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An Efficient Blind Estimation of Carrier Frequency
Offset in OFDM Systems

Said Lmai,Student Member, IEEE, Arnaud Bourré, Christophe Laot,Senior Member, IEEE,
and Sebastien Houcke,Member, IEEE,

Abstract—In this paper, we propose a low-complexity blind
carrier frequency offset (CFO) estimation scheme, for constant
modulus (CM) signaling based orthogonal frequency division
multiplexing (OFDM) systems. Provided that the channel canbe
assumed to be slowly time-varying, subcarriers having the same
indices in two consecutive OFDM symbols will experience nearly
the same channel effect. This assumption enables us to derive a
cost function that is determined by the sum of the products of
the signal amplitudes on each pair of equivalent subcarriers from
two successive OFDM symbols. The maximization process of this
cost function makes it possible to find an appropriate estimate
of the CFO. Over frequency-selective Rayleigh fading channels,
the proposed CFO estimation method provides improved perfor-
mance over existing techniques. Moreover, in contexts of narrow-
band noise and signal gain variations, simulations demonstrate
the robustness and immunity of our scheme.

I. I NTRODUCTION

T He multicarrier modulation technique in the form of
orthogonal frequency division multiplexing (OFDM) is

an efficient scheme adopted in several standards for sys-
tems demanding high data rate. In addition to its simple
implementation when using the FFT algorithm for discrete
Fourier transform (DFT), the OFDM system is also known
for its relatively low sensitivity to time synchronizationerrors.
However, in the presence of carrier frequency offset (CFO),
orthogonality between subcarriers is quickly destroyed and
inter-carrier interference (ICI) arises, resulting in biterror rate
performance loss. CFO is mostly due to transmitter-receiver
relative movement, channel variability and the imperfect align-
ment between local transmitter and receiver oscillators.

Several CFO estimation techniques have been proposed in
the literature. They are either data-aided [1]–[4] or simply
blind [5]–[10]. This second category, also referred to as non-
data-aided, may rely on inserting null subcarriers (e.g. [5]
and references therein) and is then power-efficient, or can be
bandwidth-efficient in the case where the OFDM system is
fully loaded. Additionally, [11]–[15] have proposed estimators
operating over post-DFT signal. In [12], the authors assume
that the channel response on two adjacent subcarriers remains
practically unchanged. Therefore, over each OFDM symbol,
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they proceed by using the power difference minimization
between two neighboring subcarriers to develop an estimator
adapted to constant modulus (CM) signaling. The same authors
introduced in [13] another estimator that exploits the slow
channel changes in time domain over two consecutive OFDM
symbols. The differential OFDM system was the context of use
discussed in the paper [13]. The same estimator is proposed
in [15] with further developments and without the constraint
of differential modulation. As reported in [16], let PDE-F
(power difference estimator in frequency domain) and PDE-
T (its analog in time domain) denote the CFO estimators
proposed in [12] and [15], respectively. By minimizing the
power difference between all pairs of subcarriers, adjacent
subcarriers in each OFDM symbol (PDE-F) or having the same
indices in two successive OFDM symbols (PDE-T), estimation
functions are derived.

In this paper, we propose a novel, efficient blind CFO
estimator for fully loaded CM-OFDM systems. The basic
assumption used to derive the cost function is always that the
channel taps change slowly in time domain. Provided that the
channel response remains almost constant over two successive
OFDM symbols, we initially assume the minimization of the
difference in post-DFT signal amplitudes between all pairsof
subcarriers having the same indices. Analogously to PDE-F
and PDE-T, let use ADE-T refer to the proposed estimator
while it stands for amplitude difference estimator in time
domain. Using the exhaustive search method, we show that
PDE-F, PDE-T and ADE-T performance achievements are
almost identical. Likewise, the cost function obtained for
ADE-T has quasi-regular shape and is simple to implement.
It can be closely approximated by a sinusoid with a global
maximum corresponding to the desired CFO estimate value.
The low-complexity curve-fitting method as introduced by
[11] and used in [12] and [15] can be efficiently employed.
Compared to PDE-F and PDE-T, ADE-T performance is iden-
tified over frequency-selective fading channels. The realized
gain indicates the reliability of the estimate while applying
an appropriate trade-off between performance and complexity.
Moreover, ADE-T is less sensitive to noise and insensitive to
gain fluctuations as discussed in the Section III.

