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O. Klopp, A. B. Tsybakov
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Abstract

An increasing number of applications is concerned with recovering a
sparse matrix from noisy observations. In this paper, we consider the
setting where each row of the unknown matrix is sparse. We establish
minimax optimal rates of convergence for estimating matrices with row
sparsity. A major focus in the present paper is on the derivation of lower
bounds.

1 Introduction

In recent years, there has been a great interest for the theory of estimation in
high-dimensional statistical models under different sparsity scenarii. The main
motivation behind sparse estimation is based on the observation that, in several
practical applications, the number of variables is much larger than the number
of observations, but the degree of freedom of the underlying model is relatively
small. One example of such sparse estimation is the problem of estimating of a
sparse regression vector from a set of linear measurements (see, e.g., [2], [5], [16],
[23]). Another example is the problem of matrix recovery under the assumption
that the unknown matrix has low rank (see, e.g., [8, 20, 14, 15]).

In some recent papers dealing with covariance matrix estimation, a different
notion of sparsity was considered (see, for example, [7], [19]). This notion is
based on sparsity assumptions on the rows (or columns) M;. of matrix M.
One can consider the hard sparsity assumption meaning that each row M;. of
M contains at most s non-zero elements, or soft sparsity assumption, based
on imposing a certain decay rate on ordered entries of M;.. These notions of
sparsity can be defined in terms of [,—balls for ¢ € [0, 2), defined as

B,(s) = {’U =(v;) e R"™ : Z lv;]? < s} (1)

i=1

where s < oo is a given constant. The case ¢ =0

Bo(s) = {v: (v;) € R™ Z]I(vi;éO) Ss} (2)



corresponds to the set of vectors v with at most s non-zero elements. Here I(-)
denotes the indicator function and s > 1 is an integer.

In the present note, we consider this row sparsity setting in the matrix signal
plus noise model. Suppose we have noisy observations Y = (y;;) of an nq x ng
matrix M = (m;;) where

yij:mij+§ij7 i:]w"wnla j:17"'7n27 (3)

here, &;; are i.i.d Gaussian N (0,02), 02 > 0, or sub-Gaussian random variables.
We denote by E = (&;;) the corresponding matrix of noise. We study the
minimax optimal rates of convergence for the estimation of M assuming that
there exist ¢ € [0,2) and s such that M;. € B,(s) for any i =1,...,n1.

The minimax rate of convergence characterizes the fundamental limitation
of the estimation accuracy. It also captures the interdependence between the
different parameters in the model. There is an rich line of work on such fun-
damental limits (see, for example, [13, 21, 11]). The minimax risk depends
crucially on the choice of the norm in the loss function. In the present paper,
we measure the estimation error in || - [|2,,-(quasi)norm for 0 < p < oo (for the
definition see (4)).

For n; = 1, we obtain the problem of estimating of a vector belonging to a
B,(s) ball in R™>. This problem was considered in a number of papers, see, for
example, [9], [3], [1], [17]. Let nyect denote the minimax rate of convergence with
respect to the squared Euclidean norm in the vector case. It is interesting to note
that the results of the present paper show that, for the case p = 2, the minimax
rate of convergence for estimation of matrices under the row sparsity assumption
iS M1Myect- Thus, in this case, the problem reduces to estimation of each row
separately. The additional matrix structure does not lead to improvement or
deterioration of the rate of convergence. We show that it is also true for general
p.

A major focus in the present paper is on derivation of lower bounds, which is
a key step in establishing minimax optimal rates of convergence. Our analysis is
based on a new selection lemma (Lemma 1). The rest of the paper is organized
as follows. In Section 1.1, we introduce the notation and some basic tools used
throughout the paper. Section 2 establishes the minimax lower bounds for
estimation of matrices with row sparsity in || - ||2,,-norm, see Theorems 1 and 2.
In Section 3, we derive the upper bounds on the risks using a reduction to the
vector case. Most of the proofs are given in the appendix.

