N

N
N

HAL

open science

A Precise Metamodel for Open Cloud Computing
Interface

Philippe Merle, Olivier Barais, Jean Parpaillon, Noél Plouzeau, Samir Tata

» To cite this version:

Philippe Merle, Olivier Barais, Jean Parpaillon, Noél Plouzeau, Samir Tata. A Precise Metamodel for
Open Cloud Computing Interface. 8th IEEE International Conference on Cloud Computing (CLOUD

2015), IEEE, Jun 2015, New York, United States. pp.852 - 859, 10.1109/CLOUD.2015.117 .

01188800

HAL Id: hal-01188800
https://hal.science/hal-01188800
Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01188800
https://hal.archives-ouvertes.fr

A Precise Metamodel for
Open Cloud Computing Interface

Philippe Merle
Inria Lille - Nord Europe
Villeneuve d’Ascq, France
Email: philippe.merle@inria.fr

Abstract—Open Cloud Computing Interface (OCCI) proposes
one of the first widely accepted, community-based, open stan-
dards for managing any kinds of cloud resources. But as it is
specified in natural language, OCCI is imprecise, ambiguous,
incomplete, and needs a precise definition of its core concepts.
Indeed, the OCCI Core Model has conceptual drawbacks: an
imprecise semantics of its type classification system, a nonexten-
sible data type system for OCCI attributes, a vague and limited
extension concept and the absence of a configuration concept. To
tackle these issues, this paper proposes a precise metamodel for
OCCI. This metamodel defines rigourously the static semantics of
the OCCI core concepts, of a precise type classification system, of
an extensible data type system, and of both extension and configu-
ration concepts. This metamodel is based on the Eclipse Modeling
Framework (EMF), its structure is encoded with Ecore and its
static semantics is rigourously defined with Object Constraint
Language (OCL). As a consequence, this metamodel provides
a concrete language to precisely define and exchange OCCI
models. The validation of our metamodel is done on the first
world-wide dataset of OCCI extensions already published in the
literature, and addressing inter-cloud networking, infrastructure,
platform, application, service management, cloud monitoring,
and autonomic computing domains, respectively. This validation
highlights simplicity, consistency, correctness, completeness, and
usefulness of the proposed metamodel.

Index Terms—Cloud Computing; Cloud Modeling; Open
Cloud Computing Interface; Metamodeling;

I. INTRODUCTION

Cloud computing has been adopted as a dominant delivery
model for computing resources [1]]. This model defines three
well discussed layers of services known as Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [2]]. Other XaaS terms are used nowa-
days to name different resources provided as services in the
clouds [3]]. Cloud management poses different challenges [4].
Provisioning, supervising, and managing these outsourced,
on-demand, pay as you go, elastic resources require cloud
resource management interfaces (CRM-API). However, there
is a plethora of CRM-API, proposed by Amazon, Eucalyp-
tus, Microsoft, Google, OpenNebula, CloudStack, OpenStack,
CloudBees, OpenShift, Cloud Foundry, to name a few. Even if
there are several client-side API for interacting with multiple
popular cloud service providers, these API are all linked to a
specific programming language: Apache Libcloud for Python,
Apache jclouds for Java, Gophercloud for Go, efc.

Olivier Barais, Jean Parpaillon, Noél Plouzeau
IRISA - Inria Rennes - Bretagne Atlantique
Rennes, France
Email: firstname.name @irisa.fr

Samir Tata
Institut Mines-Telecom,
Telecom SudParis,
UMR CNRS Samovar, Evry, France
Email: samir.tata@mines-telecom.fr

Thereby cloud computing standards are required to cope
with four main issues: heterogeneity of cloud offers, in-
teroperability between CRM-API, integration of CRM-API
for building multi-cloud systems, and portability of cloud
management applications. To this end, Open Cloud Computing
Interface (OCCI) is an Open Grid Forum (OGF) community-
based effort to create one of the first open extensible standards
for managing any kind of cloud computing resources [J5].

OCCI is supported by a large community that includes
providers of open source cloud software stacks such as Eu-
calyptus, OpenNebula, CloudStack, OpenStack, and Compati-
bleOne [6]], and users such as the European Grid Infrastructure
(EGI), to cite a fewﬂ Several OCCI runtime frameworks exist,
e.g., erocci, TOCCI, pySSF, pyOCNI, and OCCI4Java, and
rely on Erlang, Ruby, Python, Java programming languages,
respectively. OCCI has already been used successfully for
managing inter-cloud networking [7], building reliable stor-
age virtualizations [8f], [aaS resources description [9], PaaS
resources description [[10], SaaS resources description [10],
SLA negotiation and enforcement in data management [11]],
service management [12], resource management in federated
clouds [[13]], cloud monitoring [14] and reconfiguration [15],
and autonomic computing [16]. A common denominator of
these recent usages is the use of the REST architecture style
for managing cloud computing resources.

