Obtaining a Triangular Matrix by Independent Row-Column Permutations

Abstract : Given a square (0, 1)-matrix A, we consider the problem of deciding whether there exists a permutation of the rows and a permutation of the columns of A such that after carrying out these permutations , the resulting matrix is triangular. The complexity of the problem was posed as an open question by Wilf [7] in 1997. In 1998, DasGupta et al. [3] seemingly answered the question, proving it is NP-complete. However , we show here that their result is flawed, which leaves the question still open. Therefore, we give a definite answer to this question by proving that the problem is NP-complete. We finally present an exponential-time algorithm for solving the problem.
Type de document :
Communication dans un congrès
26th International Symposium on Algorithms and Computation, Dec 2015, Nagoya, France
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01189621
Contributeur : Stéphane Vialette <>
Soumis le : mardi 1 septembre 2015 - 12:32:36
Dernière modification le : jeudi 5 juillet 2018 - 14:45:56
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:57:37

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01189621, version 1

Citation

Guillaume Fertin, Irena Rusu, Stéphane Vialette. Obtaining a Triangular Matrix by Independent Row-Column Permutations. 26th International Symposium on Algorithms and Computation, Dec 2015, Nagoya, France. 〈hal-01189621〉

Partager

Métriques

Consultations de la notice

217

Téléchargements de fichiers

491