Queen mandibular pheromone: questions that remain to be resolved
David Jarriault, Alison R. Mercer

To cite this version:
Queen mandibular pheromone: questions that remain to be resolved

David JARRIAULT, Alison R. MERCER
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand

Received 11 July 2011 – Revised 4 December 2011 – Accepted 26 December 2011

Abstract – The discovery of ‘queen substance’, and the subsequent identification and synthesis of key components of queen mandibular pheromone, has been of significant importance to beekeepers and to the beekeeping industry. Fifty years on, there is greater appreciation of the importance and complexity of queen pheromones, but many mysteries remain about the mechanisms through which pheromones operate. The discovery of sex pheromone communication in moths occurred within the same time period, but in this case, intense pressure to find better means of pest management resulted in a remarkable focusing of research activity on understanding pheromone detection mechanisms and the central processing of pheromone signals in the moth. We can benefit from this work and here, studies on moths are used to highlight some of the gaps in our knowledge of pheromone communication in bees. A better understanding of pheromone communication in honey bees promises improved strategies for the successful management of these extraordinary animals.

queen mandibular pheromone / *Apis mellifera* / olfactory system / biogenic amines / juvenile hormone / ecdysteroids

For more than five decades, researchers have sought to understand and to appreciate fully the actions of the complex array of chemicals recognized initially as ‘queen substance’ (Butler 1954). At the time when Butler used this term, the concept of pheromones (chemicals that trigger behavioural and/or physiological responses in members of the same species, Karlson and Luscher 1959) had yet to be clearly defined, but over the years the importance of chemical communication systems in insects has become well-known, and improvements in chemical detection techniques have enabled many, although probably not all, of the chemicals signals produced by honey bee queens (and workers) to be identified. In this brief review, we focus on queen mandibular pheromone (QMP; Slessor et al. 1988). The key components of this complex mixture of compounds are shown in Figure 1. While QMP has many effects on the behaviour and physiology of adult worker bees (reviewed by Slessor et al. 2005), and significant effects also on levels of gene expression in the brain (Grozinger et al. 2003), relatively little is known as yet about the mechanisms that support the actions of this important multicomponent pheromone. Here, we take advantage of extensive studies of pheromone processing in moths to highlight gaps in our knowledge that need to be addressed in order to understand the actions of QMP.

1. QMP’S ACTIONS AS A SEX PHEROMONE

Virgin queens like many female insects attract males by releasing a strong attractant, often referred to as a sex pheromone (Free...
The first major component of QMP to be identified and characterized, 9-oxo-2-decenoic acid (9ODA; see Figure 1), plays this role. 9ODA is an effective attractant over large distances and elicits highly predictable responses in flying drones (Brockmann et al. 2006; Free 1987; Winston and Slessor 1992). Additional components, both enantiomers of 9-hydroxy-2-decenoic acid (respectively + and −9HDA, Figure 1) and 10-hydroxy-2-decenoic acid, 10HDA, also produced by the mandibular gland of the queen, synergize with 9ODA to increase male attraction at close range. 9ODA is detected by olfactory receptor neurons (ORNs) located in the antennae of the bee (Figure 1). Honey bee antennae are not solely olfactory organs, but rather multifunctional structures that house a diverse array of sensory structures (sensilla). Sensilla placodea (pore plates), sensilla trichodea (hair-like structures) and sensilla basiconica (peg-like structures) are all olfactory sensilla in which ORNs have been identified (Esslen and Kaissling 1976).

2. **AMOR11 IS THE OLFAC TORY RECEPTOR THAT DETECTS 9ODA**

How does 9ODA generate a response in bees? Olfactory sensilla have small pores that

