L. Chen, D. J. Magliano, and P. Z. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives, Nat. Rev. Endocrinol, vol.8, pp.228-236, 2012.

K. Murakami, H. Okubo, and S. Sasaki, Effects of dietary factors on incidence of type 2 diabetes: a systematic review of cohort studies, J. Nutr. Sci. Vitaminol, vol.51, pp.292-310, 2005.

R. E. Post, A. G. Mainous, D. E. King, and K. N. Simpson, Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis, J. Am. Board Fam. Med, vol.25, pp.16-23, 2012.

S. Rabot, M. Membrez, A. Bruneau, P. Gérard, and T. Harach, Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism, FASEB J, vol.24, 2010.
DOI : 10.1096/fj.10-164921

URL : https://hal.archives-ouvertes.fr/hal-01204268

M. D. Robertson, Metabolic cross talk between the colon and the periphery: implications for insulin sensitivity, Proc. Nutr. Soc, vol.66, pp.351-361, 2007.

J. Fearnside, M. Dumas, A. R. Rothwell, S. P. Wilder, and O. Cloared, Phylometabonomic patterns of adaptation to high fat diet feeding in inbred mice, PloS One, vol.3, p.1668, 2008.

G. R. Gibson, H. Probert, J. Van-loo, R. A. Rastall, and M. B. Roberfroid, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics, Nutr. Res. Rev, vol.17, pp.259-275, 2004.

Y. Bouhnik, L. Raskine, G. Simoneau, E. Vicaut, and C. Neut, The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallelgroup, dose-response relation study, Am J Clin Nutr, vol.80, pp.1658-1664, 2004.

M. B. Roberfroid, G. R. Gibson, L. Hoyles, A. L. Mccartney, and R. A. Rastall, Prebiotic effects: metabolic and health benefits, Brit. J. Nutr, vol.104, 2010.
DOI : 10.1017/s0007114510003363

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F644C98393E2B3EB64A562854115D368/S0007114510003363a.pdf/div-class-title-prebiotic-effects-metabolic-and-health-benefits-div.pdf

D. Saulnier, G. R. Gibson, and S. Kolida, In vitro effects of selected synbiotics on the human faecal microbiota composition, FEMS Microbiol Ecol, vol.66, pp.516-527, 2008.

G. L. Hold, A. Schwiertz, R. I. Aminov, M. Blaut, and H. J. Flint, Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces, Appl. Environ. Microbiol, vol.69, pp.4320-4324, 2003.

L. Blay, G. Michel, C. Blottière, H. M. Cherbut, and C. , Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in caecal butyrate in rats, J. Nutr, vol.129, pp.2231-2235, 1999.

M. C. Boutron-ruault, P. Marteau, A. Lavergne-slove, A. Myara, and M. F. Gerhardt, Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small large colorectal adenomas, Nutr. Canc, vol.53, pp.160-168, 2005.

P. Van-den-abbeele, P. Gerard, S. Rabot, A. Bruneau, E. Aidy et al., Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats, Environm. Microbiol, 2011.

C. Ramirez-farias, K. Slezak, Z. Fuller, A. Duncan, and G. Holtrop, Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, Brit. J. Nutr, vol.101, pp.541-550, 2009.

N. Bonsu, C. S. Johnson, and K. M. Mcleod, Can dietary fructans lower serum glucose?, J. Diabetes, vol.3, pp.58-66, 2011.

F. Respondek, K. S. Swanson, K. Belsito, B. Vester, and A. Wagner, Shortchain Fructooligosaccharides influence insulin sensitivity and gene expression of fat tissue in obese dogs, J Nutr, vol.138, pp.1712-1718, 2008.

