantity interpreted as a Lagrangian marker (indeed, (1.1)

implies that formally wt + v wx = 0, i.e. w is transported at the velocity v of the vehicles). It is of interest

to understand how the point constraints can be incorporated into ARZ. A first step in this direction was

made in [22], where the constrained Riemann problem was described. The goal of the present note is to

summarize some recent analytical and numerical results obtained by the authors for the locally constrained

ARZ subject to point constraint on the flux (ρ v)|x=x0 ≤ q0(t ), where q0 is a constant or piecewise constant

function of time. In addition to the interest of the result in itself, this is a first step towards the analysis and

approximation of ARZ-based models with capacity drop.

The paper is organized as follows: In Section 2 we recall that ARZ has a family of entropies that are

conserved by the evolution; we make the latter statement precise for all weak solutions of ARZ by apply-

ing Panov’s theory [27] of renormalization for scalar continuity equations. We also describe how one can

select the admissible shocks and forbid the non-admissible ones by using a specific family of ρ-convex,

Kruzhkov-like entropies (Ek )k>0. We recall that even if contact discontinuities adjacent to vacuum states

can be mathematically correct solutions to the ARZ system, they must be disregarded as they do not have

physical meaning. Of course, entropy criteria cannot rule out these non-admissible discontinuities, as en-

tropies do not dissipate along discontinuities of the linearly degenerate family. In Section 3 we rely on Rie-

mann invariants to describe a BV-stable Riemann solver able to cope with vacuum states, [6, 23]. Sections 4

and 5 deal with the constrained ARZ. We give a rigorous definition of admissible solution to ARZ with a local

constraint in terms of entropy inequalities with the entropies (Ek )k>0 and suitable singular “compensation

terms”. Using the aforementioned renormalization property, we prove that this definition is stable w.r.t. the

L1
loc convergence of sequences of solutions. Then we describe the associated Riemann solver and its dis-

cretized version suitable for the Wave-Front Tracking (WFT) analysis. Section 6 is devoted to numerical

approximation of constrained ARZ. We describe a finite volume numerical scheme for admissible solutions
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of ARZ, incorporating the point constraint by a simple flux-limiting procedure in the spirit of [5]. In the

last section we compare an exact solution with the simulation obtained by our finite volume scheme from

the same initial condition. This example constitutes an important part of the validation of the numerical

scheme.

1.2 Notation and structure of ARZ

We assume that p : R+ → R+ is a continuous function, twice continuously differentiable on ]0,+∞[, such

that p(0) = 0,

p ′(ρ) > 0 and p ′(ρ)+ρp ′′(ρ) > 0 ∀ρ > 0. (1.2)

For technical reasons we also assume

lim
ρ↓0

[
ρ2p ′(ρ)

]= 0, lim
ρ↓0

∣∣∣∣ρp ′′ (ρ)
p ′ (ρ) ∣∣∣∣<+∞. (1.3)

All these assumptions are satisfied, in particular, for p(ρ)
.= ργ, γ> 0. Furthermore, we will denote by R the

inverse function of ρ 7→ p(ρ)+ρp ′(ρ) (which is strictly increasing due to (1.2)).

Throughout the paper, we choose to represent the unknown states in (1.1) in variables ~W
.= (v, w)T ,

which are the Riemann invariants for ARZ. Then the conservative variables for (1.1) are (ρ, y)T , with ρ
.=

p−1(w − v) and y
.= w p−1(w − v), defined in the domain W

.= {(v, w)T ∈ R2+ : v ≤ w}. We denote the density

flux ρ v by q . Since ρ = 0 if and only if v = w , in the (v, w) coordinates we can distinguish different vacuum

states which turns out to be very convenient from the mathematical viewpoint, even if it has no physical

meaning. Hence, we denote by W0
.= {(v, w)T ∈R2+ : v = w} the set of all vacuum states and by W c

0
.= {(v, w)T ∈

R2+ : v < w} the set of non-vacuum states.

Recall that the characteristic speed corresponding to the waves of the first (resp., of the second) family is

λ1 = v −ρp ′(ρ) (resp., λ2 = v). Away from the vacuum the first family is genuinely nonlinear, while the sec-

ond is linearly degenerate; this motivates the distinction in the terminology used for jumps in the solution

(jumps of the first family are called shocks, while jumps of the second family are called contact disconti-

nuities). The system is strictly hyperbolic and a Temple system away from the vacuum; at the vacuum, it is

natural to extend the flux by zero, so that the two eigenvalues coincide: λ1 = 0 = λ2, yet the matrix of the

system still admits a full basis of eigenvectors also in vacuum.

2 Entropies and renormalization property for ARZ revisited

In this section, we recall what is known on entropies for ARZ. There are no convex entropies for ARZ when

vacuum is allowed, see [23]. However, for our result it is sufficient to consider entropies that are preserved

on smooth solutions of ARZ and dissipated (in the non-strict sense) by the solutions of the Riemann prob-

lems as constructed by Aw and Rascle [7]. Indeed, on the one hand, the linearity in w of the second equation
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of (1.1) implies that fully general functions E that depend solely on the variable w are entropies for the sys-

tem (and these entropies are conserved along trajectories of ARZ). On the other hand, the very convenient

in practice “Kruzhkov-like” entropies Ek , introduced below, select the right shocks as they are convex in

the variable ρ, while convexity in the conservative variables (ρ, y) is not needed. We also recall that vis-

cous regularization (underlying the convexity requirement for the entropies) has no physical meaning in

the context of ARZ. Indeed, it is incorrect to apply a viscous regularization to ARZ because vehicular traffic

is anisotropic: unlike gas molecules that respond to stimulus from all sides, the drivers react only to the

distance to the vehicle ahead and ignore the location of all other vehicles.