Figure 1. Key components of queen mandibular pheromone detected by the olfactory system of the bee. **Top left** Frontal view of the head of a bee showing the main olfactory organs (antennae), primary olfactory processing centres of the brain (antennal lobes) and higher-order sensory integration centres, the mushroom bodies. **Top right** Anatomy of drone and worker antennal lobes. Note the existence of larger glomeruli in the antennal lobe of the drone. **Bottom** Key components of queen mandibular pheromone. The asterisk indicates the existence of two enantiomers of 9HDA. AL antennal lobe, HOB methyl-p-hydrobenzoate, HVA 4-hydroxy-3-methoxyphenylethanol, MB mushroom bodies, 9HDA 9-hydroxy-2-decenoic acid, 9ODA 9-oxo-2-decenoic acid.
allow odour molecules to diffuse through the cuticle of the antenna and into the fluid (lymph) within each olfactory sensillum. Here, the pheromone binds to carrier proteins that help transport the pheromone to olfactory receptors (ORs) located in the ORN membrane (Laughlin et al. 2008; Vogt and Riddiford 1981). The candidate carrier protein in the drone antenna is ASP1 which contains a hydrophobic domain that is able to bind the apolar components of 9ODA (Pesenti et al. 2008). The pheromone/carryer protein complex is then thought to interact with ORs that respond specifically to 9ODA. The identification of specific ORs in bees was advanced significantly with the sequencing of the honey bee genome (Honey Bee Genome Sequencing Consortium 2006) as sequence comparisons enabled researchers to identify honey bee orthologues of OR genes already identified in other insect species (Robertson and Wanner 2006). Robertson and colleagues identified four honey bee ORs expressed at a higher levels in males than in females (Wanner et al. 2007). Importantly, one of the four receptors identified, AmOR11, responds specifically to 9ODA (Wanner et al. 2007).

AmOR11 is found in all castes but is expressed at a higher levels in drone antennae (~13-fold higher) than in the antennae of workers or queens, most probably reflecting the important role that this pheromone plays in sexual communication. Interestingly, activation of AmOR11 by 9ODA requires the presence of a second transmembrane protein, AmelOrco (previously AmOR2; Vossshall and Hansson 2011), the honey bee orthologue of the Drosophila olfactory receptor, DmelOrco (Wanner et al. 2007). Binding of 9ODA to AmOR11 alters the excitability of ORNs expressing this receptor protein. As a result, signals are conveyed via AmOR11-expressing ORNs to primary olfactory centres of the brain, the antennal lobes (ALs, Figure 1). ALs are the equivalent of vertebrate olfactory bulbs (Hildebrand and Shepherd 1997) and like olfactory bulbs, ALs are organised into spheroidal subunits known as ‘glomeruli’ (see ALs, Figure 1). Within the glomeruli, ORNs make synaptic contact with local antennal-lobe neurons (LNs) and projection (output) neurons (PNs) that may process information entering the AL before it is conveyed (by PNs) to higher centres of the brain (Fonta et al. 1993; Gascuel and Masson 1991; Sun et al. 1993). Activity at this level can also be influenced by modulatory neurons (for example neurons that release dopamine, octopamine or serotonin) that project into the ALs from other parts of the brain (Hammer 1993; Kirchhof et al. 1999; Kreissl et al. 1994; Mercer et al. 1983; Rehder et al. 1987; Schäfer and Rehder 1989).

3. SEXUAL DIMORPHISM EXISTS IN OLFACCTOR PATHWAYS OF THE BEE

Many of the glomeruli found in the ALs of the honey bee are readily identifiable from one individual to the next (Arnold et al. 1985; Flanagan and Mercer 1989; Galizia et al. 1999a). It is common for insect species that rely on olfaction for sexual communication to exhibit sexual dimorphism both, at the level of the antennae and the ALs (Hansson and Anton 2000; Rospars 1988). In the moth, Antheraea polyphemus, for example, the antenna of the male houses about 70,000 sensilla compared to about 13,000 sensilla in the antenna of the female (Boeckh et al. 1960; Meng et al. 1989). This difference is explained by the large number of sensilla dedicated to sex pheromone detection in male moths. Glomeruli receiving input from sex pheromone receptor neurons tend to be larger than glomeruli that respond to plant odours (‘ordinary glomeruli’) because they receive input from a larger number of ORNs. Honey bees also show sexual dimorphism in olfactory pathways. Drone antennae lack sensilla basiconica, but they have many more pore plates than the antennae of workers (18,600 vs 2,600), suggesting a role for pore plate sensilla in the detection of queen pheromone and in particular, 9ODA. ORNs that respond with high sensitivity to 9ODA have been identified (Kaisssling and Renner 1968; Vareschi 1971), and measurements of global responses of
antennal receptor neurons (‘electroantennograms’) suggest that drone antennae are more sensitive to 9ODA than the antennae of worker bees (Brockmann et al. 1998). At the level of the ALs, drone bees possess four male-specific macroglomeruli (MG1-4, Arnold et al. 1985), three of which are shown in Figure 1 (compare drone and worker ALs).