The kernel of OCCI is a generic resource-oriented meta-
model called the OCCI Core Model and defined in [17].
The OCCI Core Model can be interacted with using render-
ings (including associated behaviours) and expanded through
extensions. For instance, the OCCI HTTP Rendering [18]]
defines how OCCI resources are accessible as REST resources
over the HTTP network protocol. The OCCI Infrastructure
Extension [9]] defines OCCI-compliant compute, network and
storage IaaS resources.

Nevertheless, OCCI lacks a precise definition of its core
concepts. Indeed, OCCI specifications are informal documents
written in natural language and illustrated by UML diagrams.
This informal definition of the OCCI Core Model can be
interpreted in various different ways, which can lead to inter-
operability issues between OCCI implementations. Moreover,
the OCCI Core Model has conceptual drawbacks and limita-

Uhttp://occi-wg.org/community/implementations/

http://occi-wg.org/community/implementations/

tions: an imprecise semantics of its built-in type classification
system, a nonextensible data type system for OCCI attributes,
a vague and limited extension concept, and the absence of the
configuration concept.

To tackle these issues, this paper contributes a precise meta-
model for OCCI. This metamodel defines rigourously the static
semantics of the OCCI core concepts. Our metamodel pro-
poses a precise type classification system, an extensible data
type system, and both extension and configuration concepts.
This metamodel is based on the Eclipse Modeling Framework
(EMF), structured as an Ecore package and its static semantics
is rigourously defined using the Object Constraint Language
(OCL). As a consequence, this metamodel provides a concrete
language to precisely define and exchange OCCI models. The
validation of our metamodel has been done on the first world-
wide dataset of OCCI extensions already published in the
literature. This dataset is composed of seven OCCI exten-
sions addressing inter-cloud networking [7]], IaaS [9], PaaS
[10], SaaS [[10], service management [12], cloud monitoring
[14], and autonomic computing [[16] domains, respectively.
This validation highlights simplicity, consistency, correctness,
completeness, and usefulness of the proposed metamodel.

This paper is organized as follows. Section [[I] gives back-
ground on the OCCI Core Model and identifies five conceptual
drawbacks of this model. Section describes our precise
metamodel for OCCI. Section [[V] validates our metamodel on
seven already published OCCI extensions. Finally, Section [V]
concludes on future perspectives.

II. BACKGROUND AND DRAWBACKS ON THE OCCI CORE
MODEL

As illustrated by Fig. [T} the OCCI Core Model [17] is a
simple resource-oriented model composed of eight concept

e« Resource represents any cloud computing resource,
e.g., a virtual machine, a network, an application con-
tainer, an application. Resource owns a set of 1inks.

e Link is a relation between two Resource instances,
e.g., a computer connected to a network, an application
hosted by a container. Link references to both source
and target resources.

e Entity is the abstract base class of all resources and
links. Each resource/link has a unique identifier, is
strongly typed by a kind type and zero or more mixins
types.

e Kind is the notion of class/type within OCCI, e.g., Com-
pute, Network, Container, Application. A Kind instance
owns a set of actions, can have one parent kind,
and lists its ent it ies, which are instances of this kind.
There will be at least three instances of Kind: entity
kind, resource kind and 1ink kind instances.

e Mixin is used to associate additional features, e.g.,
location, price, user preference, ranking, to resource/link

20ur work is based on the last revised draft of the OCCI Core Model [17],
and not on the officially published and publicly available version of this
document.

Category Attribute
scheme: URI name: String
term: String [@—amrpotes 1 type: String [0..1]
title: String [0..1] 1 * | mutable: Boolean [0..1]
required: Boolean [0..1]
default: String [0..1]
\ description: String [0..1]
et
Kind clion Mixin
01 actions L actions by
A
\a_mm
0..1 * *
parent i mixins depends
Entity
id: URI L entiies
Resource 1 farget Link
‘1 source ks
Fig. 1. UML class diagram of the OCCI Core Model (from [17])

instances. Each Mixin instance owns a set of actions,
can inherit from zero or more depends mixins, defines
on which kinds it can be applied, and references a set
of entities on which the mixin is applied. Tagging of
OCCI resource instances is supported through the associ-
ation of Mixin instances (called Tags). A tag is simply
a Mixin instance, which defines no additional resource
capabilities, aka no attributes and no actions.
Templates allow to apply predefined values to attributes
of OCCI types. They are implemented using Mixin
instances and they associate at entity instantiation time
certain pre-populated attributes. A template is a Mixin
instance with all attributes having a default
value.

e Action represents an action that can be executed on
entities, e.g., start a virtual machine, stop an application
container, restart an application, resize a storage.

e Category is the abstract base class inherited by Kind,
Mixin, and Action. Each instance of kind, mixin or
action is uniquely identified by both a scheme and a
term, has a human readable title, and owns a set of
attributes.

e Attribute represents the definition of a client visible
property, e.g., the hostname of a machine, the IP address
of a network, or a parameter of an action. An attribute
has one name, can have a scalar data type, can be
(or not) mutable (i.e., modifiable by clients), can be
(or not) required (i.e., value is provided at creation
time), can have a default value and a human readable
description.