The entropy-entropy flux pairs (E ,Q) for ARZ are pairs of real-valued functions of the state of the system

~W
.= (v, w)T , such that the companion conservation laws E (~W )t +Q(~W )x = 0 hold for all smooth solutions

of (1.1). This leads to the compatibility conditions

Qw = v Ew , Qv = [
v −ρ(~W ) p ′(ρ(~W )

)]
Ev ,

under the integrability condition, see [20, Eq. (7.4.13)],

Ew +
[

1+ ρ(~W ) p ′′(ρ(~W )
)

p ′(ρ(~W )
) ]

Ev +ρ(~W ) p ′(ρ(~W )
)
Ew v = 0.

Accurate calculations show that general solutions of the above system are

E (~W ) = 1

ζ(w − v)

[
f(w)−

∫ v

0
ζ′(w −ν)g(ν) dν

]
+b, (2.4a)

Q(~W ) = v E (~W )−
∫ v

0
g(ν) dν+ c, (2.4b)

where f and g are arbitrary sufficiently regular functions, b and c are arbitrary constants and

ζ(ν)
.= 1/p−1(ν). (2.5)

The smoothness assumption for f and g is relaxed by straightforward approximation arguments, indeed, it

is enough to have E Lipschitz continuous. Actually, the class of f in the above formula can be even more

general, due to

Lemma 2.1. Any weak (D′) solution ~W = (v, w)T ∈ L∞(R+ ×R;W ) of system (1.1) possesses the following

renormalization property:

∀f ∈B(R+;R)
[
ρ f(w)]t + [q f(w)

]
x = 0 in D′, (2.6)

where D′ denotes the space of distributions on ]0,+∞[×R and B denotes the space of all Borel measurable

functions.

Proof. The claim of the lemma is a straightforward application of the result of [27]. Indeed, given an L∞

weak solution ~W to ARZ, one can consider the L∞ functions A : (t , x) 7→ ρ(~W (t , x)) and B : (t , x) 7→ q(~W (t , x)) ≡

4



ρ(~W (t , x)) v(t , x). With this notation, the first equation of (1.1) means that the field (A,B) in the coordinates

(t , x) is divergence-free (in the sense of distributions), while the second equation means that w is a solution

(in the sense of distributions) of the continuity equation [A w ]t+[B w]x = 0. Moreover, we have |B | ≤ ‖v‖∞A.

Under these assumptions, Panov [27] proves that for every Borel function f

[
ρ f(w)

]
t +

[
q f(w)

]
x ≡ [A f(w)]t + [B f(w)]x = 0 in D′.

Remark 1. Due to the result of Lemma 2.1, the terms in (2.4) involving the function f (and obviously, those

involving the constants b,c) cannot contribute to select admissible weak solutions. Therefore, they can

be set to zero each time entropies are used as admissibility criterion. However, entropies corresponding

to a special family of Lipschitz continuous functions (fk )k will play an important role in the definition of

solutions to ARZ with point constraint.

It is not feasible to use entropy dissipation criteria to rule out contact discontinuities (in ARZ as it is

described in [7], some contact discontinuities adjacent to vacuum states are declared not admissible on a

phenomenological basis). However entropy dissipation can be used to enforce the right notion of admissi-

bility of shocks (in ARZ as described in [7], a shock is admissible if and only if v decreases across the shock).

Indeed, if we fix f≡ 0, b= c= 0, we have

Lemma 2.2. The weak solution to system (1.1) taking the form

~W (t , x) = (v−, w−)T 1x−σ t<0 + (v+, w+)T 1x−σ t>0

with w− = w+ (i.e., the shock propagating at speed σ
.= (ρ+v+−ρ−v−)/(ρ+−ρ−), ρ± = p−1(w±− v±)) verifies

v− ≥ v+ if and only if for all g ∈ W1,∞(R+;R)

g′ ≥ 0 ⇒ E g(~W )t +Qg(~W )x ≤ 0 in D′,

where E g(v, w)
.=− 1

ζ(w−v)

∫ v
0 ζ

′(w −ν)g(ν) dν, Qg(v, w)
.= v E g(v, w)−∫ v

0 g(ν) dν are the entropy-entropy flux

pairs corresponding to (2.4) with zero f, b,c.

Proof. The claim follows by a straightforward explicit calculation, the inequality sign coming from (1.2).

It was observed in [23] that E g, g′ ≥ 0, are not convex but they are ρ-convex; we do not insist on this

feature, focusing on the fact that these entropies are exactly those that select the admissible shocks in ARZ.

However, it is not necessary to use the whole family of entropies {E g : g′ ≥ 0} in Lemma 2.2: one easily sees

that it is enough to consider only the entropies Ek
.= E gk , k > 0, corresponding to gk (ν)

.= sign(ν−k). The

explicit expressions of these entropies and of the associated entropy fluxes Qk
.=Qgk are

Ek (v, w) =


0, v ≤ k,

1− p−1(w − v)

p−1(w −k)
, v > k,

Qk (v, w) =


0, v ≤ k,

k − q(~W )

p−1(w −k)
, v > k.

(2.7)
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The family (Ek )k>0 spans the cone of all entropies E g, g′ ≥ 0, in the same sense in which Kruzhkov en-

tropies span the cone of convex entropies in the scalar case. As in the case of Burgers equation, the non-

admissibility of shocks with v− < v+ can be witnessed via the anti-dissipation of Ek (~W ) for k ∈ ]v−, v+[. We

say that Ek are Kruzhkov-like entropies for ARZ. We adopt the following definition

Definition 2.3. Assume ~W0 ∈ L∞(R;W ). A function ~W in L∞(R+×R;W ) is an entropy solution of ARZ with

the initial condition ~W0 if it is a weak solution, i.e.,

∫
R+

∫
R
ρ(~W )

[
φt + vφx

] 1

w

dx dt =−
∫
R
ρ(~W0(x))φ(0, x)

 1

w0(x)

dx (2.8)

holds for all φ ∈D(R+×R), and moreover, for all k > 0 the entropy inequalities Ek (~W )t +Qk (~W )x ≤ 0 hold in

D′(]0,+∞[×R), with Ek ,Qk given in (2.7).