4. HOW ARE 9ODA SIGNALS PROCESSED IN THE BRAIN?

The function of each glomerulus is defined by the type of ORN that projects into the glomerulus and more specifically, the ORs located in the ORN membrane. Generally speaking, in insects (as in vertebrates) each subtype of ORN expresses only one type of OR (insects: Krieger et al. 2002; Sakurai et al. 2004; Vosshall et al. 1999; vertebrates: Ressler et al. 1993; Vassar et al. 1993), and ORNs expressing the same OR converge onto the same glomerulus (Fishilevich and Vosshall 2005; Vosshall et al. 2000). As four ORs have been identified that are expressed at a higher level in males than in females (Wanner et al. 2007), it is tempting to speculate that the four male-specific macroglomeruli in drones process olfactory signals detected by ORN subtypes expressing these four OR proteins. However, this has yet to be confirmed. Optical imaging studies have revealed that ORNs expressing AmOR11, the OR that detects 9ODA (Wanner et al. 2007) converge onto the large male-specific glomerulus, MG2 (Sandoz 2006). Although worker bees are sensitive also to the effects of this pheromone, the location of the glomerulus (or glomeruli) responsive to 9ODA in worker ALs has yet to be identified (see Sandoz 2006). The identification in drones of a specific glomerulus (MG2) responsive to 9ODA could indicate that information about this pheromone is conveyed to higher centres of the brain via a so called ‘labelled line’ (Christensen and Hildebrand 2002). But is this the case, or is there processing of pheromonal signals at the level of the ALs?

Cross talk between ORNs, LNs and PNs can lead to processing of signals entering the ALs before they are conveyed to higher centres of the brain. Local antennal-lobe interneurons (LNs), for example, can spread information from one glomerulus to another, and projection (output) neurons (PNs) can convey information to higher brain centres from one, or more glomeruli. Consistent with these possibilities, LNs generally extend processes to many glomeruli within the AL (Fonta et al. 1993; Linster et al. 2005; Sun et al. 1993) and PNs in the honey bee vary in the number of glomeruli they innervate (Abel et al. 2001; Brandt et al. 2005; Kirschner et al. 2006; Müller et al. 2002). Uniglomerular PNs (uPNs), which send projections into a single glomerulus could convey information specific to one pheromone component, whereas PNs projecting to multiple glomeruli (multiglomerular PNs, mPNs) might instead integrate information originating from multiple glomeruli. Indeed, mPNs could potentially convey to higher centres of the brain information about the entire pheromone blend. In moths it is clear that uPNs and mPNs are involved extensively in the processing of sex pheromone signals at the level of the ALs. For example, moth uPNs, although responding predominantly to one component of the sex pheromone blend, are usually more generalist than the ORNs they synapse with (Christensen and Hildebrand 1987; Hansson et al. 1994, 1991; Jarriault et al. 2010, 2009; Mustaparta 1996). In contrast, some PNs in the moth (including some identified as mPNs) respond only when all components of the pheromone blend are presented (Anton et al. 1997; Christensen et al. 1995; Hansson et al. 1994). Interestingly, instances have been described in moths of mismatching between glomerular arborisations and response specificity of PNs (Anton and Hansson 1999; Vickers et al. 1998), which emphasises the complexity of processing that occurs already at this level of the brain. Taken together these observations support the idea of a combinatorial labelled-line system. Recent studies of olfactory information processing in honey bees, conducted using optical imaging techniques, have provided considerable insight into the combinatorial aspect
of odour representation not only in the ALs (Galizia et al. 1999b; Joerges et al. 1997; Sachs et al. 1999), but also at the next level of integration, the Kenyon cells of the mushroom bodies of the brain (Szyszka et al. 2005). Generally speaking, however, these studies have described the coding of floral odours rather than pheromones, leaving a large gap in our understanding of the neural bases of pheromone-elicited behaviours in the honey bee.

