W. Catterall, A. Goldin, and S. Waxman, International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels, Pharmacological Reviews, vol.57, issue.4, pp.397-409, 2005.
DOI : 10.1124/pr.57.4.4

K. Silver and D. Soderlund, Action of pyrazoline-type insecticides at neuronal target sites, Pesticide Biochemistry and Physiology, vol.81, issue.2, pp.136-143, 2005.
DOI : 10.1016/j.pestbp.2004.09.003

T. Davies, L. Field, P. Usherwood, and M. Williamson, DDT, pyrethrins, pyrethroids and insect sodium channels, IUBMB Life, vol.59, issue.3, pp.151-162, 2007.
DOI : 10.1080/15216540701352042

A. Goldin, Evolution of voltage-gated Na(+) channels, J Exp Biol, vol.205, pp.575-584, 2002.

B. Moignot, C. Lemaire, S. Quinchard, B. Lapied, and C. Legros, The discovery of a novel sodium channel in the cockroach Periplaneta americana: Evidence for an early duplication of the para-like gene, Insect Biochemistry and Molecular Biology, vol.39, issue.11, pp.814-823, 2009.
DOI : 10.1016/j.ibmb.2009.09.006

L. Isom, Sodium Channel ?? Subunits: Anything but Auxiliary, The Neuroscientist, vol.274, issue.1, pp.42-54, 2001.
DOI : 10.1177/107385840100700108

C. Derst, C. Walther, R. Veh, D. Wicher, and S. Heinemann, Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE, Biochemical and Biophysical Research Communications, vol.339, issue.3, pp.939-948, 2006.
DOI : 10.1016/j.bbrc.2005.11.096

G. Feng, P. Deak, M. Chopra, and L. Hall, Cloning and functional analysis of tipE, a novel membrane protein that enhances drosophila para sodium channel function, Cell, vol.82, issue.6, pp.1001-1011, 1995.
DOI : 10.1016/0092-8674(95)90279-1

J. Warmke, R. Reenan, P. Wang, S. Qian, and J. Arena, Sodium Channels, The Journal of General Physiology, vol.728, issue.2, pp.119-133, 1997.
DOI : 10.1085/jgp.99.5.683

K. Silver, W. Song, Y. Nomura, V. Salgado, and K. Dong, Mechanism of action of sodium channel blocker insecticides (SCBIs) on insect sodium channels, Pesticide Biochemistry and Physiology, vol.97, issue.2, pp.87-92, 2010.
DOI : 10.1016/j.pestbp.2009.09.001

D. Wing, M. Sacher, Y. Kagaya, Y. Tsurubuchi, and L. Mulderig, Bioactivation and mode of action of the oxadiazine indoxacarb in insects, Crop Protection, vol.19, issue.8-10, pp.537-545, 2000.
DOI : 10.1016/S0261-2194(00)00070-3

B. Lapied, F. Grolleau, and D. Sattelle, Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels, British Journal of Pharmacology, vol.44, issue.2, pp.587-595, 2001.
DOI : 10.1038/sj.bjp.0703853

X. Zhao, T. Ikeda, V. Salgado, J. Yeh, and T. Narahashi, Block of Two Subtypes of Sodium Channels in Cockroach Neurons by Indoxacarb Insecticides, NeuroToxicology, vol.26, issue.3, pp.455-465, 2005.
DOI : 10.1016/j.neuro.2005.03.007

V. Salgado, Slow voltage-dependent block of sodium channels in crayfish nerve by dihydropyrazole insecticides, Mol Pharmacol, vol.41, pp.120-126, 1992.