1.1 Definitions and notation
Let A be a matrix or a vector. For 0 < ¢ < oo and A € R™*"2 = (a;;), we

1/
denote by [|All, = (Z” |aij|q) " the elementwise lq-(quasi-)norm of A, and

by [|A||, the number of non-zero coefficients of A:

[Allg = _I(ai; #0)

0]



where I(-) denotes the indicator function. For any A = (Aj.,...,A,,.)T €
R™ ™2 and p > 0 define

4]

ny 1/p
2p = <Z IIAiv|§> : (4)
i=1

For p = 2, || A]|2,2 is the elementwise [z-norm of A and we will use the notation
II“ll2,2 = || - [|]2. For 0 < p < 1, we have the following inequality

| A+ A

b < Al + 1475,

For ¢ € [0,2) and s > 0 we define the following class of matrices
Alg,s) ={AeR™ " : A, € By(s) for any i =1,...,n1}. (5)
In the limiting case ¢ = 0, we will also write
A(s) ={AeR™ " : A, € By(s) foranyi=1,...,n1}. (6)

We set Npyyxn, = {(4,7) : 1 <i<np, 1<j<ns}. Fortwo real numbers a and
b we use the notation a A b := min(a,b), a Vb := max(a,b); we denote by
| ] the integer part of z; we use the symbol C for a generic positive constant,
which is independent of n1,ns, s and o and may take different values at different
appearances.

2 Lower bounds

We start by establishing the minimax lower bounds for estimation of matrices
over the classes A(s) (Theorem 1) and A(g, s) (Theorem 2). We denote by inf
A

the infimum over all estimators A with values in R™ %72 Consider first the case
q=0.

Theorem 1. Let ni,ne > 2 and p > 0. Fiz an integer 1 < s < ng/2 . Assume
that for (i, j) € Ny, xn,the noise variables &;; are i.i.d Gaussian N(0,0?), 0% >
0. Then,

(i)
. A A2 > 2 2/p en2 > 3
it sp P{IA- AR, = 0o ) s tog (“12)} 2 5
(it)
inf sup E[A — A||§p > Co%(n)%? s log (@) .
A A€ A(s) 7 s

where 0 < B <1, C >0, and C > 0 are absolute constants.



Proof. Tt is enough to prove (i) since (ii) follows from (i) and Markov inequality.
For a A € R™*"2 we denote by P4 the probability distribution of N(A4,0?I)
Gaussian random vector where I denotes (ning) x (ning) identity matrix. We
denote by KL(P, Q) the Kullback-Leibler divergence between the probability
measures P and Q.

To prove (i) we use Theorem 2.5 in [21]. It is enough to check that there
exists a finite subset ' of A(s) such that for any two distinct B, B’ in €' we
have

() 1B = B3, = Co® (n)7/2 s log (2,
? S

(b) KL(Pp,Pp/) < alog (card ')

for some constants C' > 0 and 0 < o < 1/8.

Denote by {0,1};, «,, the set of all matrices A = (a;;) € R™*"2 such that
a;; € {0,1} and each row of A contains exactly s ones. For any two matrices
A = (ai;) and A" = (aj;) in {0,1};, ,,, define the Hamming distance

du(A4,A) = > Tayzary-
(4,9)ENny xny
We use of the following selection lemma proved in Appendix A.

Lemma 1. Let ny,ne > 2 and 1 < s < ny/2. Then, there exists a subset Q of
{0,1}5 ., such that for some numerical constant C' > 107°

Log(|2) > C'my s log () (7)
and, for any two distinct A, A’ in Q, the Hamming distance satisfies

(A, 4) > EED (8)

Fix 0 < v < 1 and define

Q’—{aﬂy log(e—;w)A : AEQ}

where  is a set satisfying the conditions of Lemma 1. For p = 2 using (8) we
obtain that for any two distinct B, B" in

72027115 log (@)
16 S

This implies (a) for p = 2. For p # 2 we will use the following elementary

lemma, cf. Appendix B.

IB- B3>

Lemma 2. If A = (a;;) and A" = (aj;) are two elements of {0,1};, .,
ny(s+1)
16

1< < ng2 I a;ij#a > — ] reater th T eq It —1
(3 ny - - U s greate an or equat 1o .
! ]_1 { " ij} 32 64

such that dg (A, A") > , then the cardinality of the set J(A, A’) =



Lemma 2 implies that for any two distinct B, B’ in Q'

p/g 2/p
||B—B/H§1p2720'2 log(eng) <(s) n1>

32/ 64
, . (9)
Yoo 2/p (6712)
= 641+2/pn1 SlOg S 9

which yields (a) for p # 2.
To check (b), note that dg (A, A") < 2n;s for all A, A" € {0,1};, ,,,. This
implies
KL(Py, Pp) = ——||B = B2 <~?nys 1 (ﬂ) (10)
(P5,Pp 552 2 <7 mislog(—=).
Since also |Q2| = ||, from (7) and (10) we deduce that (b) is satisfied with
a < 1/8 if v > 0 is chosen sufficiently small. This completes the proof of
Theorem 1. O

Note that there are ("Sz)m possible sparsity patterns which satisfy the hard
sparsity condition on the rows. By standard bounds on binomial coefficients,
we have log (("52)7“) = nislog (%) Consequently, the rate nislog (G"Tz) corre-
sponds to the logarithm of the number of models.