3 Riemann solver, L∞ and BV stability for ARZ

The delicate issue with ARZ concerns the vacuum: already at the level of the Riemann problem, if the initial

condition contains a vacuum state there may co-exist two weak solutions satisfying the entropy admissi-

bility criterion of Definition 2.3, one of which is non-physical, [7]. Therefore, we adopt the viewpoint that

ARZ is most appropriately determined by the Riemann solver rather than by the underlying system (1.1).

Contrarily to [7], we define the Riemann solver in terms of (v, w) and not in terms of (ρ, y) (this has already

been the setting of [23] and [6]), which implies making particular choices in presence of vacuum states

(v, w)T ∈ W0. The Riemann solver RS for ARZ in coordinates (v, w) contains the following elementary

waves:

• If ~W` ∈W , ~Wr ∈W c
0 with w` = wr and vr < v`, then we have a shock

S [~W`, ~Wr ](x/t )
.=


~W`, x/t <σ(~W`, ~Wr ),

~Wr , x/t >σ(~W`, ~Wr ),
(3.9)

with speed of propagation σ(~W`, ~Wr )
.= [q(~Wr )−q(~W`)]/[ρ(~Wr )−ρ(~W`)].

• If ~W` ∈W c
0 , ~Wr ∈W with w` = wr

.= w and v` < vr , we have a rarefaction

R[~W`, ~Wr ](x/t )
.=



~W`, x/t <λ1(~W`),(
w −p

(
R

(
w − x

t

))
, w

)T
, λ1(~W`) < x/t <λ1(~Wr ),

~Wr , x/t >λ1(~Wr ),

(3.10)

with λ1(~W )
.= v −ρ(~W ) p ′(ρ(~W )) if ~W ∈W c

0 and λ1(~W )
.= w otherwise.
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• If ~W`, ~Wr ∈W c
0 with v` = vr

.= v and w` 6= wr , then we have a contact discontinuity

C [~W`, ~Wr ](x/t )
.=


~W`, x/t < v,

~Wr , x/t > v.
(3.11)

Definition 3.1. For any ~W` = (v`, w`)T , ~Wr = (vr , wr )T ∈W with ~W` 6= ~Wr , the Riemann solver RS [~W`, ~Wr ]

for ARZ is defined as follows:

1. If ~Wr ∈W c
0 , w` = wr and vr < v`, then RS [~W`, ~Wr ] ≡S [~W`, ~Wr ].

2. If ~W` ∈W c
0 , w` = wr and v` < vr , then RS [~W`, ~Wr ] ≡R[~W`, ~Wr ].

3. If ~W`, ~Wr ∈W c
0 and v` = vr , then RS [~W`, ~Wr ] ≡C [~W`, ~Wr ].

4. If ~W` ∈W0 and ~Wr ∈W c
0 , then RS [~W`, ~Wr ](x/t ) = ~W`1{x<vr t } + ~Wr 1{x>vr t }.

5. If ~W`, ~Wr ∈W c
0 and vr < v` < w`, then RS [~W`, ~Wr ] is the juxtaposition of S [~W`, ~Wm] and C [~Wm , ~Wr ],

where ~Wm = (vr , w`)T ∈W c
0 .

6. If ~W`, ~Wr ∈W c
0 and v` < vr < w`, then RS [~W`, ~Wr ] is the juxtaposition of R[~W`, ~Wm] and C [~Wm , ~Wr ],

where ~Wm = (vr , w`)T ∈W c
0 .

7. If ~W`, ~Wr ∈W c
0 and v` < w` ≤ vr < wr , then setting ~Wm = (w`, w`)T ∈W0 we assign RS [~W`, ~Wr ](x/t ) =

R[~W`, ~Wm](x/t )1{x<vr t } + ~Wr 1{x>vr t }.

Naturally, we also define RS [~W∗, ~W∗] ≡ ~W∗ for any ~W∗ ∈W .

Observe that the cases 1.-7. of Definition 3.1 do not cover all pairs (~W`, ~Wr ) ∈W 2: namely, we eluded the

question of how to define RS for (~W`, ~Wr ) ∉G, where

G
.=

(~W`, ~Wr ) ∈W 2 :
~W` ∈W0, ~Wr ∈W0 ⇒ ~W` = ~Wr ,

~W` ∈W c
0 , ~Wr ∈W0 ⇒ ~Wr = (w`, w`)T

 .

Indeed, first, any initial datum given in physical variables (ρ, y) can be represented in variables (v, w) and

discretized with approximate data belonging to G. Second, one can check that the domain G is invariant

for the WFT algorithm based on the Riemann solver RS .

On the basis of the Riemann solver, sequences of approximate solutions can be constructed by finite

volume schemes, see [6], or by the WFT method, see [19, 24] and [21, 23]. Justification of their convergence

relies on the following bounds.

Lemma 3.2. For any given v∗, w∗, w∗ ∈R+ such that 0 ≤ v∗ ≤ w∗ < w∗, the set
{
(v, w)T ∈W : v ≥ v∗, w∗ ≤ w ≤ w∗}

is an invariant domain for RS .

The following BV stability property of ARZ is essential for the analysis of the convergence, see [6, 23]. For a

function ~W = (v, w)T on R, define the total variation TV(~W ) as the sum of the total variations of its compo-

nents v and w .
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Lemma 3.3. For all Riemann data (~W`, ~Wr ) ∈G, the total variation of the function x 7→ RS [~W`, ~Wr ](t , x)

given in Definition 3.1 is equal to the total variation of the data.