W. Song, Z. Liu, and K. Dong, Molecular basis of differential sensitivity of insect sodium channels to DCJW, a bioactive metabolite of the oxadiazine insecticide indoxacarb, NeuroToxicology, vol.27, issue.2, pp.237-244, 2006.
DOI : 10.1016/j.neuro.2005.10.004

B. Hille, Local anesthetics: hydrophilic and hydrophobic pathways for the drug- receptor reaction, The Journal of General Physiology, vol.69, issue.4, pp.497-515, 1977.
DOI : 10.1085/jgp.69.4.497

B. Bean, C. Cohen, and R. Tsien, Lidocaine block of cardiac sodium channels, The Journal of General Physiology, vol.81, issue.5, pp.613-642, 1983.
DOI : 10.1085/jgp.81.5.613

C. Lavialle-defaix, H. Gautier, A. Defaix, B. Lapied, and F. Grolleau, Differential Regulation of Two Distinct Voltage-Dependent Sodium Currents by Group III Metabotropic Glutamate Receptor Activation in Insect Pacemaker Neurons, Journal of Neurophysiology, vol.96, issue.5, pp.2437-2450, 2006.
DOI : 10.1152/jn.00588.2006

C. Lavialle-defaix, B. Moignot, C. Legros, and B. Lapied, How Does Calcium-Dependent Intracellular Regulation of Voltage-Dependent Sodium Current Increase the Sensitivity to the Oxadiazine Insecticide Indoxacarb Metabolite Decarbomethoxylated JW062 (DCJW) in Insect Pacemaker Neurons?, Journal of Pharmacology and Experimental Therapeutics, vol.333, issue.1, pp.264-272, 2010.
DOI : 10.1124/jpet.109.163519

N. Blin and D. Stafford, A general method for isolation of high molecular weight DNA from eukaryotes, Nucleic Acids Research, vol.3, issue.9, pp.2303-2308, 1976.
DOI : 10.1093/nar/3.9.2303

R. Olson, Z. Liu, Y. Nomura, W. Song, and K. Dong, Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster, Insect Biochemistry and Molecular Biology, vol.38, issue.5, pp.604-610, 2008.
DOI : 10.1016/j.ibmb.2008.01.003

A. Barela, S. Waddy, J. Lickfett, J. Hunter, and A. Anido, An Epilepsy Mutation in the Sodium Channel SCN1A That Decreases Channel Excitability, Journal of Neuroscience, vol.26, issue.10, pp.2714-2723, 2006.
DOI : 10.1523/JNEUROSCI.2977-05.2006

J. Kyte and R. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.
DOI : 10.1016/0022-2836(82)90515-0

L. Cartegni, S. Chew, and A. Krainer, LISTENING TO SILENCE AND UNDERSTANDING NONSENSE: EXONIC MUTATIONS THAT AFFECT SPLICING, Nature Reviews Genetics, vol.3, issue.4, pp.285-298, 2002.
DOI : 10.1038/nrg775

E. Bourinet, T. Soong, K. Sutton, S. Slaymaker, and E. Mathews, Splicing of alpha 1A subunit gene generates phenotypic variants of P-and Qtype calcium channels, Nat Neurosci, vol.2, pp.407-415, 1999.

K. Szafranski, S. Schindler, S. Taudien, M. Hiller, and K. Huse, Violating the splicing rules: TG dinucleotides function as alternative 3' splice sites in U2-dependent introns, Genome Biology, vol.8, issue.8, p.154, 2007.
DOI : 10.1186/gb-2007-8-8-r154

E. Kim, A. Goren, and G. Ast, Alternative splicing: current perspectives, BioEssays, vol.33, issue.1, pp.38-47, 2008.
DOI : 10.1002/bies.20692

Y. Khodor, J. Rodriguez, K. Abruzzi, C. Tang, and M. Marr, Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila, Genes & Development, vol.25, issue.23, pp.2502-2512, 2011.
DOI : 10.1101/gad.178962.111

S. Dib-hajj and S. Waxman, Genes encoding the beta 1 subunit of voltagedependent Na+ channel in rat, mouse and human contain conserved introns, FEBS Lett, vol.377, pp.485-488, 1995.