F. Respondek, K. Myers, T. L. Smith, A. Wagner, and R. J. Geor, Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses, J. Anim. Sci, vol.89, pp.77-83, 2011.
DOI : 10.2527/jas.2010-3108

P. Gerard, F. Beguet, P. Lepercq, L. Rigottier-gois, and V. Rochet, Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion, FEMS Microbiol. Ecol, vol.47, pp.337-343, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01606922

K. Hirayama and K. Itoh, Human flora-associated (HFA) animals as a model for studying the role of intestinal flora in human health and disease, Curr. Issues Intestinal Microbiol, vol.6, pp.69-75, 2005.

S. Winzel, M. Ahren, and B. , The high fat diet fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes, Diabetes, vol.53, pp.215-219, 2004.

P. Gerard, C. Brezillon, F. Quere, A. Salmon, and S. Rabot, Characterization of cecal microbiota and response to an orally administered lactobacillus probiotic strain in the broiler chicken, J. Mol. Microbiol. Biotechnol, vol.14, pp.115-122, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01601179

G. Caraux and S. Pinloche, Permumatrix: a graphical environment to arrange gene expression profiles in optimal linear order, Bioinformatics, vol.21, pp.1280-1281, 2005.
DOI : 10.1093/bioinformatics/bti141

URL : https://academic.oup.com/bioinformatics/article-pdf/21/7/1280/749555/bti141.pdf

J. Jansson, B. Willing, M. Lucio, A. Fekete, and J. Dicksved, Metabolomic reveals metabolic biomarkers of Crohns' disease, Plos ONE, vol.4, p.6386, 2009.

C. A. Smith, E. J. Want, O. 'maille, G. Abagyan, R. Siuzdak et al., Xcmw: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification, Anal. Chem, vol.78, pp.779-787, 2006.
DOI : 10.1021/ac051437y

S. Grison, J. C. Martin, L. Grandolas, N. Banzet, and E. Blanchardon, The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium 137, J. Radiat. Res, vol.53, pp.33-43, 2012.

J. Draper, D. P. Enot, D. Parker, M. Beckmann, and S. Snowdon, Metabolite signal identification in accurate mass metabolomics data with mzeddb, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules, BMC Bioinfo, vol.10, p.227, 2009.

L. W. Summer, Proposed minimum reporting standards for chemical analysis, Metabolomics, vol.3, pp.211-221, 2007.

J. C. Martin, )H-NMR metabonomics can differentiante the early atherogenic effect of diary products in hyperlipidemic hamsters, Atherosclerosis, vol.206, issue.1, pp.127-133, 2009.

C. Thabuis, F. Destaillats, D. M. Lambert, G. G. Muccioli, and M. Maillot, Lipid transport function is the main target of oral oleylethanolamide to reduce adiposity in high-fat fed mice, J. Lipid Res, vol.52, pp.1373-1382, 2011.

K. Eriksson, E. Johansson, N. Kettaneh-wold, J. Trygg, and C. Wikström, Multi-and megavariate analysis: Part 1: Basic principles and applications. Umetrics AB, p.419, 2006.

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genom. Res, vol.13, pp.2498-2504, 2003.

M. O. Weickert, A. M. Arafat, M. Blaut, C. Alpert, and N. Becker, Changes in dominant groups of the gut microbiota do not explain cereal-fiber induced improvement of whole-body insulin sensitivity, Nutr. Metabol, vol.8, p.90, 2011.

A. W. Walker, J. Ince, S. H. Duncan, L. M. Webster, and G. Holtrop, Dominant and diet-responsive groups of bacteria within the human colonic microbiota, ISME J, 2010.

Y. Y. Lam, C. Ha, C. R. Campbell, A. J. Mitchell, and A. Dinudom, Increased gut permeability and microbiota change associate with mesnteric fat inflammation and metabolis dysfunction in diet-induced obese mice, PlosOne, vol.7, p.34233, 2012.
DOI : 10.1201/b17254-7

A. M. Neyrinck, S. Possemiers, W. Verstraete, D. Backer, F. Cani et al., Dietary modulation of clostridial cluster XIVa gut bacteria, 2012.
DOI : 10.1016/j.jnutbio.2010.10.008

, chitin-glucan fiber improves host metabolis alterations induced by high-fat diet in mice, J. Nutr. Biochem, vol.23, pp.51-59

P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, F. E. Rey, and R. Knight, The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice, Sci. Transl. Med, pp.6-14, 2009.