With these basic ingredients at hand, we will now depart from the pure ARZ system. Notice that the cor-

responding existence and WFT results are a simple particular case (corresponding to q0 ≥ max{q(v,‖~W0‖∞) : 0 ≤
v ≤ ‖~W0‖∞}) of those of Section 4 devoted to ARZ with point constraint q |x=0 ≤ q0.

4 Locally constrained ARZ: definition and stability of solutions

The goal of this section is to define entropy admissible weak solutions to the constrained ARZρt +qx = 0,

(ρw)t + (q w)x = 0,
q = ρ v, w = v +p(ρ), and q|x=0 ≤ q0, (4.12)

where q0 ∈ L∞(R+). We start with the following lemma, which can be bypassed in the BV framework, cf. [4],

where the existence of strong L1
loc traces is obvious.

Lemma 4.1. Assume that ~W is a weak solution of ARZ with initial datum ~W0 ∈ L∞(R;W ) in the sense that (2.8)

holds for allφ ∈D(R+×R). Then for any bounded Borel function f :R+ →R, the function x 7→ [
q(~W )f(w)

]
(·, x)

admits a trace at x = 0 in the sense of the weak-* convergence in L∞(R+).

Proof. The existence of right and left traces of q
(
~W

)
f(w) is a consequence of Lemma 2.1 and of the general

result in [12] on the existence of weak traces of L∞ divergence-measure fields (one considers separately the

domains {x < 0} and {x > 0}). The coincidence of the one-sided traces is due to the fact that ~W is a weak

solution also in a neighbourhood of {x = 0}: It expresses the Rankine-Hugoniot condition.

In the context of Lemma 4.1, we will denote the coinciding right and left traces at {x = 0} byγ|x=0±[q f(w)]

(in the sequel, sometimes they will also be abusively denoted by [q f(w)](t ,0±) in order to lighten the no-

tation). For q0 ≥ 0, k > 0 and with ζ defined in (2.5), let us introduce the auxiliary Lipschitz continuous

functions

fk (q0; w)
.= q0

[
k

q0
−ζ([w −k]+

)]+
if q0 > 0, fk (q0; w)

.= k if q0 = 0.

Now we are ready to define solutions to (4.12) for the case of constant q0.

Definition 4.2. Let ~W0 ∈ L∞ (R;W ). We say that ~W ∈ L∞ (R+×R;W ) is an entropy weak solution of the con-

strained ARZ (4.12) with initial datum ~W0 if, firstly, it is a weak solution of the pure ARZ (1.1) with initial

datum ~W0 (see Definition 2.3); secondly,

γ|x=0± [q
(
~W )] ≤ q0 a.e. on R+; (4.13)
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and finally, the following Kruzhkov-like entropy inequalities with compensation terms hold in D′(]0,+∞[×
R): ∫

R+

∫
R

[
Ek (~W )φt +Qk (~W )φx

]
dx dt +

∫
R+
γ|x=0±

[
q(~W )

q0
fk (w)

]
φ(t ,0) dt ≥ 0 (4.14)

(with the convention q(~W )/q0
.= 1 if q0 = 0), for all k > 0 and Ek ,Qk given in (2.7).

Observe that all the trace terms in the above definitions are well defined due to Lemma 4.1. Because

the properties required in Definitions 2.3 and 4.2 differ only at the interface {x = 0}, and because the no-

tion of weak entropy solution can be localized by restricting the supports of the test functions, solutions of

constrained ARZ (4.12) away from {x = 0} have the same properties as those of pure ARZ (1.1). The con-

straint at {x = 0} is enforced explicitly by (4.13). Moreover, an essential role is played by the second term

in Kruzhkov-like entropy inequalities (4.14) that we call compensation term (cf. [11, 13] for the introduction

of analogous terms for constrained LWR model). Indeed, we have the following observation (stated, for the

sake of simplicity, for solutions having traces at {x = 0} in the strong sense):

Proposition 1. Let ~W be a function which is jump discontinuous at {x = 0}, and is constant in the regions

{x < 0} and {x > 0}. Then ~W is a constrained entropy solution of (4.12) in the sense of Definition 4.2 if and

only if the Rankine-Hugoniot jump condition at {x = 0} is satisfied, and one of the following cases occurs:

(i) either [q(~W )](·,0±) ≤ q0 and the shock at {x = 0} is classical in the sense that it is admissible for pure ARZ

system (1.1) (cf. Lemma 2.2);

(ii) or [q(~W )](·,0±) = q0 and the shock is not admissible for pure ARZ system (1.1).

As for the constrained LWR case (see [5, 13]), from item (ii) in the proposition above we see that an en-

tropy solution to the constrained ARZ problem in the sense of Definition 4.2 may admit non-classical shocks

located at {x = 0}, however they are conservative and they occur precisely at the level q0 of the constraint.

We refer to [4] for a proof of Proposition 1.

The fundamental examples of entropy weak solutions to (4.12) can be found in [22], where a conserva-

tive constrained Riemann solver was constructed. Indeed, in a vicinity of {x = 0}, these solutions fall into one

of the two cases (i), (ii) of Proposition 1; moreover, their definition implies that they are admissible for pure

ARZ away from {x = 0}. Due to the self-similar structure of the Riemann solver, it is enough to check (4.14).

We will use the conservative Riemann solver of [22], written in the coordinates ~W as the RS of the previous

section, as the building block of the WFT algorithm exploited in the next section.

Let us underline that there are simpler choices of “compensation term” in the Kruzhkov-like entropy

inequalities (4.14). However, the interest of our definition resides in the following stability result, which

strongly relies upon Lemma 2.1.

Proposition 2. Assume that (q i
0)i ⊂R+ converges to q0 and that (~W i

0 )i ⊂ L∞ converges a.e. to ~W0 as i →+∞.