Even if the OCCI Core Model is simple, it is generic enough
to model any cloud computing resource such as inter-cloud
networking [7], building reliable storage virtualizations [8]],
TaaS resources [9]], PaaS resources [[10], SaaS resources [10]],

service management [12]], SLA negotiation and enforcement
in data management [11]], resource management in federated
clouds [13]], cloud monitoring [14] and reconfiguration [15]],
and autonomic computing [[16f]. Section validates our pre-
cise metamodel for OCCI on seven of these already published
works.

Through our study of OCCI in funded research projects
(CompatibleOne, EASI-CLOUDS, OpenPaaS and OCClware)
we have identified five conceptual drawbacks/limitations on
the OCCI Core Model:

1) Informal model: The structure of the OCCI Core Model
is illustrated by the UML class diagram shown in Fig. [I]
This diagram contains at least three semantic errors. In [[17],
Category and Entity are explicitly described as abstract
types, i.e., no instance of these types can exist. Then their type
name must be in italic in the UML class diagram. URI is not
a base data type in UML, it must be defined. Both static and
dynamics semantics of the OCCI Core Model are described by
sentences and tables in natural language. Some of these sen-
tences are imprecise and/or ambiguous and can be interpreted
in various different ways, which can lead to interoperability
issues between OCCI implementations. For instance, [|17] does
not explicitly state that two distinct attributes with the
same name must not belong to the same category instance.
Therefore the OCCI Core Model needs a precise and rigorous
definition of its core concepts.

2) Imprecise type classification system: [17] does not
explicitly state that the built-in type classification system of
OCCI - parent and depends relations - must form a
directed acyclic graph, i.e., a kind must not inherit from itself
and a mixin must not depend from itself, both directly or
transitively, else the OCCI type classification system would
have a unusual semantics! A kind instance must not overload
an attribute inherited from its parents directly or transitively.
A mixin instance must not overload an attribute inherited from
its depends directly or transitively. Entities of a mixin must
have a kind compatible with an applies kind of this mixin
at least. Therefore the OCCI Core Model needs a precise and
rigorous definition of its type classification system.

3) Nonextensible data type system: The data type system
for OCCI attributes (attribute t ype defined as a string) is not
general enough. Currently only string, number, and boolean
types are supported. This is insufficient for describing complex
OCCI extensions such as OCCI Infrastructure Extension [9],
as this extension uses other scalar data types like IP address,
float and enumeration types. OCCI should provide some mech-
anisms to extend or restrict data types such as enumeration,
string pattern, number range, decimal precision, etc. The OCCI
data type system must be compatible with already existing and
widely accepted data type systems like W3C XSD. Therefore
the OCCI Core Model needs an open and extensible data type
system for OCCI attributes.

4) Vague and incomplete extension concept: While the
concept of extension exists in OCCI’s specification, it is too
vaguely and incompletely defined. Informally, each OCCI
extension is a set of Kind and Mixin types targeting a

concrete cloud computing domain, e.g. IaaS, PaaS, SaaS,
pricing, cloud monitoring, etc. An extension can use or extend
other extensions, e.g., SaaS running on PaaS deployed on IaaS
implying that the SaaS extension uses the PaaS extension,
which needs the IaaS extension. To make a precise and correct
use of these informal use/extend dependencies in OCCI archi-
tectures the OCCI Core Model needs a precise and rigorous
definition of the notion of OCCI extensions.

5) Configuration concept undefined: The concept of
OCCI configurations is not explicitly defined in OCCI spec-
ifications. A configuration is an abstraction of an OCCI-
based running system, and is composed of resource and
link instances. A configuration must explicitly state which
extensions it uses. Modeling a configuration offline could
allow designers to think about and analyse their cloud systems
without requiring to deploy them actually in the clouds.
Therefore the OCCI Core Model needs a precise and rigorous
definition of the notion of OCCI configurations.

The next section presents how these five limitations are
addressed in our precise metamodel for OCCI.

III. OCCIWARE METAMODEL

Our precise metamodel for OCCI, named OCCIWARE
METAMODEL, is based on the Eclipse Modeling Framework
(EMF). We have chosen EMF as this is the leading meta-
modeling framework, offering a plethora of metamodeling
technologies such as Ecore to encode the structure of meta-
models, OCL to encode the semantics of metamodels, to cite
a few. The static semantics of our OCCIWARE METAMODEL
is rigourously defined using OCL, which is widely accepted
for modeling semantics in UML and EMF, and is complete in
order to help reproducibility of our contribution (see Section
Auvailability). In the following OCL snippets are contained into
simple frames and are as concise as possible to help com-
prehension and readability. We only use five OCL keywords:
context gives the context in which an OCL snippet applies,
def introduces a shortcut for an OCL expression, inv defines
an invariant that must be always true, let introduces a local
shortcut, and self refers to the current object on which an OCL
expression is evaluated. The name of invoked OCL operations
is self explained.