The relatively large number of macrogglomeruli in drone bees is intriguing. It is possible that one or more of these specialised structures is involved in the processing of pheromone components released by queens from other species (Butler et al. 1967; Plettner et al. 1997). In moths for example, pheromonal chemicals, called behavioural antagonists, can contribute to the reproductive isolation of some species and macrogglomeruli devoted to the processing of such signals are found in other closely related species (Baker et al. 1998; Hansson et al. 1995, 1992). Whether this occurs in bees also has yet to be determined. Indeed, our knowledge of how pheromones other than 9ODA are detected in the bee remains rudimentary. For example, despite behavioural evidence showing that other components of QMP act synergistically with 9ODA to enhance male attraction (Brockmann et al. 2006), it is unclear how this occurs. Interestingly, Sandoz (2006) found that the QMP components methyl-p-hydrobenzoate (HOB) and 4-hydroxy-3-methoxyphenylethanol (HVA) activated small (‘ordinary’) glomeruli in the AL of the drone. While this possibly highlights a functional difference between the macrogglomerular complex of male moths and that of drone honey bees, there is no evidence currently that either, HVA or HOB play a role in sexual communication in the bee. These aromatic compounds are known, however, to play an important role in queen–worker interactions (Slessor et al. 1988, 2005).

5. QUEEN–WORKER INTERACTIONS

Primitively, mate attraction might have been the principal role of honey bee queen pheromone, as is the case for pheromones produced by many non-social insects. However, a mated, egg-laying queen is essential for the survival of the whole colony and components of QMP, including 9ODA, play a critical role also in regulating the behaviour and physiology of worker bees (Slessor et al. 2005). Changes in the chemical composition of QMP after mating turn the queen’s sex appeal into an olfactory aura that has a significant impact on workers and particularly, on young worker bees (reviewed by Slessor et al. 2005). The behavioural and physiological effects of this pheromone are well documented (Free 1987; Slessor et al. 2005; Winston and Slessor 1992) and are described in recent reviews (Alaux et al. 2010; Slessor et al. 2005). QMP as a blend acts as an attractant that plays a role in eliciting retinue behaviour in young worker bees (Slessor et al. 1988; Figure 2). The queen bee relies on workers to feed and groom her and young bees attracted to the queen by her bouquet of pheromones also lick and antennate her body (Naumann 1991). These young workers, which are not only receivers but also carriers of the queen’s pheromonal messages, play an important role in distributing the queen’s pheromones throughout the colony via antennal contacts and trophallaxis. As a result of such exchanges, even workers that do not come into direct contact with the queen are affected by her presence. There are many important consequences of this including, inhibition of swarming behaviour, the rearing of new queens and ovary development in worker bees (reviewed by Slessor et al. 2005). Removal of the queen and her pheromone signals has immediate effects and within 12–24 h, triggers the rearing of new queens (Pettis et al. 1995; Winston et al. 1990). As a general rule, aging of the queen and changes in her pheromone production lead to the rearing of new queens prior to reproductive swarming. As there appears to be no correlation between queen pheromone production and the initiation of swarming (Seeley and Fell 1981), it has been suggested that swarming behaviour might instead be explained by reduced dispersal of queen pheromone in populous colonies (Naumann et al. 1993; Winston et al. 1991), or
by changes in the worker response threshold to QMP (Pankiw et al. 2000).

Slessor and colleagues (1988) identified five QMP components that play a role in eliciting retinue behaviour; 9ODA, −9HDA and +9HDA, which are involved also in mating behaviour (see above), and the aromatic compounds HOB and HVA (see Figure 1). Workers have the ability to produce these active chemicals also, but modifications of the biosynthetic pathways, possibly via modulation of gene expression in presence of the QMP, alter the resulting blend (Hasegawa et al. 2009; Malka et al. 2009; Plettner et al. 1996). 10HDA, which is produced in higher quantity by virgin queens than mated queens and is important in mating (Brockmann et al. 2006), appears not to participate in queen–worker interactions (Slessor et al. 1988).