Let ~W i be the entropy weak solution of constrained ARZ (4.12) associated with the initial datum ~W i
0 and the

constraint q i
0. Assume that the sequence (~W i )i is uniformly bounded in L∞ and a.e. convergent to a limit
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function ~W . Then ~W is an entropy weak solution of constrained ARZ (4.12) associated with the initial datum

~W0 and the constraint q0.

In contrast to the constrained LWR model where the “compensation term” added to Kruzhkov entropy in-

equalities depends only on the parameter k of the entropy considered, the last term of (4.14) makes appear

a trace of some solution-dependent quantities. For this reason, the proof of Proposition 2 (and actually, the

choice of the compensation term that makes this proof possible) is non-trivial.

Proof of Proposition 2. The proof consists in passing to the limit, as i → +∞, in the different relations of

Definition 4.2. It is trivial to pass to the limit in all volume integrals, in the initial datum term of the weak

solution identity and in the entropy inequalities (4.14). One has to care of the last term of (4.14), and check

that the constraint (4.13) with ~W i , q i
0, passes to the limit. Both delicate points follow from the Green-Gauss

theorem, which reduces the weak convergence of interface traces to the convergence of some volume inte-

grals (cf. [3, Lemma 7.1]). At this point, the renormalization property (2.6) of Lemma 2.1 and the fact that q0

does not depend on t are essential ingredients of the proof. The details are given in [4].

Let us stress that the stability feature of Proposition 2 is a cornerstone of the existence proof we give in

the next section. To conclude this section, let us briefly discuss the case of ARZ with variable in time point

constraint q0(t ).

Remark 2. If q0(·) is piecewise constant in time, it is enough to use the same definition, “gluing” in the

last term of (4.14) the different terms γ|x=0±
[

q(~W )
q`

0
fk (q`0 ; w)

]
on the respective time intervals [t`−1, t`[ where

q0(t ) takes the value q`0 .

If q0(·) varies continuously, it becomes delicate to use the same approach, in particular because the

renormalization property of Lemma 2.1 does not extend easily to functions of the form fk (q0(t ); ·). In this

case, one can approximate q0(·) in the L1
loc sense by a family of piecewise constant functions (qm

0 )m . Then

one can use these approximations qm
0 (·) of q0(·) in the last term of inequalities (4.14) (in which case the

traces are well defined), provided one adds to these inequalities an error term ε(m)
∫
R+φ(t ,0) dt . This term

should vanish as m →+∞ while controlling, at each fixed m, the approximation error which can be esti-

mated by ∫
R+

[
sup

(k,w) : 0<k≤w≤‖~W0‖∞

∣∣∣fk (qm
0 (t ); w)− fk (q0(t ); w)

∣∣∣]φ(t ,0) dt .

With such definition, stability of entropy weak solutions under the a.e. convergence of solutions and con-

straints can be established. A simpler definition and stability proof can be given if we restrict our attention

to BVloc constraints q0(·), indeed, in this case it is possible to approximate q0 by a monotone sequence of

piecewise constant functions
(
qm

0 (·))m and thus avoid the introduction of error terms.

10



Figure 1: Left: the curve q = [w −p(ρ)]ρ in the (ρ, q)-plane. Right: the curve w = v +p(q0/v) in

the (v, w)-plane.

5 The constrained Riemann solver and wave-front tracking

Our first objective is to adapt the Riemann solver RS for pure ARZ (1.1) to the constrained ARZ (4.12). At

this point additional notation is needed, see Figure 1.

Given w > 0, introduce Ẇ (w)
.= (v̇(w), w)T ∈ W with v̇(w)

.= w − p
(
ρ̇(w)

)
, where ρ̇(w) is the point of

maximum of ρ 7→ (
w −p

(
ρ
))
ρ (it exists and is unique due to (1.2)). Set q̇(w)

.= q(Ẇ (w)). Consider W̃ (q0)
.=(

ṽ(q0), w̃(q0)
)T ∈W corresponding to the point of the curve q(~W ) = q0 with the smallest possible coordinate

w ; it is implicitly defined by

ṽ(q0)2

q0

= p ′
(

q0

ṽ(q0)

)
, w̃(q0) = ṽ(q0)+p

(
q0

ṽ(q0)

)
.

Now, provided w ≥ w̃(q0), the set
{

v ∈ ]0, w[ : w = v +p
(
q0/v

)}
is not empty (it is a singleton for w = w̃(q0)

and it consists exactly of two points for w > w̃(q0), see Figure 1 (right)). Finally, we define the key constraint-

related states involved in the following modification of the Riemann solver RS :

Ŵ (q0, w)
.= (

v̂(q0, w), w
)T , W̌ (q0, w)

.= (
v̌(q0, w), w

)T ,

v̂(q0, w)
.= min

{
v ∈ ]0, w[ : w = v +p

(
q0

v

)}
, (5.15)

v̌(q0, w)
.= max

{
v ∈ ]0, w[ : w = v +p

(
q0

v

)}
, (5.16)

for w ≥ w̃(q0). It is convenient to extend formally these definitions to 0 ≤ w < w̃(q0) by extending both

v̂(q0, ·) and v̌(q0, ·) by their common value v̇ .

Definition 5.1. The Riemann solver RS q0
for (~W`, ~Wr ) ∈G is defined as follows:

11



• If RS [~W`, ~Wr ] satisfies q(~W (t ,0±)) ≤ q0, then RS q0
[~W`, ~Wr ]

.=RS [~W`, ~Wr ].

• Otherwise, RS q0
[~W`, ~Wr ](x/t )

.=

RS [~W`,Ŵ (q0, w`)](x/t ), x < 0,

RS [W̌ (q0, w`), ~Wr ](x/t ), x > 0.

