L. Blateyron and J. Sablayrolles, Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate, Journal of Bioscience and Bioengineering, vol.91, issue.2, pp.184-189, 2001.
DOI : 10.1016/S1389-1723(01)80063-3

F. Bauer and I. Pretorius, Yeast stress response and fermentation efficiency: how to survive the making of wine ? a review, S Afr J Enol Vitic, vol.21, p.2751, 2000.

M. Bely, J. Sablayrolles, and P. Barre, Description of alcoholic fermentation kinetics: its variability and significance, Am J Enol Vitic, vol.159, pp.25-32, 1990.

A. Gutiérrez, R. Chiva, M. Sancho, G. Beltran, F. Arroyo-lópez et al., Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must, Food Microbiology, vol.31, issue.1, pp.3125-3157
DOI : 10.1016/j.fm.2012.02.012

C. Brice, I. Sanchez, C. Tesnière, and B. Blondin, Assessing the Mechanisms Responsible for Differences between Nitrogen Requirements of Saccharomyces cerevisiae Wine Yeasts in Alcoholic Fermentation, Applied and Environmental Microbiology, vol.80, issue.4
DOI : 10.1128/AEM.03856-13

J. Salmon, Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations

V. Ansanay-galeote, B. Blondin, S. Dequin, and J. Sablayrolles, Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae, Biotechnology Letters, vol.23, issue.9, pp.677-681, 2001.
DOI : 10.1023/A:1010396232420

T. Rossignol, Analyse de l'expression du génome des levures oenologiques en fermentation alcoolique par des approches post-génomiques, Sciences des Aliments

A. Mendes-ferreira, M. Del-olmo, J. Garcia-matinez, E. Jimenez-marti, A. Mendes-faia et al., Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation, Applied and Environmental Microbiology, vol.73, issue.9, pp.3049-3060, 2007.
DOI : 10.1128/AEM.02754-06

A. Mendes-ferreira, M. Del-olmo, J. Garcia-matinez, E. Jimenez-marti, C. Leao et al., Saccharomyces cerevisiae Signature Genes for Predicting Nitrogen Deficiency during Alcoholic Fermentation, Applied and Environmental Microbiology, vol.73, issue.16
DOI : 10.1128/AEM.01029-07

A. Contreras, V. García, F. Salinas, U. Urzúa, M. Ganga et al., Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae, World Journal of Microbiology and Biotechnology, vol.72, issue.suppl 4, pp.1107-1113
DOI : 10.1007/s11274-011-0911-3

A. Gutiérrez, G. Beltran, J. Warringer, and J. Guillamon, Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains, PLoS ONE, vol.9, issue.6
DOI : 10.1371/journal.pone.0067166.s002

D. Watanabe, Y. Araki, Y. Zhou, N. Maeya, T. Akao et al., A Loss-of-Function Mutation in the PAS Kinase Rim15p Is Related to Defective Quiescence Entry and High Fermentation Rates of Saccharomyces cerevisiae Sake Yeast Strains, Applied and Environmental Microbiology, vol.78, issue.11, pp.784008-4016
DOI : 10.1128/AEM.00165-12

I. Pedruzzi, F. Dubouloz, E. Cameroni, V. Wanke, J. Roosen et al., TOR and PKA Signaling Pathways Converge on the Protein Kinase Rim15 to Control Entry into G0, Molecular Cell, vol.12, issue.6, pp.1607-1613, 2003.
DOI : 10.1016/S1097-2765(03)00485-4

E. Swinnen, V. Wanke, J. Roosen, B. Smets, F. Dubouloz et al., Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae, Cell Division, vol.1, issue.1, p.3, 2006.
DOI : 10.1186/1747-1028-1-3

H. Geldermann, Investigations on inheritance of quantitative characters in animals by gene markers II. Expected effects, Theoretical and Applied Genetics, vol.47, issue.1, pp.1-4, 1976.
DOI : 10.1007/BF00277397

H. Sinha, B. Nicholson, L. Steinmetz, and J. Mccusker, Complex Genetic Interactions in a Quantitative Trait Locus, PLoS Genetics, vol.15, issue.2, p.13, 2006.
DOI : 10.1371/journal.pgen.0020013.st005

H. Sinha, L. David, R. Pascon, S. Clauder-münster, S. Krishnakumar et al., Sequential Elimination of Major-Effect Contributors Identifies Additional Quantitative Trait Loci Conditioning High-Temperature Growth in Yeast, Genetics, vol.180, issue.3, pp.1661-1670, 2008.
DOI : 10.1534/genetics.108.092932