Small but consistent differences in responses of workers to the 5-component QMP blend compared to queen extract indicated to Slessor and colleagues that additional components must be involved. Some of these components have since been identified and found to be produced in locations other than in the mandibular glands (Keeling et al. 2003; see also Katzav-Gozansky et al. 2001; Wossler and Crewe 1999). Recently, Maisonnasse et al. (2010) found that demandi-bulated queens with no detectable 9ODA were as attractive to workers as sham-operated queens. This is interesting because it reveals that the ability to elicit retinue behaviour is not a property unique to QMP.

6. PHEROMONE EFFECTS ON BEHAVIOUR AND PHYSIOLOGY—HOW ARE THEY MEDIATED?

In 1992, Kaatz and colleagues reported that 9ODA reduces the rate of juvenile hormone (JH) biosynthesis in the bee (see also Pankiw et
al. 1998). This important finding provides a clue as to how pheromones might effect behavioural and physiological changes in the bee. As JH plays a critical role not only in metamorphosis but also in the behavioural and physiological development of the bee (Fluri et al. 1982; Huang et al. 1991; Robinson 1992), pheromone modulation of JH titres would be predicted to have significant effects at both a behavioural and physiological level. How does exposure to 9ODA trigger these effects? As outlined above, pheromone signals detected by ORNs located in the antennae are conveyed from the ALs to higher centres such as the mushroom bodies of the brain (Figure 1). Immediately behind the mushroom bodies are the cell bodies of large neurosecretory cells that project to endocrine organs located behind the brain. These include the corpora allata, organs that release JH in response to signals from the brain (Rachinsky and Hartfelder 1990; Tobe and Stay 1985). Although the neural circuitry involved remains unclear, it appears that pheromone signals originating in the ALs lead, either directly or indirectly to changes in the activity of these neurosecretory cells. Pheromone signals conveyed from the ALs to mushroom bodies of the brain may also influence ecdysteroid signalling in the bee as recent studies have revealed that intrinsic mushroom body neurons express genes for ecdysteroid signalling (Paul et al. 2006, 2005; Takeuchi et al. 2007; Yamazaki et al. 2006) and that the steroid hormone, ecdysone, is synthesised and secreted by the brain (Yamazaki et al. 2011). Studies in the fruit fly, Drosophila melanogaster, have revealed an astonishingly complex interplay between JH, ecdysteroids and biogenic amines that appears to be intimately involved in development and behaviour regulation (reviewed by Gruntenko and Rauschenbach 2008). The involvement of biogenic amines as mediators of development and behavioural plasticity is well established and has received a great deal of attention. Biogenic amines act as neurotransmitters, neuromodulators and neurohormones and in bees, amines such as dopamine (DA), octopamine (OA) and serotonin (5HT) have been strongly implicated in learning and memory (Blenau and Baumann 2001; Hammer 1993; Mercer and Menzel 1982), recruitment behaviour (Barron et al. 2007; Bozic and Woodring 1998), division of labour (Schulz and Robinson 1999, 2001; Taylor et al. 1992; Wagener-Hulme et al. 1999), foraging behaviour (Barron and Robinson 2005; Barron et al. 2002), locomotor activity (Mustard et al. 2010) and ovary development (Dombroski et al. 2003; Harris and Woodring 1995; Hoover et al. 2003, Vergoz et al., in preparation).