K. Kazen-gillespie, D. Ragsdale, D. Andrea, M. Mattei, L. Rogers et al., Cloning, Localization, and Functional Expression of Sodium Channel ??1A Subunits, Journal of Biological Chemistry, vol.275, issue.2, pp.1079-1088, 2000.
DOI : 10.1074/jbc.275.2.1079

N. Qin, D. Andrea, M. Lubin, M. Shafaee, N. Codd et al., subunit, European Journal of Biochemistry, vol.17, issue.23, pp.4762-4770, 2003.
DOI : 10.1046/j.1432-1033.2003.03878.x

M. Sheets and D. Hanck, Molecular Action of Lidocaine on the Voltage Sensors of Sodium Channels, The Journal of General Physiology, vol.6, issue.1, pp.163-175, 2003.
DOI : 10.1016/S0006-3495(93)81292-X

P. Chevrier, K. Vijayaragavan, and M. Chahine, 1.8 peripheral nerve sodium channels by the local anesthetic lidocaine, British Journal of Pharmacology, vol.23, issue.3, pp.576-584, 2004.
DOI : 10.1038/sj.bjp.0705796

URL : https://hal.archives-ouvertes.fr/hal-00910595

X. Fan, J. Ma, P. Zhang, and J. Xing, Blocking effect of methylflavonolamine on human NaV1.5 channels expressed in Xenopus laevis oocytes and on sodium currents in rabbit ventricular myocytes, Acta Pharmacologica Sinica, vol.24, issue.3, pp.297-306, 2010.
DOI : 10.1085/jgp.200308857

J. Balser, H. Nuss, D. Romashko, E. Marban, and G. Tomaselli, Functional consequences of lidocaine binding to slow-inactivated sodium channels, The Journal of General Physiology, vol.107, issue.5, pp.643-658, 1996.
DOI : 10.1085/jgp.107.5.643

Z. Chen, B. Ong, N. Kambouris, E. Marban, and G. Tomaselli, Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels, The Journal of Physiology, vol.23, issue.1, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-1-00037.x

J. Makielski, J. Limberis, Z. Fan, and J. Kyle, Intrinsic lidocaine affinity for Na channels expressed in Xenopus oocytes depends on ?? (hH1 vs. rSkM1) and ??1 subunits, Cardiovascular Research, vol.42, issue.2, pp.503-509, 1999.
DOI : 10.1016/S0008-6363(99)00024-3

J. Makielski, J. Limberis, S. Chang, Z. Fan, and J. Kyle, Coexpression of beta 1 with cardiac sodium channel alpha subunits in oocytes decreases lidocaine block, Mol Pharmacol, vol.49, pp.30-39, 1996.

P. Lenkowski, B. Shah, A. Dinn, K. Lee, and M. Patel, Lidocaine block of neonatal Nav1.3 is differentially modulated by co-expression of ??1 and ??3 subunits, European Journal of Pharmacology, vol.467, issue.1-3, pp.23-30, 2003.
DOI : 10.1016/S0014-2999(03)01595-4

W. Song, K. Silver, Y. Du, Z. Liu, and K. Dong, Analysis of the action of lidocaine on insect sodium channels, Insect Biochemistry and Molecular Biology, vol.41, issue.1, pp.36-41, 2011.
DOI : 10.1016/j.ibmb.2010.09.010

K. Silver, Y. Nomura, V. Salgado, and K. Dong, Role of the sixth transmembrane segment of domain IV of the cockroach sodium channel in the action of sodium channel blocker insecticides, NeuroToxicology, vol.30, issue.4, pp.613-621, 2009.
DOI : 10.1016/j.neuro.2009.03.009

C. Meacham, P. Brodfuehrer, J. Watkins, and T. Shafer, Developmentally-regulated sodium channel subunits are differentially sensitive to ??-cyano containing pyrethroids???, Toxicology and Applied Pharmacology, vol.231, issue.3, pp.273-281, 2008.
DOI : 10.1016/j.taap.2008.04.017

J. Tan, J. Choi, and D. Soderlund, Coexpression with Auxiliary beta Subunits Modulates the Action of Tefluthrin on Rat Na(v)1.6 and Na, 2011.