G. Ben-ari, D. Zenvirth, A. Sherman, L. David, M. Klutstein et al., Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast, PLoS Genetics, vol.15, issue.11, p.195, 2006.
DOI : 10.1371/journal.pgen.0020195.st003

A. Deutschbauer and R. Davis, Quantitative trait loci mapped to single-nucleotide resolution in yeast, Nature Genetics, vol.350, issue.12, pp.1333-1340, 2005.
DOI : 10.1038/ng1674

J. Gerke, C. Chen, and B. Cohen, Natural Isolates of Saccharomyces cerevisiae Display Complex Genetic Variation in Sporulation Efficiency, Genetics, vol.174, issue.2, pp.985-997, 2006.
DOI : 10.1534/genetics.106.058453

T. Katou, M. Namise, H. Kitagaki, T. Akao, and H. Shimoi, QTL mapping of sake brewing characteristics of yeast, Journal of Bioscience and Bioengineering, vol.107, issue.4, pp.383-393, 2009.
DOI : 10.1016/j.jbiosc.2008.12.014

S. Nogami, Y. Ohya, and G. Yvert, Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits, PLoS Genetics, vol.14, issue.2, p.31, 2007.
DOI : 10.1371/journal.pgen.0030031.st005

URL : https://hal.archives-ouvertes.fr/ensl-00135760

H. Kim and J. Fay, Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds, Proceedings of the National Academy of Sciences, vol.104, issue.49, pp.19387-19391, 2007.
DOI : 10.1073/pnas.0708194104

X. Hu, M. Wang, T. Tan, J. Li, H. Yang et al., Genetic Dissection of Ethanol Tolerance in the Budding Yeast Saccharomyces cerevisiae, Genetics, vol.175, issue.3, pp.1479-1487, 2007.
DOI : 10.1534/genetics.106.065292

P. Marullo, M. Bely, I. Masneuf-pomarede, M. Aigle, and D. Dubourdieu, Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains, FEMS Yeast Research, vol.4, issue.7, pp.711-719, 2004.
DOI : 10.1016/j.femsyr.2004.01.006

E. Smith and L. Kruglyak, Gene???Environment Interaction in Yeast Gene Expression, PLoS Biology, vol.21, issue.4, p.83, 2008.
DOI : 10.1371/journal.pbio.0060083.sd003

M. Brauer, C. Christianson, D. Pai, and M. Dunham, Mapping Novel Traits by Array-Assisted Bulk Segregant Analysis in Saccharomyces cerevisiae, Genetics, vol.173, issue.3, pp.1813-1816, 2006.
DOI : 10.1534/genetics.106.057927

D. Steyer, C. Ambroset, C. Brion, P. Claudel, P. Delobel et al., QTL mapping of the production of wine aroma compounds by yeast, BMC Genomics, vol.13, issue.1, p.573
DOI : 10.1007/BF01731581

URL : https://hal.archives-ouvertes.fr/hal-01485468

M. Jara, F. Cubillos, V. García, F. Salinas, O. Aguilera et al., Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts, PLoS ONE, vol.59, issue.1, p.86533
DOI : 10.1371/journal.pone.0086533.s008

C. Ambroset, M. Petit, C. Brion, I. Sanchez, P. Delobel et al., Deciphering the Molecular Basis of Wine Yeast Fermentation Traits Using a Combined Genetic and Genomic Approach, G3: Genes|Genomes|Genetics, vol.1, issue.4, pp.263-281, 2011.
DOI : 10.1534/g3.111.000422

URL : https://hal.archives-ouvertes.fr/hal-01487358

C. Brion, C. Ambroset, I. Sanchez, J. Legras, and B. Blondin, Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks, BMC Genomics, vol.14, issue.1, p.681, 2013.
DOI : 10.1007/BF01731581

URL : https://hal.archives-ouvertes.fr/hal-00939593

R. Brem, G. Clinton, and L. Kruglyak, Genetic Dissection of Transcriptional Regulation in Budding Yeast, Science, vol.296, issue.5568, pp.752-755, 2002.
DOI : 10.1126/science.1069516

J. Flint, W. Valdar, S. Shifman, and R. Mott, Strategies for mapping and cloning quantitative trait genes in rodents, Nature Reviews Genetics, vol.88, issue.4, pp.271-286, 2005.
DOI : 10.1073/PNAS.191383798