JH titres (Fluri et al. 1982; Huang et al. 1991) and levels of biogenic amines in the worker brain (Schulz et al. 2002; Taylor et al. 1992), increase with age and a growing body of evidence suggests these two events are linked (Scheiner et al. 2006). For example, QMP not only reduces the rate of JH biosynthesis causing delays in the ontogeny of foraging behaviour (Kaatz et al. 1992; Pankiw et al. 1998; Slessor et al. 2005), but in young bees it can also reduce levels of DA in the brain (Beggs et al. 2007). Nurses and foragers have different gene expression profiles (Whitfield et al. 2003), and QMP treatments have been found to activate nurse genes and to repress forager genes in the brain of worker bees (Grozinger et al. 2003). One of these genes is the vitellogenin gene (Vg) the product of which, among several pleiotropic effects, regulates the nutritional stores to produce brood food (Nelson et al. 2007). QMP treatment increases Vg RNA expression levels in the fat bodies of young bees (Fischer and Grozinger 2008; Nelson et al. 2007). Vitellogenin and JH apparently interact via a regulatory feedback loop with vitellogenin inhibiting JH production (Guidugli et al. 2005) and JH inhibiting Vg synthesis (Fahrbach and Robinson 1996; Pinto et al. 2000). It has been suggested that the slow fall in Vg titres below a critical threshold may allow JH titres to rise and trigger neurochemical changes that lead to the initiation of foraging behaviour (Amdam and Omholt 2002). Interestingly, 3‘,5’-cyclic guanosine monophosphate has recently been found to inhibit the QMP-mediated increase in Vg RNA levels in the fat bodies of the worker bees (Fussnecker et al. 2011).
Pheromone signals, other than those mediated by 9ODA, are also likely to be conveyed from the ALs to higher centres of the brain and may, like 9ODA, target cells involved in hormone signalling, or signalling via modulators such as the biogenic amines. Indeed measurements of global responses of receptor neurons in the antennae of the bee have shown that antennal receptors are responsive to all five of the key components of QMP (Brockmann et al. 1998). Evidence suggests, however, that the aromatic compounds HOB and HVA may have additional roles as HVA has recently been found to selectively activate the honey bee DA receptor, *AmDOP3* (Beggs and Mercer 2009).

7. **QMP AFFECTS DA SIGNALLING IN THE BEE**

The aromatic compounds, HOB and HVA, are similar in structure to biogenic amines and one in particular, HVA, bears a striking structural resemblance to DA. Harris and Woodring found that one consequence of removing the queen from a honey bee colony was that brain DA levels in young worker bees increase (Harris and Woodring 1995). QMP, and HVA alone, have subsequently been shown to reduce DA levels in young worker bees and QMP transiently alters levels of DA receptor gene expression in the brain (Beggs et al. 2007). In an experiment in which DA receptors were expressed in vitro, HVA was found to selectively activate *AmDOP3* receptors while having no effect on the two other honey bee DA receptors, *AmDOP1* and *AmDOP2* (Beggs and Mercer 2009). As the dose at which HVA showed an effect on heterologously expressed *AmDOP3* receptors was rather high (~10 μM range) in comparison to the concentration detected in QMP, further studies are required to confirm that *AmDOP3* receptors in vivo are activated by the pheromone. While it would not be surprising to find that the sensitivity of *AmDOP3* receptors in vivo differs from that observed in vitro, it is possible also that HVA works synergistically with other components of the queen pheromone. Examples of synergistic activation of olfactory receptors by pheromone blends have been described in the moth *Trichoplusia ni* (O’Connell et al. 1986; Mayer and Doolittle 1995). If HVA targets *AmDOP3* receptors in vivo, *AmDOP3* receptor activation could potentially contribute to effects of QMP on the behaviour and physiology of young worker bees. All three of these DA receptors are expressed in the antennae (Vergoz et al. 2009) as well as in the brain of the bee (Beggs et al. 2005; Kurshan et al. 2003; Humphries et al. 2003; Blenau et al. 1998). HVA activation of *AmDOP3* at the level of the antennae could potentially alter signals conveyed from the antennae to ALs of the brain. Studies in moths, for example, have shown that the physiology of ORNs can be modulated by biogenic amines acting at this level. In some moth species, it has been found that injections of OA lead to increased excitability of ORNs in response to pheromones (Grosmaître et al. 2001; Pophof 2002). Moreover, OA receptors identified in these species were found to be located at the base of pheromone and non-pheromone sensitive sensilla and in neuronal-shaped cells (Brigaud et al. 2009; Von Nickisch-Rosenegk et al. 1996). It will be interesting to examine the distribution of OA and DA receptors in the antennae of the bee as modulation of responses at this level has the potential to have a profound effect on many aspects of bee behaviour. As retinue bees also lick the queen as they groom her, however, we cannot rule out the possibility that at least some of her pheromones may have targets other than ORs located in the antennae of the bee. The *AmDOP3* receptor, for example, is expressed not only in the antennae but also in the brain, but whether QMP components such as HVA are ingested and cross the blood–brain barrier has yet to be determined.