Thus, in the second case RS q0
[~W`, ~Wr ] introduces non-classical shocks which can be characterized

as stationary jumps in v across {x = 0} (w remaining constant across the non-classical shocks) joining two

states with the flux equal to q0: the state Ŵ (q0, w`) on the left and the state W̌ (q0, w`) on the right from

x = 0, being v̂(q0, w`) < v̌(q0, w`) (that’s why this discontinuity is not admissible in the sense of Defini-

tion 2.3; cf. Lemma 2.2). However, since the flux q at x = 0 of this solution equals to the constraint level q0,

in accordance with Proposition 1 this non-classical shock is admissible in the sense of Definition 4.2 (while

the classical solution RS [~W`, ~Wr ] becomes non-admissible with this new definition). More generally, one

easily checks that RS q0
provides entropy weak solutions to constrained ARZ (4.12) in the sense of Defini-

tion 4.2. One can also check that G remains an invariant domain in the WFT algorithm based on RS q0
, so

that there is no need to define RS q0
on W 2 \G.

Now, we investigate the bounds that can be obtained with the constrained Riemann solver RS q0
of

Definition 5.1. Lemma 3.2 can be substituted by

Lemma 5.2. Given 0 ≤ v∗ ≤ w∗ < w∗, let one of the following conditions holds:

(i) w∗ ≤ w̃ , (ii) w∗ > w̃ and v∗ ≥ v̌(w∗), (iii) w∗ > w̃ and v∗ ≤ v̂(w∗).

Then the domain
{
(v, w)T ∈W : v ≥ v∗ and w∗ ≤ w ≤ w∗}

is invariant for RS q0
.

At the same time, it is obvious from Definition 5.1 that Lemma 3.3 fails if RS is replaced with RS q0
.

E.g., any constant datum ~Wc = (vc , wc )T ∈ W such that q(~Wc ) > q0 gives rise to a non-constant solution

RS q0
[~Wc , ~Wc ]. As a preliminary observation, note that the amplitude of the non-classical shock created at

x = 0 in this case is given by J (q0, wc )
.= v̌(q0, wc )− v̂(q0, wc ). In fact, the map J (q0, ·) is a basic ingredient of

the “interaction potential” needed to control the increase of the BV norm of the WFT approximations (such

increase may occur at times where a non-classical shock appears or disappears at x = 0); we defer to [4].

The WFT algorithm of [19], further developed in [9, 24], has become the classical tool for construction

of solutions to hyperbolic systems of conservation laws, particularly in the situations where the solutions

are defined by a (non-classical) Riemann solver. We pursue this strategy for approximation of the Cauchy

problem for (4.12).

Let us briefly describe the preparatory work needed to implement the WFT for (4.12). One picks a suf-

ficiently large h ∈N and sets εh .= 2−hV0, where V0 is an a priori L∞ bound for approximate solutions with

given initial datum ~W0 (cf. Lemma 5.2). Then W is discretized by W h .= W ∩ [εhN2]. The initial datum

will be discretized with values in W h ; the Riemann solver RS (to be used for interactions at x 6= 0) and

the constrained Riemann solver RS q0
(to be used at x = 0) for ARZ will be substituted with the approx-

imate Riemann solvers RS h , RS h
q0

such that for all (~W`, ~Wr ) ∈ (W h)2 ∩G, the functions RS h[~W`, ~Wr ],

12



Figure 2: Left: W h (dots), C h (highlighted) in the (ρ, q)-plane. Right: sets W h and C h pictured

in the (v, w)-plane.

RS h
q0

[~W`, ~Wr ] take values in W h . To this end, the rarefactions (3.10) are discretized in a classical way,

carefully choosing the jump velocities; in particular, the resulting fans of non-admissible (in the sense of

Lemma 2.2 and Definition 2.3) shocks provides a weak solution to ARZ. Next, the classical shocks (3.9) and

the contact discontinuities (3.11) in RS , RS q0
are not modified. The last modification that only concerns

RS q0
: one has to approximate the non-classical shocks so that their end states Ŵ`,W̌r belong to W h . This

forces us to relax the equality q(Ŵ`) = q0 = q(W̌r ) which holds true for non-classical shocks in RS h
q0

: ac-

tually we may even loose the desirable conservation property at x = 0, whenever a non-classical shock is

present. Here, let us give the details. The region of states ~W ∈W that do not satisfy the constraint q(~W ) ≤ q0

is

C (q0)
.=

{
(v, w)T ∈W : w > v +p

(
q0

v

)}
.

We approximate it with the set (pictured in Figure 2)

C h(q0)
.=

{
(v, w)T ∈W h : w > v +p

(
q0

v

)}
.

Let w̃h(q0) be the minimal value of w ∈ εhN for which the set C h(q0) has two elements with the second

coordinate equal to w . We introduce the approximations in C h(q0) of v̂ and v̌ given in (5.15), (5.16):

v̂h(q0, w)
.= max

{
εhN∩ [

0, v̂
(
q0, w

)]}
, v̌h(q0, w)

.= max
{
εhN∩ [

0, v̌
(
q0, w

)]}
.

Now, by following [24] it is easy to introduce the WFT algorithm to construct approximate solutions

of the Cauchy problem for (4.12). The painstaking analysis developed in [4] aims at showing that the total

number of wave-fronts appearing in the construction remains finite; moreover, the total variation of ~W h(t , ·)
remains bounded uniformly in time, in spite of the fact that the constrained Riemann solver RS h

q0
is not

variation-diminishing. With BV bounds in hand, one derives compactness of solutions; then, convergence
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(up to a subsequence) of the algorithm can be justified combining classical ideas of analysis of WFT schemes

and the idea of Proposition 2. This material can be found in [4].