A. Precise metamodel

This section addresses Drawback aka OCCI’s model
being informal, by introducing our Ecore package and defining
the static semantics of OCCI basic core concepts with five
OCL invariants and four OCL definitions.

The structure of OCCIWARE METAMODEL is encoded
as an Ecore package as it is illustrated in Fig. 2] Classes
with a white background and their references in black en-
code the OCCI Core Model as defined in Section [II] and
illustrated by Fig. The static semantics of the OCCI
built-in type classification system is rigourously defined in
Section The EDataType class, the three String,
Number, and Boolean data types, and the type reference
in the orange color model our extensible data type system

& URI

] Category

java.lang. String

T term : String

[0..%] attributes

E Attribute |

' name : String
o mutable : Boolean = false

& scheme : URI

1
o fitle : String

[EDataType IZ||

O senalizable : EBoclean = true |

!
= required : Boolean = false |
= default : String

:F-‘ = description : String N
5 5tring
[| Extension e g g
& Number
int
H Kind N E Action H Mixin = Boolean
i 0..*] acti
[0..%] actions [0..*] actions |’ e
0..1] parent
[0.1] p [0.7] applies [0..%] depends
[1..1) kind [0..] mixins
[0..*] entities [0..*] entities
[AttributeState —
S —— | | Entity
1 - N
Configuration Resource [1.-1] target Link
g

|L.1] source [0.*] links

Fig. 2. Ecore diagram of OCCIWARE METAMODEL

for OCCI attributes and are discussed in Section [II=Cl The
Extension class and its references drawn in red model
the concept of OCCI extensions. Its static semantics is
rigourously defined in Section [[II-D] Both Configuration
and AttributeState classes and their references drawn in
green model the concept of OCCI configurations. Their static
semantics is rigourously defined in Section [[II-E

In the following we provide basic definitions related to the
OCCI Core Model: unicity of Category identity, constraints
related to the Category.scheme attribute, unicity of the
name of attributes of Category, Mixin tags and
templates, and unicity of Entity.id.

Definition. The identity of a Category instance, aka a
kind, a mixin, or an action, is equal to the concatenation of
its scheme and term attributes.

context Category def: scheme +

term

identity String =

Definition. Each Category instance must have a unique
identity.

context Category inv:
isUnique (identity)

Category . alllnstances ()—>

Definition. The scheme of each Category instance must
end with a sharp.

context Category inv:
,scheme.size ()) =

scheme . substring (scheme. size ()
R

Definition. The category of an Action instance is the
Category instance owning this actiorﬂ

context Action def: category Category =
oclContainer () .oclAsType (Category)

Definition. The scheme of an Action instance must be the
concatenation of both scheme and term of its category
and the suffix /action#.

context Action inv: scheme = category.scheme.
substring (1,category .scheme.size()—1) + */ +
category.term + ’/action#’

Definition. Each Attribute instance of a Category
instance must have a distinct name.

‘context Category inv: attributes —>isUnique (name)

Definition. A tag is a Mixin instance with no attributes
and no actions. Its depends must be tags also.

context Mixin def: isTag Boolean = attributes —>
isEmpty () and actions —>isEmpty () and depends—>
forAll (isTag)

Definition. A template is a Mixin instance with all
attributes must have a default value, and all its
depends mixins must be tags or templates.

3oclContainer () is a standard OCL operation returning the owner of
the invoked object, here the object owning the action, and oc1AsType () is
a standard OCL operation to cast an object to a given class.

context Mixin def: isTemplate Boolean = attributes
—>forAll(default <> null) and depends—>forAll(
isTag or isTemplate)

Definition. The kind of a Resource instance must inherit
from the resource kind instance directly or transitively.

Definition. Each Entity instance must have a unique id.

context Resource inv:
k | k.identity =
core#resource ’)

kind—>closure (parent)—>exists (
*http ://schemas.ogf.org/occi/

context Entity inv:

id)

Entity . alllnstances ()—>isUnique (

B. Precise type classification system

This section addresses Drawback aka imprecise type
classification system, by defining the static semantics of the
OCCI built-in type classification system with eight OCL
invariants.