Interestingly, bees exposed to QMP early in adult life tend to have lower levels of *Amdop1* expression in the antennae and brain than bees that have never been exposed to this pheromone (Beggs et al. 2007; Vergoz et al. 2009). Moreover, young workers showing strong attraction to QMP have been found to have higher
Amdop\textsubscript{3} transcript levels, and levels of transcript for the octopamine receptor, Amoa\textsubscript{1}, than bees not strongly attracted to this pheromone. Levels of Amdop\textsubscript{3} expression in the antennae decrease rapidly during the first week of adult life perhaps contributing to the well-documented decline in responsiveness to QMP with age. Vergoz et al. (2007b) found that bees exposed to QMP for 4 to 6 days from the time of adult emergence were not able to associate an odour with an aversive stimulus suggesting that their ability to predict punishment was blocked. Interestingly, bees treated in the same way retained their ability to form appetitive olfactory memories. HVA’s ability to activate the DA receptor AmDOP3 may contribute to these effects. Evidence that aversive learning in insects involves DA signalling is compelling, particularly in fruit flies where DA-releasing neurons have been shown to convey the negative reinforcing properties of punishment signals (Riemensperger et al. 2005; Schroll et al. 2006; Schweizer et al. 2003). Consistent with this model, inhibition of DA signalling with DA receptor antagonists has been shown to selectively impair aversive learning in bees (Vergoz et al. 2007a).

HVA is an important component of QMP in Apis mellifera, but it is not present in the pheromone blend of all Apis species. What might be the adaptive advantage of selection for this pheromone? One possible benefit to the queen of being able to block aversive learning in the young workers is that they will not associate the queen with any unpleasant effects of high concentrations of her pheromone. In contrast to young bees, bees of foraging age appear to be repelled by QMP (Vergoz et al. 2007b), and potentially also by nurses (see Fan et al. 2010) and perhaps even the queen herself. Fan and colleagues have recently shown that QMP exposure alters patterns of cuticular hydrocarbons in worker bees (Fan et al. 2010) and that nurses and foragers differ in their cuticular hydrocarbon profiles, probably because they are exposed to different levels of QMP. This is interesting because it may help to explain why bees of foraging age tend to remain towards the periphery of the hive (Winston 1987). Nestmate recognition is crucial in honey bee colonies as it helps bees identify parasites and conspecific intruders (Breed 1998; Breed and Buchwald 2009). Members of a colony form a memory of the colony odour during the first days after emergence based on the environmental odours including the odours of nestmates. Once this memory is established they tend to show aggression towards individuals with cuticular hydrocarbon profiles that do not match. As this profile is affected not only by genotype, but also by diet, colony environment and an individual’s physiological condition (Howard and Blomquist 2005), it is not surprising that in bees this profile changes over time (Richard et al. 2008). The mechanism explaining the effect of QMP on cuticular hydrocarbon profiles remains unknown, but it would be interesting to investigate QMP effects on N-acetyldopamine, which is a sclerotizing agent of the insect cuticle (Karlson and Sekeris 1962).