Let us turn out to the soft sparsity scenario. For any 0 < ¢ < 2 and s > 0
define the quantity

n(s) = (nls [02 log (1 Lz "2)]1_Q/2> v (nl S?/q) V(mngo?) (1)

S

The minimax lower bound is given by the following theorem proved in Ap-
pendix C.

Theorem 2. Let ny,ne > 2. Fix 0 < ¢ < 2 and s > 0. Suppose that for
(i,7) € Npyxny the noise variables &;; are ii.d Gaussian N(0,02%), 0% > 0.
Then, there exists a numerical constant ¢* such that

(i)
inf sup P{||A— A3 > n(s)} > B,
A A€A(g,s)
where 0 < 8 < 1 and
(ii)

inf sup IE||/1 — A3 > ¢ n(s).
A AeA(q,6)



3 Minimax rates of convergence

Consider the problem of estimating of a vector v = (v;) € By(s) C R™ from
noisy observations
yi:vi+€i7 7::17"';”25

where &;; are i.i.d. Gaussian N(0,0?), 02 > 0.
The non-asymptotic minimax optimal rate of convergence for estimation of
v in the ly—norm, obtained in [3], is given by

€Ny

Nveet () = 0% s log (T)

when ¢ = 0 and by

Noeet () = (s [02 log (1 + Uq;”)] 1_q/2> v (52/q) V (nz0?)

when 0 < ¢ < 2.

We see that, for p = 2, the lower bounds given by Theorems 1 and 2 are
N1 7Mect () In the case of hard sparsity and ninyect (s) in the case of soft sparsity.
We get the same rate as when estimating each row separately. This implies
that, in this particular case, the additional matrix structure does not lead to
improvement or to deterioration of the rate of convergence.

As shown below and in view of the lower bounds of Theorems 1 and 2, opti-
mal rates for arbitrary p can be also obtained from vector estimation method.
It suffices to apply to the rows of M a minimax optimal method for vector esti-
mation on B, (s) balls. One can take, for example, the following penalized least

squares estimator M of M (cf. [3]):

. , ening
M = argmin {|Y—A||2+)\|A|olog (7)} (12)
A€ERn1Xn2 2 ||A||0\/1

where A > 0 is a regularization parameter. The penalty in (12) is inspired by
the hard thresholding penalty ||Allo, which leads to 72;; that are thresholded
values of y;; (see, for instance [12], page 138).

The penalized least squares estimator defined in (12) can be computed effi-
ciently. Let y(;) denote the jth largest in absolute value component of Y. The

estimator M is obtained by thresholding the coefficients of Y': we keep y ;) such
that

J
y(2j) > A <log(e nyng) + Z(—l)“r”l i log(i)>
i=2
and set all other coefficients equal to zero.

In what follows we assume that the noise variables &;; are zero-mean and
sub-Gaussian, which means that they satisfy the following assumption.



Assumption 1. E(&;;) =0 and there exists a constant K > 0 such that

(Elgzﬂ ) / < ,K\/_p for all D >1
oranyl<i<ngandl <j< na.
f yl>t> J

This assumption on the noise variables means that their distribution is dom-
inated by the distribution of a centered Gaussian random variable. This class
of distributions is rather wide. Examples of sub-Gaussian random variables are
Gaussian or bounded random variables. In particular, Assumption 1 implies
that E (7)) <2 K2

The next theorem presents oracle inequalities for the penalized least squares
estimator M , both in probability and in expectation.