6 Numerical approximation of constrained ARZ model

In this section we describe a finite volumes numerical scheme for the constrained ARZ model in the con-

servative form. The same scheme is to be employed in our ongoing research project to investigate the ARZ

system subject to more general point constraints, possibly non-local. Our scheme is obtained combin-

ing the techniques presented in [22] to treat the constrained Riemann problem for ARZ, together with the

Transport-Equilibrium scheme introduced in [10] to deal with the contact discontinuities. The main differ-

ences between our scheme and the aforementioned ones is that we do not use an exact Riemann solver in

the implementation of the scheme as we consider general initial conditions and we wish to keep our scheme

as fast as possible.

In order to fix the notation we recall that the conservative variables for ARZ are ~Y = (ρ, y)T , and that the

Cauchy problem for the system writes 
~Yt +F (~Y )x = 0,

~Y (0, x) = Y (x),

q|x=0 ≤ q0,

(6.17)

where F (~Y )
.= (ρ v, y v)T , v

.= y
ρ −p(ρ), q = ρ v as above, and Y

.= (ρ̄, ȳ) is the initial condition.

Let us denote by [x`, xr ]×[0,T ] the computational domain and let∆x and∆t be the constant space and

time increments. We introduce the points x j+1/2
.= x`+ j ∆x for 0 ≤ j ≤ M , where M is the natural number

such that xM+1/2 = xr . Then for any 1 ≤ j ≤ M , we define the cells K j
.= [x j−1/2, x j+1/2[ with cell centres

x j = x`+ ( j −1/2)∆x. We introduce the index jc such that x jc+1/2 is the location of the constraint (a tollgate

or a traffic light). We define the time discretization t n = n∆t for 0 ≤ n ≤ N , where N is the natural number

such that t N = T . For 1 ≤ j ≤ M and 0 ≤ n ≤ N , we denote by Y n
j = (ρn

j , yn
j )T the approximation of the

average of ~Y (t n , · ) on the cell K j , namely

Y 0
j = 1

∆x

∫ x j+1/2

x j−1/2

Y (x)dx and Y n
j ' 1

∆x

∫ x j+1/2

x j−1/2

~Y (t n , x)dx if n > 0.

Observe that Y n
j is a vector: we omit the upper arrow in order to keep the notation as light as possible. To

each state Y n
j we can associate a unique pair of “Riemann invariants” (vn

j , wn
j ) as follows:

• If ρn
j 6= 0, then wn

j = yn
j /ρn

j and vn
j = wn

j −p(ρn
j ).

• If ρn
1 = 0, then wn

1 = vn
1 = wn

j∗ , where j∗ = min{k > 1: ρn
k 6= 0}.

• If ρn
j = 0 and j 6= 1, then wn

j = vn
j = wn

j−1.

Note that the definition above is not motivated by any physical insight, but just designed to optimize com-

putations, as we already pointed out in Section 1.2.
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Assume for the moment that we do not enforce the constraint to our problem. Even in this simpler case

we cannot apply directly a classical conservative scheme because it may generate important non-physical

oscillations near contact discontinuities. Note that contact discontinuities are unavoidable in solutions of

the ARZ model with a generic initial condition. In [10] the authors propose an efficient numerical strategy,

inspired by the random sampling technique, to address this issue. The main idea is to separate the treatment

of the contact discontinuity from the computation of other waves in the solution.

Assume (Y n
j )1≤ j≤M are given: Instead of computing immediately (Y n+1

j )1≤ j≤M Chalons and Goatin [10]

introduce an intermediate step n+1/2 so that from n to n+1/2 they only update the position of the possibly

present contact discontinuities, while from n +1/2 to n they use a (essentially) standard scheme to update

the values in all the cells.

In practice to go from n to n+1/2 one generates a random number an+1 and, for each value of j , defines

Y n+1/2
j by

Y n+1/2
j

.=


Y ∗(Y n

j−1,Y n
j ), if an+1 ∈

]
0, ∆t

∆x vn
j

[
,

Y n
j , if an+1 ∈

[
∆t
∆x vn

j ,1
[

.

Here Y ∗(Y n
j−1,Y n

j ) is the intermediate state in the solution of the Riemann problem between Y n
j−1 and Y n

j ,

connected to Y n
j−1 by a (possibly null) wave of the first family and to Y n

j by a (possibly null) contact discon-

tinuity:

Y ∗(Y n
j−1,Y n

j )
.= p−1(wn

j−1 − vn
j )

 1

wn
j−1

 .

Then, to go from n +1/2 to n +1 one uses the standard scheme

Y n+1
j

.= Y n+1/2
j − ∆t

∆x

(
F n+1/2,L

j+1/2 −F n+1/2,R
j−1/2

)
,

with

F n+1/2,L
j+1/2

.=F (Y n+1/2
j ,Y n

j+1)

and

F n+1/2,R
j−1/2

.=


F (Y n

j−1,Y n+1/2
j ), if Y ∗(Y n

j−1,Y n+1/2
j ) = Y n+1/2

j ,

F (Y n+1/2
j ), if Y ∗(Y n

j−1,Y n+1/2
j ) 6= Y n+1/2

j .

In this paper, the numerical flux F
.= (1, 2)T is the HLL flux, see [8], defined as follows

F (Y`,Yr )
.=



F (Y`), if 0 < c1,

c2 F (Y`)− c1 F (Yr )

c2 − c1
+ c1 c2

c2 − c1
(Yr −Y`), if c1 < 0 < c2,

F (Yr ), if c2 < 0,
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where c1
.= minY =Y`,Yr mini=1,2λi (Y ) and c2

.= maxY =Y`,Yr maxi=1,2λi (Y ).

Now we are ready to consider the Cauchy problem (6.17) subject to a constraint located at x jc+1/2. We

proceed exactly as in [22] (see also [5, 11] for the LWR case) and define the new numerical flux F̂ n
j+1/2

.= (̂1 ,̂ 2)T

as follows:

• If j 6= jc , then F̂ n
j+1/2

.=F n
j+1/2.