K. A. Pyra, D. C. Saha, and R. A. Reimer, Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats, J. Nutr, vol.142, pp.213-220, 2012.

J. A. Parnell and R. A. Reimer, Prebiotic fibres dose-dependently increase satiety hormones and aletr Bacteroidetes and Firmicutes in lean and obses JCR:LA-cp rats, Br J Nutr, vol.107, pp.601-613, 2012.

C. Gourgue-jeannot, M. L. Kalmokoff, E. Kheradpir, J. Kwan, and B. J. Lampi, Dietary fructooligosaccharides alter the cultivable faecal population of rats but do not stimulate the growth of intestinal bifidobacteria, Can J Microbiol, vol.52, pp.924-957, 2006.

L. C. Hoskins, M. Agustines, W. B. Mckee, E. T. Boulding, and M. Kriaris, Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligossaccharides from mucin glycoproteins, J. Clin. Invest, vol.84, pp.944-953, 1985.

C. Lozupone, K. Faust, J. Raes, J. J. Faith, and D. N. Frank, Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts, Genome Res. Epub ahead of print, 2012.

D. Taras, R. Simmering, M. D. Collins, P. A. Lawson, and M. Blaut, Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., com. nov., and description of Dorea longicatena sp. nov., isolated from human faeces, Int. J. Syst. Evolution. Microbiol, vol.52, pp.423-428, 2002.

J. Tap, S. Mondot, F. Levenez, E. Pelletier, and C. Caron, Towards the human intestinal microbiota phylogenetic core, Environ. Microbiol, vol.11, pp.2574-2584, 2009.

. Serino, Metabolic adaptation to high-fat diet is associated with change in the gut microbiota, Gut, vol.61, pp.543-553, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726182

Y. Ravussin, O. Koren, A. Spor, C. Leduc, and R. Gutman, Responses of gut microbiota to diet composition and weight loss in lean and obese mice, Obesity, 2011.

S. F. Leibowitz, G. Q. Chang, J. T. Dourmashkin, R. Yun, and C. Julien, Leptin secretion after a high-fat meal in normal-weight rats: strong predictor of long term body fat accrual on a high-fat diet, Am. J. Physiol. Endocrinol. Metab, vol.290, pp.258-267, 2006.

S. D. Poppitt, F. E. Leahy, G. F. Keogh, Y. Wang, and T. B. Mulvey, Effect of high-fat meals and fatty acids saturation on postprandial levels of the hormones ghrelin and leptin in healthy men, Eur. J. Clin. Nutr, vol.60, pp.77-84, 2006.

K. Ishioka, H. Hatai, K. Komabayashi, M. M. Soliman, and H. Shibata, Diurnal variations of serum leptin in dogs: effects of fasting and re-feeding, Vet. J, vol.169, pp.85-90, 2005.

M. O. Weickert, M. Mohlig, C. Koebnick, J. J. Holst, and P. Namsolleck, Impact of cereal fibre on glucose-regulating factors, Diabetol, vol.48, pp.2343-2353, 2005.

J. Wang, S. Obici, K. Morgan, N. Barzilai, and Z. Feng, Overfeeding rapidly induces leptin and insulin resistance, Diabetes, vol.50, pp.2786-2791, 2001.
DOI : 10.2337/diabetes.50.12.2786

URL : http://diabetes.diabetesjournals.org/content/50/12/2786.full.pdf

J. Busserolles, E. Gueux, E. Rock, C. Demigne, and A. Mazur, Oligofructose Protects against the Hypertriglyceridemic and Pro-oxidative Effects of a High Fructose Diet in Rats, J. Nutr, vol.133, pp.1903-1908, 2003.