Theorem 3. Let M be the penalized least squares estimator defined in (12), a >
1 and X = 2a Ko K? where Ky > 0 is large enough. Suppose that Assumption 1
holds. Then, for any A >0

>

~ . a+1 enyno 2a?
M-M|3 < f M — Al +CK?||Alo 1
vr-ng < int (25T - AR+ O R? al tog (2 ) b 2

with probability at least 1 — 2 exp {—CI‘Q—QA}, and

N . a+1 eny no ~
E||M—M|? < f M — Al|2 + C K?||4]|o log | ——=— CK?

v-ntg < int {EELI - AR+ O R Al tog (12 ) b
(14)

where C,Cy and C' are numerical constants.

For the particular case of Gaussian noise, the result (14) of Theorem 3 is
proved in [3], and the result (13) in [4]. Theorem 3 extends the analysis to the
case of sub-Gaussian noise. The prooof is given in Appendix D.

Now suppose that M € A(s). Using Theorem 3 and the inequality

I8 = M|z, < mg/" 2|01 = M|l
that holds for any 0 < p < 2 we obtain the following corollary.

Corollary 1. Let M be the penalized least squares estimator defined in (12)
with X = Ko K? where Ko > 0 is large enough. Suppose that Assumption 1
holds and that M € A(s). Then, for all 0 < p <2 and for any A >0

1N — M2, < C K2n®/?slog (%) +A (15)

with probability at least 1 — 2exp {— CéQA }, and

E|[M — M|3, < CK2n?"slog (6—787’2) (16)



These inequalities shows that, for 0 < p < 2, the penalized least squares
estimator (12) achieves the rate of convergence given by Theorem 1.This implies
that this rate is minimax optimal.

The next corollary shows that the estimator (12) also achieves the minimax
rate of convergence in a more general setting when M € A(q, s) for 0 < ¢ < 2.
For any 0 < ¢ < 2 and s > 0 define the quantity

Y(s) = (m s [KQ log (1 + Kimﬂ 1Q/2> % (m 52/q) V (ning K?). (17)

Corollary 2. Let M be the penalized least squares estimator defined in (12)
with X = Ko K? where Ko > 0 is large enough. Suppose that Assumption 1
holds and M € A(q,s). Then, there exists numerical constant C* such that for
any A >0

M — M|2 < C*(s) + A

with probability at least 1 — 2exp {— CéQA }, and
E|M — M]3, < C*4(s).

We give the proof of Corollary 2 in Appendix F. If the noise variables &;;
are i.i.d Gaussian N (0,0?), we have ¢(s) = n(s). Thus, the rate of convergence
given by (11) is minimax optimal.

A Proof of Lemma 1

To prove Lemma 1 we use the Varshamov-Gilbert bound. The volume (cardi-

nality) V; of {0,1}
ny
)
s

Note that the volume of the Hamming ball of radius ni(s +1)/2 in {0,1}; ..,

is smaller than the volume V5 of the Hamming ball of the same radius in a larger

space of all matrices A = (a;;) € R™*"2 guch that a;; € {0,1} and A contains

ni(s+1)
2

s .
ni1Xng 18

at most n;s ones. Let K = { J where |2| denotes the integer part of

x. A standard bound implies

w3 ()= () e ()
1 - K T A\s+1

i=1

where we use that f(x) = zlog (m) is growing for z < nyns.
x



In order to lower bound V; we use Stirling’s formula (see, e.g., [10, p. 54]):
for any j € N

§l = 71273\ 2 p(j)  with

- L (18)
(23D < ap(j) < (1207
Using (18) we get
e~ 1/6 (@)MJA/Q
n9 s
> . 19
<S) - 2ws(@_1)"2_8+1/2 1
s

Now, the Varshamov-Gilbert bound implies that there exists a subset 2 of
0,1}% . such that dg (A, A") > 2D for any A, A’ € Q, A # A’ and
n1Xng 2

n ni
()™ e 1/6 (@) o (s+1)%
s S
|Q| Z 2 n1(5+1)/2 2 na n275+1/2 s+1
( eng) 27 s (— - 1) (2ens) =
s+1 S

which implies

1 1 1
log |Q] > ny [_E ~5 log s — log(V2m) + (ng + 1/2) log (%) + S; log(s + 1)
1
—(n2 —s+1/2)log (@ - 1) S 10g(2en2)]
s