Definition. The inheritance relation parent between Kind
instances must form a direct acyclic graph. A kind instance
must not inherit from itself directly or transitivelyﬂ

Definition. The kind of a Link instance must inherit from
the 1ink kind instance directly or transitively.

context Link inv: kind—>closure (parent)—>exists (k |
k.identity = ’http ://schemas.ogf.org/occi/core#
link *)

context Kind inv:

self)

parent—>closure (parent)—>excludes (

Definition. Each Kind instance must inherit from the
entity kind instance directly or transitively. The entity
kind instance is the root of the hierarchy of Kind instances.

context Kind inv: self—>closure (parent)—>exists(k |
k.identity = ’“http ://schemas.ogf.org/occi/core#
entity > and k.parent = null)

Definition. A Kind instance must not overload an inherited
attribute.

context Kind inv: attributes .name—>excludesAll(
parent—>closure (parent). attributes .name)

Definition. The inheritance relation depends between
Mixin instances must form a direct acyclic graph. A mixin
instance must not inherit from itself directly or transitively.

context Mixin inv:
excludes (self)

depends—>closure (depends)—>

Definition. A Mixin instance must not overload an inherited
attribute.

context Mixin inv: attributes.name—>excludesAll(
depends—>closure (depends). attributes .name)

Definition. The kind of an Entity instance must be com-
patible with one applies kind instance of each mixins of
this entity.

context Entity inv: mixins—>forAll(m | m.applies—>
notEmpty () implies m.applies—>exists(k | kind—>
closure (parent)—>includes (k)))

C. Extensible data type system

This section addresses Drawback aka OCCTI’s nonex-
tensible data type system, by reusing the extensible data type
system provided by EMF.

EMF provides an open and extensible data type system. This
system is composed of two classes: EDataType to model
scalar data types and EEnumType, extending EDataType, to
model enumerations. An EMF data type can be restricted with
metadata annotations to define regular expressions, the maxi-
mal number of digits of a number, the minimal and maximal
length, minimal and maximal values, or custom constraints
implemented in Java or OCL. All XSD data types are already
modeled as EMF data types. Thus the EMF data type system
meets all the requirements defined in Drawback

In the OCCIWARE METAMODEL, the type of
Attribute is modeled by the reference type from
Attribute to EDataType, and the three OCCI base data
types are modeled by String, Number, and Boolean data
types, as shown in Fig. 2] Each OCCI extension can define
its own data types.

D. Extension concept

This section addresses Drawback [[I-4] aka the vague and in-
complete extension concept, by introducing the Extension
class and defining the static semantics of the extension concept
with six OCL invariants and two OCL definitions.

Definition. Extension represents an OCCI extension, e.g.,
inter-cloud networking extension |[7|], infrastructure exten-
sion [9|], platform extension [10], application extension [10],
SLA negotiation and enforcement [11|], cloud monitoring ex-
tension [I4|], and autonomic computing extension [|16|]. As
encoded in the Ecore package shown in Fig. 2| Extension
has a name, has a scheme, owns zero or more kinds, owns
zero or more mixins, owns zero or more types, and can
import zero or more extensions.

Definition. Each Extension instance must have a unique
scheme among all Extension instances.

4In OCL, a->closure (b) returns the set { a, ab, abb, ... }.

context Extension inv:
isUnique (scheme)

Extension.alllnstances ()—>

Definition. The scheme of all kinds must be equal to the
scheme of the owning Extension instance.

context Extension inv:

scheme)

kinds—>forAll(k | k.scheme =

Definition. The kind of all resources of a configuration
must be defined by an extension that is explicitly used by
this configuration.

Definition. The scheme of all mixins must start with the
scheme of the owning Extension instance.

context Configuration inv: use—>includesAll (
resources . kind.extension)

context Extension inv: mixins—>forAll(m | m.scheme.
substring (1,scheme.size () —1) = scheme.substring
(1,scheme.size ()—1))

Definition. All the mixins of all resources of a config-
uration must be defined by an extension that is explicitly
used by this configuration.

Definition. The extension of a Category instance is the
Extension instance owning this category.

context Configuration inv: use—>includesAll(
resources . mixins.extension)

context Category def: extension Extension =
oclContainer () .oclAsType (Extension)

Definition. The following OCL function checks if a
category is defined by or is imported by this extension.

Definition. The kind of all 1inks of all resources of
a configuration must be defined by an extension that is
explicitly used by this configuration.

context Configuration inv: use—>includesAll (
resources . links .kind.extension)

context Extension def:
Category)
extension

isDefinedOrImported (category
Boolean = let e = category.
in e = self or import—includes (e)

Definition. The parent of all the kinds of an extension
must be defined or imported by this extension.

Definition. All the mixins of all 1inks of all resources
of a configuration must be defined by an extension that is
explicitly used by this configuration.

context Configuration inv: use—>includesAll(
resources . links.mixins.extension)

context Extension inv: kinds.parent—>forAll(k |
isDefinedOrImported (k))

Definition. All the depends of all the mixins of an
extension must be defined or imported by this extension.

Definition. The configuration of a Resource instance
is the Configuration instance owning this resource.

context Resource def: configuration Configuration
= oclContainer () .oclAsType(Configuration)

context Extension inv: mixins.depends—>forAll(m |
isDefinedOrImported (m))

Definition. All the applies of all the mixins of an
extension must be defined or imported by this extension.