J. Sugatani, M. Osabe, T. Wada, K. Yamakawa, and Y. Yamazaki, Comparison of enzymatically synthesized inulin, resistant maltodextrin and clofibrate effects on biomarkers of metabolic disease in rats fed a high-fat and high-sucrose (cafetaria diet), Eur. J. Nutr, vol.47, pp.192-200, 2008.

A. Shinoki and H. Hara, Dietary fructo-oligosaccharides improve insulin sensitivity along with the suppression of adipocytes secretion from mesenteric fat cells in rats, Br J Nutr, vol.106, pp.1190-1197, 2011.

Y. Xiong, N. Miyamoto, K. Shibata, M. A. Valasek, and T. Motoike, Shortchain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41, PNAS, vol.101, pp.1045-1050, 2004.

F. P. Martin, Y. Wang, N. Sprenger, I. K. Yap, and S. Rezzi, Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model, Mol. Syst. Biol, vol.4, p.205, 2008.

E. M. Dewulf, P. D. Cani, S. P. Claus, S. Fuentes, and P. Puylaert, Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women, 2012.

N. Larsen, F. K. Vogensen, F. Van-den-berg, D. S. Nielsen, and A. S. Andreasen, Gut microbiota in Human adults with type 2 diabetes differs from nondiabetic adults, PLoSONE, vol.5, p.9085, 2010.

J. Ogawa, S. Kishino, A. Ando, S. Sugimoto, and K. Mihara, Production of conjugated fatty acids by lactic acid bacteria, J. Biosc. Bioeng, vol.100, pp.355-364, 2005.

T. Fukusawa, A. Kamei, Y. Watanabe, J. Koga, and K. Abe, Short-chain fructooligosaccharide regulates hepatic peroxisome proliferator-activated receptor a and farnesoid X receptor target gene expression in rats, J. Agric. Food Chem, vol.58, pp.7007-7012, 2010.

K. Suhre, C. Meisinger, A. Döring, E. Altmaier, and P. Belcredi, Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting, Plos ONE, vol.5, p.138953, 2010.

C. Steiner, A. Othman, C. H. Saely, P. Rein, and H. Drexel, Bile acid metabolites in serum: intraindividual variation and associations with coronary heart dises, metabolic syndrome and diabetes mellitus, Plos ONE, vol.6, p.25006, 2011.

P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels, Role of bile acids and bile acid receptors in metabolic regulation, Physiol. Rev, vol.89, pp.147-191, 2009.

B. Cariou, K. Van-harmelen, D. Duran-sandoval, T. H. Van-dijk, and A. Grefhorst, The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J. Biol. Chem, vol.281, pp.11039-11049, 2006.

J. R. Pearson, H. S. Wiggins, and B. S. Drasar, Conversion of long-chain unsaturated fatty acids to hydroxy acids by human intestinal bacteria, J. Med. Microbiol, vol.7, pp.265-275, 1974.

G. A. Osipov, N. B. Boiko, N. F. Fedosova, S. A. Kasikhina, and K. V. Lyadov, Comparative gas chromatography-mass spectrometry study of the composition of microbial chemical markers in feces, Microbial. Ecol. Health Dis, vol.21, pp.159-171, 2009.

C. T. Hou, New bioactive fatty acids, Asia Pac. J. Clin. Nutr, vol.17, pp.192-195, 2008.

S. Tunaru, T. F. Althoff, R. M. Nüsing, M. Diener, and S. Offermanns, Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors, Proc. Natl. Acad. Sci. USA, vol.109, pp.9179-9184, 2012.

L. W. Sumner, A. Amberg, A. Barrett, M. H. Beale, and R. Beger, Proposed minimum reporting standards for chemical analysis. Chemical analysis working group (CAWG) metabolomics standards initiative (MSI), Metabolomics, vol.3, pp.211-221, 2007.