1 1 1 9
>n [_6 — Elogs—log(\/%r) + slog (E _ 1) B S-; 1og< enz)} .
s

1) We first consider the case 501 < s < ny/8. Using that 2550115 > 5'51 for s > 501,

we get

s+1 2ens 251s 501ens 98s n9
< < _Z
2 10g(s—|—1> =501 1°g< 2515 ) = 1001°g( s 1)

where the last inequality is valid for ny/s > 8.
On the other hand, it is easy to see that for 501 < s < ng/4 we have

1 1
3 logs < 0,007slog (@ — 1) and 5 + log(v2m) < 0,002slog (@ — 1) .
s s
Then, (20) implies

log |2 > 0.011n;5log (@ - 1) > 0.01ny5 log (@) .
S S



for ns/8 > s > 501.
2) Consider next the case s < 501 and s < ny/8. Now, instead of the set
{0,1}5, xn, we will deal with the set {0,1}} , where I = |ny/s]. Using the

same arguments as above, we will show that there exists a subset Q C {0, 1}

such that dg(A, A’) > ny/2 for any A, A" € Q, A # A’ and log(card Q) >
C'ny log (ens). In this case, the previous values V5 and Vs are replaced by

[n1/2] nal
Vi=im, V=Y <'1>§<261>”1/2

‘ )
=1
and

nq log(l)

~ nq
Q> — — >
log |2 > 5 (2log (1) — log (2el)) > 0

> 1074n15 log (@)
s

for s < 501 and ng/s > 8. To embed Q in {0, 1}5 «n, define

Q= {Ac{0.1)3,,  A=(A... A0), A, 0 x(io))
————

s times

We have Q C {0,1}5 .,,,, card Q2 = cardQ and dy (A, A") > w for any
A A e A+ AL

3) In order to deal with the case ny/8 < s < ny/4.5 define s’ = GJ and
ny =ny — (s — s’). Then, n}, > 85’ and we can apply the previous result. This

implies that there exists a subset  of {0,1} ", such that

S
ni ><n2

ni(s' +1) - ni(s+1)

dp(AA") >
H( ) ) = 2 el 4
for any A, A’ € Q, A# A’ and
_ 4 enl 10~4 ens
log(card Q) > 10" *ny " log ( o > > 5 ni s log (T)

where we used ny/s" > na/s.
To embed Q in {0,1}5 .., define

Q={Ae{0,1}5 ,,, : A=(A1,...,1), AeQ,1=(1,...,1)T eR™}.
N—_——

s—s’ times

_ 1
We have Q C {0,1};, ,,, cardQ = cardQ and dy (A4, A") > %
any A, A e Q A+ A
Using exactly the same argument we can treat cases ns/4.5 < s < ny/3 and
na/3 < s < mns/2 to get the statement of Lemma 1.

for

10



B Proof of Lemma 2

Assume that card (J(A, A")) < % Then, denoting by J¢(A, A’) the comple-

ment of J(A, A’) and using that card (J9(A, A")) < ny, we get

A (A, A) < 2scard (J(A, A')) + 35—2<3ard (JC(4, A"))

which contradicts the premise of the lemma.

C Proof of Theorem 2.

It is enough to prove (i) since (ii) follows from (i) and the Markov inequality.
To prove (i) we use Theorem 2.5 in [21]. We define & > 1 be the largest
integer satisfying

k<so 4 (log (1 + %))_qm . (21)

If there is no k > 1 satisfying (21), take k = 0. Set k =k V 1 and S =k A Z2.
Let Q' c {0,1}5 be the set given by Lemma 1. We consider

nyXng

s 1/q
Q_{T<§> A:AEQ’}

where 0 < 7 < 1 and 0 < 6 < s will be chosen later. Tt is easy to see that
QC A(g, s).

Since the noise variables &;; are i.i.d Gaussian N (0, 0?), for any two distinct
B, B’ in , the Kullback-Leibler divergence KL(Pg,Pp/) between Pp and Pp,
is given by

|B - B'|I3
KL(Pp, Pp) = 55—~ (22)
We consider now three cases, depending on the value of the integer &k defined

in (21).
Case (1): k = 0. Since k = 0, the inequality (21) is violated for k = 1, so
that
s < o7 (log (14 n2))??. (23)

Here S = 1 and we take 6 = s. We have that for any two distinct B, B” in €,

2
1B B3 > 2 (5)*9. (24)
4.5

On the other hand, by Lemma 1, we have that

log |©2] > C'nqlog (1 + n2)

11



and using (23)
1 e T2y s?/a
KL(Pg,Pp) = WHB - B £ —5—

< 120y log(1 + no) (25)

< alog|Q|

for some 0 < v < 1/8 if 0 < 7 < 1 is chosen sufficiently small.