8. DOES QMP AFFECT THE QUEEN?

Whether the queen is affected by her own pheromone is unclear. Queens re-absorb a third of their own daily QMP secretion, probably through their cuticle and, as a thousandth of their gland extract is present on their body at any time (Naumann et al. 1991), they are constantly exposed to the highest possible levels of QMP. Interestingly, this does not inhibit ovary development in the queen suggesting either, that QMP does not induce the same physiological changes in queens as it does in workers, or that the queens’ sensitivity to one or more components of QMP differs markedly from that of workers. Aspects of queen behaviour and physiology suggest that queens may, however, be affected by their own pheromones. For example, in contrast to workers, JH titres remain low throughout the adult lifetime of the queen. As QMP production during the first 2 days of the queen’s adult life is relatively low but then rises and remains high until the end of her lifetime it has been suggested that JH levels in queens may be influenced by QMP (Pankiw et al. 1996; Slessor et al. 1990). Similarly, brain DA levels, which have been found in young workers
to be lowered by the QMP component HVA, are lower in mated queens (which produce HVA) than in virgin queens (Harano et al. 2005). Queens are also less mobile after mating (Winston 1987), a potential effect of QMP that would parallel effects of the pheromone on members of the queen’s retinue. Consideration of the possibility that queen pheromones may affect the queen herself, in addition to other members of the colony, has interesting implications in terms of the evolution of queen pheromones. Whether queens use their pheromones to exert control over workers, or as honest signals of queen fecundity (Keller and Nonacs 1993) remains a matter of great interest and debate (see reviews, e.g. by Le Conte and Hefetz 2008; Keller 2009; Kocher and Grozinger 2011). While detailed consideration of this issue lies beyond the scope of the current review, it is interesting to note that female pheromone autodetection has been documented in some moth species (Ochieng et al. 1995; Schneider et al. 1998). Intriguingly, ALs of queen bees contain a glomerulus of larger size, which could be a female macroglomerulus (Arnold et al. 1988). Future studies will reveal whether this large glomerulus is dedicated to processing the queen’s own pheromone and/or some other species-specific signal.

9. CONCLUSION

Chemical signalling is the principal means by which a queen bee can influence the development of a colony and QMP, even on its own, is remarkable for the complexity of behaviours that it regulates. The intensive efforts that have been made to identify components of this pheromone and to describe their effects on the behaviour and physiology of bees makes this an attractive model for studies of the neural bases of pheromonal regulation in insects. Recent advances have come not only from the sequencing of the honey bee genome and the identification of the 9ODA receptor, AmOR11, but also from the application of optical imaging techniques, which have revealed where in the brain pheromone signals are processed. This work represents an important foothold that will assist researchers in the task of identifying the central mechanisms through which QMP components operate, filling gaps in our knowledge between the peripheral detection of pheromone and its physiological and behavioural consequences. Evidence suggesting that some pheromones have targets other than, or in addition to, olfactory receptors also warrants further attention as a comprehensive understanding of pheromonal communication systems in honey bees will undoubtedly suggest new strategies for the successful management of these extraordinary animals.

La phéromone mandibulaire de la reine: encore des questions à résoudre.

Phéromone mandibulaire / reine / Apis mellifera / système olfactif / amines biogéniques / hormone juvénile / ecdystéroïde

Das Mandibelpheromon der Königin: Welche Fragen sind noch offen?

Königinnen Mandibelpheromon / Apis mellifera / olfactorisches System / Biogene Amine / Juvenilhormon / Ecdysteroïd hormone

Abbreviation

AL Antennal lobe
cGMP 3′,5′-Cyclic guanosine monophosphate
DA Dopamine
9HDA 9-Hydroxy-2-decenoic acid
10HDA 10-Hydroxy-2-decenoic acid
HOB Methyl-p-hydrobenzoate
5HT Serotonin
HVA 4-Hydroxy-3-methoxyphenylethanol
JH Juvenile hormone
LN Local neuron
MB Mushroom bodies
MG1-4 Macroglomeruli 1–4
mPN Multiglomerular projection neuron
OA Octopamine
9ODA 9-Oxo-2-decenoic acid
OR Olfactory receptor
ORN Olfactory receptor neuron
PN Projection neuron
QMP Queen mandibular pheromone
uPN Uniglomerular projection neuron
REFERENCES

moths. VI. Parallel pathways for information processing in the macroglomerular complex of the male tobacco budworm moth Heliothis virescens. J. Comp. Physiol. A. 177, 545–557

Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949
Queen mandibular pheromone—mechanisms

