Hydraulic adjustment of Scots pine across Europe - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue New Phytologist Année : 2009

Hydraulic adjustment of Scots pine across Europe

Résumé

The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the potential tradeoffs between traits. Traits measured included wood density, radial growth, xylem anatomy, sapwood- and leaf-specific hydraulic conductivity (K(S) and K(L)), vulnerability to embolism, leaf-to-sapwood area ratio (A(L) : A(S)), needle carbon isotope discrimination (delta 13C) and nitrogen content, and specific leaf area. Between-population variability was high for most of the hydraulic traits studied, but it was directly associated with climate dryness (defined as a combination of atmospheric moisture demand and availability) only for A(L) : A(S), K(L) and delta 13C. Shoot radial growth and A(L) : A(S) declined with stand development, which is consistent with a strategy to avoid exceedingly low water potentials as tree size increases. In addition, we did not find evidence at the intraspecific level of some associations between hydraulic traits that have been commonly reported across species. The adjustment of Scots pine's hydraulic system to local climatic conditions occurred primarily through modifications of A(L) : A(S) and direct stomatal control, whereas intraspecific variation in vulnerability to embolism and leaf physiology appears to be limited.

Dates et versions

hal-01189367 , version 1 (01-09-2015)

Identifiants

Citer

Jordi Martinez-Vilalta, Hervé Cochard, Maurizia Mencuccini, Frank Sterck, Asier Herrero, et al.. Hydraulic adjustment of Scots pine across Europe. New Phytologist, 2009, 184 (2), pp.353-364. ⟨10.1111/j.1469-8137.2009.02954.x⟩. ⟨hal-01189367⟩
1145 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More