Case (2): 1 <k <ny/2. We take § = (%)Uq. For any two distinct B, B’ in
Q,

M)

nlgT2 (5)2/¢1 <s o 1 (log (1 + %))_qﬂ)
2

1—q/2
oot (e (14 7))

niT

9

|B- B3>

1-2/q

Y

(26)

Y

[ V)

1—q/2

Y

s (1og (1 +nys ! aq))
By Lemma 1, we have that

log Q2] > Cny S log (1 + %)

Cny 1—q/2

Y

so 1 (log (1 +ngs ! aq))
and

KL(P».P _L B—B’2<ﬂ 2/a g1-2/q
( B, B,)_2O'2H HZ— o2 s

2 ny _ B —q/2\ 1—2/4
< s (5070 (log (14 ma s o)) ) (27)

Lo1))' T

<7’n107 % (log (1 +nas ' o?

< alog|Q

for some 0 < @ < 1/8if 0 < 7 < 1 is chosen sufficiently small.
Case (3): k > no/2. Since k > ngy/2, the inequality (21) is violated for
k =ng/2, so that
no oA
=T
In this case S = ny/2 and, using (28), we can take § = "QT"q We have that for
any two distinct B, B" in (Q,

(28)

7'2711 nao 0'2

S (29)

1B B3 >

12



On the other hand, by Lemma 1, we have that
log Q2] > Cnyng
and

7'2711712

< oelogIQI

for some 0 < v < 1/8 if 0 < 7 < 1 is chosen sufficiently small.
Now the statement of the Theorem 2 follows from (24) - (25), (26) - (27),
(29) - (30) and the Theorem 2.5 in [21].

D Proof of Theorem 3.

This proof essentially follows the scheme suggested in [4] by adding an extension
to the case of sub-Gaussian noise. Let A € R™*™2 be a fixed, but arbitrary
matrix. Define for all 1 <r < ning

B, = {A =A —-AeR™™ . ||A)o= r}.

Let {Ji}, k=1,...,(™") be all the sets of matrix indices (i,) of cardinality
r. Define

Brr={A=(ay)€B, : aj; #0 <= (i,j) € Ji}

where a’ij = @Gi; + ai;. We have that dim(B, ) < r. Let II, ,(B) denote the

projection of the matrix B onto B, and pen(A4) = || A||o log <|(j47|11 \721). By
0

the definition of M, for any A € R™1*n2,

1Y = MII3 + pen(M) < ||Y — A|l3 + pen(A).
Rewriting this inequality yields
1M = M3 + pen(M) < |M — A|l3 + 22 & (M — A)ij + pen(A)

(M — A)y

IV — Allz + pen(A).
1M — Allz

<M —-Alp+2| ) &

(i,9)

For B = (b;;) € R"*" we set V(B) = E Sis ” , then for any a > 1
(6.3 )

(1 - —) | M — M||2 + pen(M) < (1 + é) | M — A2 +2aV?(M — A) + pen(A).
(31)

13



(nl 712)
ning ™

Next, since R™*"2 = ] |J B, we obtain
r=0 k=1

2007 A\ T < 201 _ 1 .
2aV (M —A)—pen(M) < oK 05;:;1?%?2) Anggfk {2aV?(A) — pen(A + A)}

Note that for » = 0 we have that By(A4) = {—A} and
2aV?(—A) — pen(—A + A) = 2aV?(A).
Let J4 denotes the sparsity pattern of A = (a;;), i.e.
J1=1{(,7) € Noyxn, @ @y # 0},

then for any A € Bk

v = | Y ) <Imams

(i.)€]a
This together with (31) imply

N a-+1 a 2a2
M—M|? < M- A|2+ — A 2A
1M = 13 < S22 M = Al + —Zpen(A) + ——V2(4)

m m eny ny
20T, 1 (E)|2 — Arl ( )}
a—1 l1<r<%z)in2 0<k<?n)§:12){ al| Ly x(E)[|5 — Arlog .

(32)

By Assumption 1, the errors §;; are sub-gaussian. We will use the following tail
bounds in order to control the last term in (32).