Definition. The target resource of all 1inks of all
resources of a configuration must be a resource of this
configuration.

context Configuration
forAll(r |

inv: resources.links.target—>
r.configuration = self)

context Extension inv: mixins.applies—>forAll(k |
isDefinedOrImported (k))

E. Configuration concept

This section addresses Drawback aka the absence of a
configuration concept, by introducing the Configuration
class and defining the static semantics of the configuration
concept with six OCL invariants and one OCL definition.

Definition. Configuration represents a running OCCI
system. As encoded in the Ecore package shown in Fig.
Configuration owns zero or more resources (and
transitively 1inks), and use zero or more extensions. For
a given configuration, the kind and mixins of all its entities
(resources and links) must be defined by used extensions only.
This avoids a configuration to transitively reference a type
defined we do not know where.

Definition. The name of all attributes of any Entity
instance must be unique.

context Entity inv: attributes —>isUnique (name)

FE Summary

The OCCIWARE METAMODEL addresses the five draw-
backs identified in Section |l This metamodel encodes all the
eight core concepts of OCCI, gives a precise semantics of these
concepts (cf Drawback including the type classification
system (c¢f Drawback [I-2), reuses an extensible data type
system for typing OCCI attributes (¢f Drawback [[I-3), and
introduces two new concepts: extension (¢f Drawback [[I-4),
and configuration (¢f Drawback [[I-3). The static semantics
is expressed in OCL using twenty five invariants and seven
definitions.

IV. VALIDATION

This section presents a quantitative and qualitative evalu-
ation of the proposed metamodel. We have set up an ex-
perimental protocol to build a dataset of already published
OCCI extensions, and to analyze this dataset in respect to
five qualitative criteria: Simplicity, Consistency, Correctness,
Completeness, Usefulness. Subsection A details the methodol-
ogy we applied to build the dataset. Subsection B analyses the
dataset quantitatively and qualitatively. Subsection C discusses
the threats to the validity of our evaluation.

A. Methodology

To evaluate our metamodel, we have surveyed the literature
to find all the already published OCCI extensions. We have
identified seven distinct works related to inter-cloud network-
ing [7[], infrastructure [9]], [11]], platform [10], application [10],
service management [12f], cloud monitoring [14], and auto-
nomic computing [16] domains. As a working hypothesis, we
have assumed that all these extensions are correct as they were
already accepted through a peer-to-peer reviewing process.
Secondly, we have encoded these seven correct extensions
as instances of the OCCIWARE METAMODEL. When a work
does not provide all the information required by the OCCI core
model, e.g., a scheme, then we have set up this information
correctly, e.g., a well-formed scheme respecting our OCL
invariants. When a work is composed of several publications,
e.g., autonomic computing, we have considered the last
publication as the most relevant and up-to-date one. These
seven encodings form what we name the OCCIWARE MODEL
DATASET. To our best knowledge, this is the first world-wide
dataset of OCCI extensions. Thirdly, we have passed this
dataset through the EMF Validation Framework (EMF-VF),
which checks all the structural constraints of our Ecore meta-
model, e.qg., cardinality of Ecore attributes and references,
as well as all our OCL invariants. Then we have analysed our
dataset and the validation results produced by EMF-VFE.

B. Analysis of the results

Due to space limitations, Table I presents only a summary of
our OCCIWARE MODEL DATASET (see Section Availability
for more information). For each class of our metamodel, Table
I provides the number of instances of this class present in the
dataset, the number of OCL invariants defined in our meta-
model, and the number of OCL invariants validated to correct
by EMF-VE. The last line provides the total of OCCIWARE
objects present in the dataset, of our OCL invariants, and of
OCL invariants evaluated to t rue by EMF-VFE

This dataset covers all the five drawbacks presented in
Section and corrected by our metamodel discussed in
Section The first eight classes are related to both informal
model and imprecise type classification system (II-2))
drawbacks corrected in and respectively. The
nonextensible data type system drawback is addressed
by the use of the EDataType class (II-C). Let’s note that
all the seven extensions needed to define new data types.
The drawback of incomplete extension concept was

corrected by the addition of the Extension class (I-D).
Finally, the configuration concept undefined drawback
was corrected by the addition of both Configuration and
AttributeValue classes (IIIE). Thus our dataset validates
our metamodel quantitatively as all the classes and OCL
constraints of our metamodel are covered by the dataset.

TABLE I
SUMMARY OF THE OCCIWARE MODEL DATASET
OCCIWARE Dataset OCCIWARE EMF-VF
Class Name Instances Invariants Validations
Category 123 3 369
Attribute 147 0 0
Action 56 1 56
Kind 43 3 129
Mixin 24 2 48
Entity 61 3 183
Resource 37 1 37
Link 24 1 24
EDataType 42 0 0
Extension 7 6 42
Configuration 12 5 60
AttributeValue 157 0 0
Total 549 25 948

Analysing these statistics on our dataset provides an answer
to the following five validation questions:

1) Simplicity: Is our metamodel simple to model cloud
systems? The response to this question is yes as our metamodel
contains only twelve concepts — eight from the OCCI Core
Model and four new ones — allowing to model seven cloud
computing domains, when other concurrent cloud standards
like CIMI [19] or TOSCA [20] define a huge set of concepts,
and only addressed IaaS and cloud applications, respectively.