J. Keurentjes, L. Bentsink, C. Alonso-blanco, C. Hanhart, H. Blankestijn-de-vries et al., Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population, Genetics, vol.175, issue.2, pp.891-905, 2007.
DOI : 10.1534/genetics.106.066423

X. Wang, L. Roy, I. Nicodeme, E. Li, R. Wagner et al., Using Advanced Intercross Lines for High-Resolution Mapping of HDL Cholesterol Quantitative Trait Loci, Genome Research, vol.13, issue.7, pp.131654-1664, 2003.
DOI : 10.1101/gr.1185803

K. Lorenz and B. Cohen, Small- and Large-Effect Quantitative Trait Locus Interactions Underlie Variation in Yeast Sporulation Efficiency, Genetics, vol.192, issue.3, pp.1123-1132
DOI : 10.1534/genetics.112.143107

J. Satagopan, S. Sen, and G. Churchill, Sequential Quantitative Trait Locus Mapping in Experimental Crosses, Statistical Applications in Genetics and Molecular Biology, vol.6, issue.1, p.12, 2007.
DOI : 10.2202/1544-6115.1264

R. Fisher, The genetical theory of natural selection, 1930.
DOI : 10.5962/bhl.title.27468

A. Lango, K. Estrada, G. Lettre, S. Berndt, M. Weedon et al., Hundreds of variants clustered in genomic loci and biological pathways affect human height, Nature, vol.42, issue.7317, pp.467832-838, 2010.
DOI : 10.1038/nature09410

URL : https://hal.archives-ouvertes.fr/cea-00904990

J. Yang, T. Manolio, L. Pasquale, E. Boerwinkle, N. Caporaso et al., Genome partitioning of genetic variation for complex traits using common SNPs, Nature Genetics, vol.37, issue.6, pp.43519-525, 2011.
DOI : 10.1038/ng.548

M. Lynch and B. Walsh, Genetics and analysis of quantitative traits, p.124, 1998.

C. Manginot, J. Roustan, and J. Sablayrolles, Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase, Enzyme and Microbial Technology, vol.23, issue.7-8, pp.7-8511, 1998.
DOI : 10.1016/S0141-0229(98)00080-5

L. Crépin, T. Nidelet, I. Shanchez, S. Dequin, and C. Camarasa, Sequential Use of Nitrogen Compounds by Saccharomyces cerevisiae during Wine Fermentation: a Model Based on Kinetic and Regulation Characteristics of Nitrogen Permeases, Applied and Environmental Microbiology, vol.78, issue.22, pp.788102-8111
DOI : 10.1128/AEM.02294-12

A. Hinnebusch, AND THE GENERAL AMINO ACID CONTROL OF YEAST, Annual Review of Microbiology, vol.59, issue.1, pp.407-450, 2005.
DOI : 10.1146/annurev.micro.59.031805.133833

P. Ng and S. Henikoff, SIFT: predicting amino acid changes that affect protein function, Nucleic Acids Research, vol.31, issue.13, pp.3812-3814, 2003.
DOI : 10.1093/nar/gkg509

T. Daqui, W. Li, Y. Ye, and A. Brunger, Structure and Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p, pp.15599-15606, 2007.

M. Benni and L. Neigeborn, Identification of a new class of negative regulators affecting sporulation-specific gene expression in yeast, Genetics, vol.147, issue.3, pp.1351-1366, 1997.

S. Fendt, A. Oliveira, S. Christen, P. Picotti, R. Dechant et al., Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast, Molecular Systems Biology, vol.124, p.432, 2010.
DOI : 10.1186/1471-2156-2-5

J. Thevelein, Signal transduction in yeast, Yeast, vol.9, issue.13, pp.1753-1790, 1994.
DOI : 10.1002/yea.320101308

M. Donaton, I. Holsbeeks, O. Lagatie, G. Van-zeebroeck, M. Crauwels et al., The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae, Molecular Microbiology, vol.50, issue.3, pp.50911-929, 2003.
DOI : 10.1046/j.1365-2958.2003.03732.x

O. Grundmann, H. Mösch, and G. Braus, Repression of GCN4 mRNA Translation by Nitrogen Starvation in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.276, issue.28
DOI : 10.1074/jbc.M101068200

H. Qui, E. Dubois, and F. Messenguy, Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways., Molecular and Cellular Biology, vol.11, issue.4, pp.2169-2179, 1991.
DOI : 10.1128/MCB.11.4.2169

F. Messenguy and E. Dubois, Regulation of arginine metabolism in Saccharomyces cerevisiae: a network of specific and pleiotropic proteins in response to multiple environmental signals, Food Technol Biotechnol, vol.38, issue.4, pp.277-285, 2000.