Lemma 3. Let Assumption 1 be satisfied. Then, there exists absolute constants
o, C1,Ca,¢3 > 0 such that for K1 = Ko K? with Ko > 0 large enough

A2
P[ max  max ﬂIhkﬁﬁlg—fﬁTk%(enin2)}21% sCﬁmp{—CQ },

L<r<ning g<k<(102) K?
(33)

E | max max {||Hrk(E)||§ — Kjrlog (—enl ng)} <coK? (34)
1<r<ning OSkS("lrnz) r

and

c 2
P[V2(4) - Kildllo 2 4] < 2exp { - 551 (35)

14



Now (14) follows from Lemma 3 and (32).
To prove (13), note that by Lemma 3 and (32), for A = 2a Ko K? there exist
numerical constants C, C1,Co > 0 such that

2
P (|M — N2> it {“* ! M — A|2+ C[|Al|o log (eﬁh"?)} + 2LA>
0

cR71Xn2 a,—l
< 2 eny N >
<P ([ max max {||Hr7k(E)H2 Klrlog( . )} >A/2

1<r<nins ogkg("lﬁ)

+P(V(A) - Ki]|Allo > A/2)

which proves (13).

E Proof of Lemma 3

We have that

pa Ep l max max {HHM(EM — Kirlog (enl m)} =4
'

1<rsming g<p<(m12) .

(nlng)
ning ™

= Z Z {HHH@ )3 > A+ Kirlog (enan)}

r

ninz

< Z (nln2) {ZT > A+ Kirlog (enrﬂ) — 27‘K2}

where Z, = >, & —E(&?) and &, ..., &, are i.i.d. random variables satisfying
Assumption 1. Note that £? are sub-exponential random variables with [|£2]|,, <
2 K2. Applying Bernstein-type inequality (see, e.g., Proposition 5.16 in [24]) and

enina\"
using that ("1T"2) < ( ! 2) we get

e () ow (o (225}
r=1
= 2exp{_€2<_2A}man (en;m)Texp{—Cg Kor log (enl ng)}

r
r=1

Taking K large enough we get

Co A & Cy A
pASQexp{— 702 };exp{—rlogﬂgClexp{— 02 }

15



This proves (33) and easily implies the bound on expectation value (34).
To proof (35), we apply Bernstein-type inequality to V2(A) = Z(z‘,j)eJA (&)%

P Z gz] gzy >K1HAH0_2HAHOK2+A
(i,5)€Ja

A Co A
< exp{—cz (K0|A|0 — [l Allo + 2K2)} < 2exp{— I2(2 }

F  Proof of Corollary 2.

We use Theorem 3. First, taking A = 0 in (15), we get

- 1 2a?
1M - N < S+ =
+1 2a* (36)
< a—nl PRANE LA
T a-—1 a—1
with probability at least 1 — 2 exp{ CQ A
Now, choosing A = M, we obtain that
~ 2 2
|01 = NE|)3 < © K2 || Mo log ( e —A
[Mlov1l)  a-—1 (37)
2 2
<CK?*ning+ alA
a—

with probability at least 1 — 2 exp{ 02 Al

Finally, Theorem 3 implies that for any 1 < s’ < ny/2, all a > 1 and any
A>0

N 1
IM—dT)3 < imf 2F
AcA(2s")a —

2a?
CIM=AB+C K20y s log (1+2—)+a_1A (38)

CgA

with probability at least 1 — 2 exp{ } Now we use the following lemma.

Lemma 4. Let1 < s’ <ny/2 and 0 < ¢ < 2. For any M € A(q, s), there exists
A e A(2s") such that

1M — All3 < 29 (s") =% 0ny. (39)
For the proof of this lemma, see Lemma 7.2 in [22] (case 0 < ¢ < 1) and the

proof of Lemma 7.4 in [22] (case 1 < ¢ < 2).
Now, (38) and Lemma 4 imply that for any 1 < s’ < ng/2

M~ M|2<C (K2 n1 s’ log (1 + %) + 529 ()12 ap, + A) . (40)
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The terms depending on s’ on the right side of (40) are balanced by choosing

s’ = {c’% (log (1 + neo qufl))—q/zJ

with suitable constant ¢/ > 0. With this choice of s we get

“ q 1—q/2
|M— M3 <C <n1 sK* 1 <1og <1 + nz%)) + A) . (41)

The inequalities (36), (37) and (41) imply the statement of the Corollary 2.
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