2) Consistency: Is our precise semantics of OCCI consis-
tent for modeling any OCCI systems? The response to this
question is yes as there are no contradictions between our
twenty five OCL invariants, else EMF-VF will not evaluate our
whole dataset as correct (last column in Table I is equals to the
number of instances multiplied by the number of invariants).

3) Correctness: Is our metamodel of OCCI correct for
modeling any OCCI system? The response to this question
is yes as our metamodel allows to correctly model all OCCI
extensions in all observable aspects.

4) Completeness: Is our precise semantics of OCCI com-
plete for modeling any OCCI systems? The response to
this question is yes as our metamodel covers all situations
encountered in the seven works proposing an OCCI extension.
Moreover, our metamodel fully covers all the OCCI core
concepts and addresses the five drawbacks presented into
Section [

5) Usefulness: Is our metamodel useful for modeling all
OCCI systems? The response to this question is yes as
our new introduced classes — Extension, EDataType,
Configuration — are useful for modeling the seven OCCI
extensions and fully address the five drawbacks (cf Section
). Moreover, our extensible data type system is useful in
all covered extensions, i.e., new EDataType instances are
created in each extension.

C. Threats to Validity

Firstly, we could miss some already published OCCI exten-
sions. These extensions could violate structural and/or OCL
constraints of our OCCIWARE METAMODEL. This is a threat
to validity of the correctness of our metamodel. Secondly, we
could incorrectly encode some already published extensions.
This could introduce a potential threat to validity on the
correctness of our metamodel. We will contact the authors
of these works to validate with them the correctness of our
encoding of their OCCI extension. Thirdly, EMF-VF could
be buggy and produce erroneous validations of incorrect
OCCIware models. However, EMF-VF is in use in industry
for several years so we can expect that EMF-VF is a reliable
framework. Fourthly, we are not certain that we have encoded
all OCL invariants covering all unexpected OCCI extensions or
configurations. This is a threat to validity of the completeness
of our metamodel.

V. CONCLUSION AND PERSPECTIVES

OCCI proposes a generic model, APIs and protocols for
managing any cloud computing resources. We argue in this pa-
per that OCCI suffers from the absence of a precise definition
of its core concepts. To address this issue, we propose a precise
semantics for OCCI implemented as an Ecore metamodel with
OCL invariants, and validate them on seven OCCI extensions
published in the literature previously. Based on the standard
OCCI Core Model [17], resource providers ambiguously de-
scribed their OCCI extensions in natural language [7]-[16].
With our metamodel, they can now precisely encode their
OCCIT extensions and verify their consistency automatically.

As future work, we will continuously complete the OCCI-
WARE MODEL DATASET with missed or new published OCCI
extensions. We will submit our metamodel to the OGF’s OCCI
working group gathering key world-wide OCCI specialists. We
will apply our metamodel to four use cases of the OCClware
project: Datacenter as a Service, Deployment as a Service, Big
Data as a Service, and Linked Data as a Service. We will define
a concrete textual and graphical language to express OCCI
extensions and configurations naturally. This language will
be implemented in the OCCIWARE STUDIO, a model-driven
tool chain providing a text editor and a graphical modeler
to think about, design, model, and analyse OCCI extensions
and configurations easily. Model-based generators will help
to generate artefacts such as various forms of documentation
as well as executable code for existing OCCI runtime frame-
works, e.g. as erocci, OCCl4Java, rOCCI, pySSF, pyOCNI,
etc. Finally, we will define an execution semantics of OCCI,
i.e. an operational semantics for Create, Read, Update, Delete
(CRUD) operations of OCCI and a behaviour semantics for
OCCI actions. This will make OCCIWARE models executable
natively inside a Models@run.time interpreter framework.

AVAILABILITY

Readers can find both our precise OCCIware
Metamodel (the Ecore package and all OCL invariants) and
OCCIware Model Dataset at the following address:

https://github.com/occiware/ecore/tree/master/metamodel/

ACKNOWLEDGMENT
This work is supported by the OCClIware (www.occiware.
org) research and development project funded by French
Programme d’Investissements d’Avenir (PIA).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, 1. Stoica et al., “A View of Cloud
Computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58,
2010.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
NIST Special Publication, vol. 800, no. 145, Sep. 2011.

[3] P. Banerjee, C. Bash, R. Friedrich, P. Goldsack, B. A. Huberman,
J. Manley, C. Patel, P. Ranganathan, and A. Veitch, “Everything as
a Service: Powering the new information economy,” IEEE Computer,
vol. 44, no. 3, pp. 36-43, 2011.