V. Phalip, I. Kuhn, Y. Lemoine, and J. Jeltsch, Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake, Gene, vol.232, issue.1, pp.43-51, 1999.
DOI : 10.1016/S0378-1119(99)00117-1

C. Mcdonald, M. Wagner, M. Dunham, M. Shin, N. Ahmed et al., The Ras/cAMP Pathway and the CDK-Like Kinase Ime2 Regulate the MAPK Smk1 and Spore Morphogenesis in Saccharomyces cerevisiae, Genetics, vol.181, issue.2, pp.511-523, 2009.
DOI : 10.1534/genetics.108.098434

U. Guldener, S. Heck, T. Fielder, J. Beinhauer, and J. Hegemann, A new efficient gene disruption cassette for repeated use in budding yeast, Nucleic Acids Research, vol.24, issue.13, pp.2519-2524, 1996.
DOI : 10.1093/nar/24.13.2519

M. Bely, J. Sablayrolles, and P. Barre, Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions, Journal of Fermentation and Bioengineering, vol.70, issue.4, pp.246-252, 1990.
DOI : 10.1016/0922-338X(90)90057-4

J. Sablayrolles, P. Barre, and P. Grenier, Design of laboratory automatic system for studying alcoholic fermentations in an isothermal oenological conditions, Biotechnol Tech, vol.1, pp.181-184, 1987.

M. Bezenger and J. Navarro, Influence de l'azote sur la fermentation alcoolique en milieu modèle simulant les conditions de l'oenologie, Sci Alim, vol.1897, issue.7, pp.41-60

L. Steinmetz, H. Sinha, D. Richards, J. Spiegelman, P. Oefner et al., Dissecting the architecture of a quantitative trait locus in yeast, Nature, vol.26, issue.6878, pp.326-330, 2002.
DOI : 10.1038/416326a

D. Gresham, B. Curry, A. Ward, D. Gordon, L. Brizuela et al., Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes, Proceedings of the National Academy of Sciences, vol.107, issue.4, pp.1482-1487, 2010.
DOI : 10.1073/pnas.0913883107

S. Rozen and H. Skaletsky, Primer3 on the WWW for General Users and for Biologist Programmers, Bioinformatics Methods and Protocols, pp.365-386, 2000.
DOI : 10.1385/1-59259-192-2:365

R. Development and C. Team, R: A language and environment for statistical computing, In R Foundation for Statistical Computing, 2012.

R. Brem and L. Kruglyak, The landscape of genetic complexity across 5,700 gene expression traits in yeast, Proceedings of the National Academy of Sciences, vol.102, issue.5, pp.1572-1577, 2005.
DOI : 10.1073/pnas.0408709102

P. Marullo, M. Bely, I. Masneuf-pomarède, M. Pons, M. Aigle et al., Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model, FEMS Yeast Research, vol.6, issue.2, pp.268-79, 2006.
DOI : 10.1111/j.1567-1364.2006.00034.x

G. Smyth and T. Speed, Normalization of cDNA microarray data, Methods, vol.31, issue.4, pp.265-273, 2003.
DOI : 10.1016/S1046-2023(03)00155-5

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate in behavior genetics research, Behavioural Brain Research, vol.125, issue.1-2, pp.289-300, 2001.
DOI : 10.1016/S0166-4328(01)00297-2

A. Bergström, T. Simpson, F. Salinas, L. Parts, P. Barré et al., A highdefinition view functional genetic variation from natural yeast genomes, Mol Biol Evol

G. Liti, D. Carter, A. Moses, J. Warringer, L. Parts et al., Population genomics of domestic and wild yeasts, Nature, vol.26, issue.7236, pp.458337-341, 2009.
DOI : 10.1038/nature07743

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2739, 2011.
DOI : 10.1093/molbev/msr121

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of Molecular Evolution, vol.206, issue.5, Nov., pp.111-120, 1980.
DOI : 10.1007/BF01731581

. Brice, A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling, BMC Genomics, vol.15, issue.1, p.495, 2014.
DOI : 10.1007/BF01731581

URL : https://hal.archives-ouvertes.fr/hal-01189979