• If j = jc , then the components of the vector F̂ n
jc+1/2 are

ˆn1, jc+1/2
.= min

{
n
1, jc+1/2, qn

}
and ˆn2, jc+1/2

.= min

{
n
2, jc+1/2, qn

0

n
2, jc+1/2
n
1, jc+1/2

}
,

where qn
0 is an approximation of q0(t n).

7 Elements of validation of the scheme

In this section we compare an exact solution of a constrained Cauchy problem for the ARZ model obtained

by WFT method, with the numerical simulations obtained from the same initial condition by the numerical

scheme described in Section 6.

This first comparison allows us to check that our scheme correctly locates contact discontinuities and

enforces the constraint. This example also shows that the total variation of the solution can increase abruptly

due to the non-classical Riemann solver at the constraint. A complete validation of the scheme together

with its convergence and more detailed examples will be presented in a forthcoming paper.

Consider the domain of computation [−30,30] × [0,3], take the anticipation function p(ρ) = ρ3, and

assume that the initial condition takes the form

Y (x) = (ρ̄(x), ȳ(x))T =

(ρA , y A), if x <−10,

(ρB , yB ), otherwise,
(7.18)

and is such that w A = y A/ρA > wB = yB /ρB , while v A = w A −p(ρA) coincides with vB = wB −p(ρB ). We call

V the common value of v A and vB . The constraint is located at x = 0 and its constant value, q0, satisfies

ρAV > q0 > ρB V .

The solution of this problem consists of a contact discontinuity originated at (t , x) = (0,−10), which

reaches the constraint location at time T1. Then, as the state on the left to the contact discontinuity does

not satisfy the constraint, the solution changes its profile and new waves are created, according to the non-

classical Riemann solver RS q0
: A shock wave of negative speed, a stationary non-classical shock and a

shock wave of positive speed after which we finally recover the contact discontinuity.

The exact solution, corresponding to the values

w A = 12, wB = 9, V = 6, q0 = 9,

ρA = 61/3, ρB = 31/3, y A = 12 ·61/3, yB = 9 ·31/3,
(7.19)
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Figure 3: The (exact) solution described in Section 7 represented in the (t , x)-plane (left) and in the (ρ, q)-

plane (right).

is represented in the (t , x)-plane and in the (ρ, q)-plane in Figure 3. The time at which the contact discon-

tinuity reaches the position of the constraint is T1 = 5/3 and the solution is computed up to the final time

T = 3.

In Figure 4, we compare the exact solution with the numerically computed solution at time T = 3. The

parameters of discretization for the numerically computed solution are∆x = 5×10−3 and∆t = 10−4. We ob-

serve a good agreement between the two solutions, in particular the contact discontinuity is well captured.

In Figure 5, we show the comparison between the two solutions when focusing on the shock discontinuity

at (3,−19.5869). The approximate solution is computed for different values of the space step while the time

step is kept to ∆t = 10−4. We observe that the accuracy of the approximate solution increases as the space

step decreases. This numerical convergence is also observed in Table 1, where the relative L1 errors between

the two solutions are computed for different space step at time T = 3 and for the fixed ∆t = 10−4. Using the

logarithm scale we can deduce from Table 1 the orders of convergence which are approximately 0.906 and

0.869 for ρ and y respectively.

Finally, as due to the random sampling the scheme presented in Section 6 is non-conservative, we check

in Table 2 the relative total mass errors Eρ
cons and E y

cons that are defined as follow. Let us first introduce

Y∆(t , x)
.= Y n

j for x ∈ K j and t ∈ [t n , t n+1[

and Eρ(t n)

E y (t n)

 .= 1∫ x1

x0

Y∆(t n , x) dx

[∫ xr

x`
Y∆(t n , x) dx −

∫ xr

x`
Y∆(0, x) dx

+
∫ t n

0
F (Y∆(s, xr )) ds −

∫ t n

0
F (Y∆(s, x`)) ds

]
.
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Figure 4: The components of the exact solution and the numerically computed solution at time T = 3 cor-

responding to the values (7.19) for the initial datum (7.18).

Figure 5: The shock discontinuity at (t , x) = (3,−19.5869) and its numerical approximations for different

values of ∆x corresponding to the values (7.19) for the initial datum (7.18).
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∆x L1-error in ρ
Order of convergence

for ρ
L1-error in y

Order of convergence

for y

0.16 5.4934×10−3 - 6.039×10−3 -

0.08 3.821×10−3 0.524 4.4484×10−3 0.441

0.04 2.156×10−3 0.675 2.4886×10−3 0.639

0.02 9.3917×10−4 0.847 1.0942×10−3 0.823

0.01 5.619×10−4 0.860 7.226×10−4 0.815

0.005 2.5288×10−4 0.906 3.127×10−4 0.869

Table 1: Relative L1 errors at time T = 3.

∆x Eρ
cons E y

cons

0.16 2.69×10−3 3.28×10−3

0.08 1.37×10−3 1.69×10−3

0.04 0.78×10−3 0.96×10−3

0.02 0.38×10−3 0.49×10−3

0.01 0.26×10−3 0.34×10−3

0.005 0.13×10−3 0.17×10−3

Table 2: Measurement of the relative total mass errors on both ρ and y as defined by (7.20)

Then Eρ
cons and E y

cons are defined byEρ
cons(t n)

E y
cons(t n)

 .= 1

T

N∑
n=0

∆t

∥∥∥∥∥∥
Eρ(t n)

E y (t n)

∥∥∥∥∥∥ with N
.= T

∆t
. (7.20)

We can easily see from Table 2 that these conservative errors are small and converge to zero with the mesh

size.
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