[4] J. Martin-Flatin, “Challenges in Cloud Management,” [EEE Cloud
Computing, vol. 1, no. 1, pp. 66-70, 2014.

[51 A. Edmonds, T. Metsch, A. Papaspyrou, and A. Richardson, “Toward
an Open Cloud Standard,” IEEE Internet Computing, vol. 16, no. 4, pp.
15-25, 2012.

[6] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, “CompatibleOne:
The Open Source Cloud Broker,” Journal of Grid Computing, vol. 12,
no. 1, pp. 1-17, 2013.

[71 H. Medhioub, B. Msekni, and D. Zeghlache, “OCNI — Open Cloud
Networking Interface,” in 22nd International Conference on Computer
Communications and Networks (ICCCN). 1EEE, 2013, pp. 1-8.

[8] B. Nagarajan and J. Suguna, “A Review on Cloud Data Storage in
Virtual Perspective,” International Journal of Computer Science and
Information Technologies, vol. 5, no. 5, 2014.

[9] T. Metsch and A. Edmonds, “Open Cloud Computing Interface —
Infrastructure,” Open Grid Forum, OCCI-WG, Specification Document
GFD-P-R.184, Oct. 2010.

[10] S. Yangui and S. Tata, “An OCCI Compliant Model for PaaS Resources
Description and Provisioning,” The Computer Journal, 2014, in press.
[Online]. Available: http://comjnl.oxfordjournals.org/content/early/2014/
11/19/comjnl.bxul32.abstract

[11] A. Edmonds, T. Metsch, and A. Papaspyrou, “Open Cloud Computing
Interface in Data Management-Related Setups,” in Grid and Cloud
Database Management, S. Fiore and G. Aloisio, Eds. Springer, 2011,
pp. 23-48.

[12] A. Ghrab, S. Skhiri, H. Kcener, and G. Leduc, “Towards a standards-
based cloud service manager,” in 3rd International Conference on Cloud
Computing and Services Science (CLOSER 2013), 2013.

[13] M. Mosch, S. GroB, and A. Schill, “User-controlled resource manage-
ment in federated clouds,” Journal of Cloud Computing, vol. 3, no. 1,
pp. 1-18, 2014.

[14] A. Ciuffoletti, “A Simple and Generic Interface for a Cloud Monitoring
Service,” in 4th International Conference on Cloud Computing and
Services Science (CLOSER 2014), Apr. 2014, pp. 143-150.

[15] M. Mohamed, D. Belaid, and S. Tata, “Monitoring and Reconfiguration
for OCCI Resources,” in 5th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom 2013), vol. 1, Dec.
2013, pp. 539-546.

[16] M. Mohamed, M. Amziani, D. Belaid, S. Tata, and T. Melliti, “An
autonomic approach to manage elasticity of business processes in
the cloud,” Future Generation Computer Systems, Available online
22 October 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X 14002106

[17] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open Cloud
Computing Interface — Core,” Open Grid Forum, OCCI-WG, Specifica-
tion Document GFD-P-R.183, Apr. 2011, errata update available at http:
/Iredmine.ogf.org/projects/occi-wg/repository/show ?rev=core-errata.

[18] T. Metsch and A. Edmonds, “Open Cloud Computing Interface — HTTP
Rendering,” Open Grid Forum, OCCI-WG, Specification Document
GFD-P-R.185, Apr. 2011.

[19] D. Davis and G. Pilz, “Cloud Infrastructure Management Interface
(CIMI) Model and REST Interface over HTTP,” vol. DSP-0263, May
2012.

[20] T. Binz, U. Breitenbiicher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA — A Runtime for TOSCA-based Cloud
Applications,” in Service-Oriented Computing. Springer, 2013, pp. 692—
695.

https://github.com/occiware/ecore/tree/master/metamodel/
www.occiware.org
www.occiware.org
http://comjnl.oxfordjournals.org/content/early/2014/11/19/comjnl.bxu132.abstract
http://comjnl.oxfordjournals.org/content/early/2014/11/19/comjnl.bxu132.abstract
http://www.sciencedirect.com/science/article/pii/S0167739X14002106
http://www.sciencedirect.com/science/article/pii/S0167739X14002106
http://redmine.ogf.org/projects/occi-wg/repository/show?rev=core-errata
http://redmine.ogf.org/projects/occi-wg/repository/show?rev=core-errata

	Introduction
	Background and Drawbacks on the OCCI Core Model
	Informal model
	Imprecise type classification system
	Nonextensible data type system
	Vague and incomplete extension concept
	Configuration concept undefined

	OCCIware Metamodel
	Precise metamodel
	Precise type classification system
	Extensible data type system
	Extension concept
	Configuration concept
	Summary

	Validation
	Methodology
	Analysis of the results
	Simplicity
	Consistency
	Correctness
	Completeness
	Usefulness

	Threats to Validity

	Conclusion and Perspectives
	References