The remainder of the paper is structured as follows. Section
II is devoted to describing the system model, including the
CFO problem formulation. In Section III, we present the
proposed CFO estimation technique. Simulation results are
given in Section IV. Finally, Section V concludes the paper.
Throughout this paper, we denote:(.)T for complex transposi-
tion, (.)∗ for complex conjugation,(.)H for complex conjugate
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transposition,|.| for complex modulus or absolute value (of
a real),IN for N × N identity matrix, diag(.) for diagonal
matrix whose entries are the elements of(.), and:= for equal
by definition.

II. SYSTEM MODEL

Let us consider a conventional OFDM transmission sys-
tem with N orthogonal subcarriers. Thelth OFDM sym-
bol carries offN information symbols gathered as follows
dl = [d0l , d

1
l , . . . , d

N−1
l ]T , after being drawn uniformly from

a CM constellation. Then, the modulation of vectordl is
performed and the inverse-DFT (I-DFT) operation output is
ul = [u0

l , u
1
l , . . . , u

N−1
l ]T . Inserting aTcp (resp.Ncp) duration

(resp. number of samples) CP will follow and the total duration
of the obtained OFDM symbol to transmit isTt = Tu + Tcp

(resp.Nt = N + Ncp), for a useful part ofTu length and a
sampling interval ofTs =

Tu

N
. Thus, theN useful samples of

the lth baseband OFDM symbol are:

uk
l =

1√
N

N−1∑

n=0

dnl e
j2π n

N
k, k = 0, 1, . . . , N − 1 (1)

expression obtained from:

ul = Wdl, l = 1, 2, . . . (2)

where W is the N × N normalized I-DFT matrix, whose
elements areWm,n = (1/

√
N)exp(j2πmn/N) by themth row

and thenth column along withm,n = 0, 1, . . . , N − 1.
Afterwards, the signal so far constructed passes through
the multipath fading channel, having the corresponding fre-
quency responseHl = diag ([H0

l , H
1
l , . . . , H

N−1
l ]). Let ǫ

denote the introduced CFO, which is normalized with re-
spect to the subcarrier spacing (in this case1

Tu
). Thus, ǫ ∈

(−0.5, 0.5) and the resulting accumulated phase shift on the
OFDM symbol time domain samples is depicted byC(ǫ) =
diag([ej2π

ǫ
N

×0, ej2π
ǫ
N

×1, . . . , ej2π
ǫ
N

×(N−1)]). Removing the
CP is the first operation performed at reception and the
retained signal isyl = [y0l , y

1
l , . . . , y

N−1
l ]T . This received

OFDM symbol might be described as:

yl = ej2π
ǫ
N

(l−1)(N+Ncp)C(ǫ)WHldl + vl, (3)

where vl = [v0l , v
1
l , . . . , v

N−1
l ]T is the vector of white

Gaussian noise with zero mean and varianceσ2
v . Note that

the resulting common phase shift relative to thelth OFDM
symbol is given byej2π

ǫ
N

(l−1)(N+Ncp). In the case of perfect
time synchronization, CFO is estimated and then compensated
before conducting the DFT operation. In other words,ǫ is
firstly estimated bŷǫ and after that,yl is mutiplied byC(ǫ̂)∗

for CFO compensation andWH for the DFT process. As a
result, we get the vectorsl = [s0l , s

1
l , . . . , s

N−1
l ]T defined by:

sl = WHC(ǫ̂)∗yl, (4)

and thekth element is:

skl =
1√
N

N−1∑

m=0

yml e−j2πm
N

(ǫ̂+k), k = 0, 1, . . . , N − 1 (5)

where:

yml =
ej2π

ǫ
N

(l−1)(N+Ncp)

√
N

N−1∑

n=0

dnl H
n
l e

j2π n+ǫ
N

m + vml ,

m = 0, 1, . . . , N − 1

(6)

As in [12] and [15], developments hereinafter are made under
the noise-free assumption.

III. PROPOSEDCFO ESTIMATION SCHEME

At reception, a proper CFO compensation allows us to have
an ICI-free signal after the DFT operation. In terms of literary
formulation, if ǫ̂ = ǫ and sinceC(ǫ̂)∗C(ǫ) = C(ǫ)∗C(ǫ) =
WHW = IN , the resulting sequence after the DFT process
is:

sl[ǫ̂=ǫ] = Hldl. (7)

In the case of CM signaling, i.e.|dkl | = 1 and trying to
focus on the amplitudes, the elements of the vectorsl will
be expressed as:

|skl | = |Hk
l |, k = 0, 1, . . . , N − 1 (8)

If we assume that the channel response is slowly time-varying
and therefore|Hk

l | and |Hk
l+1| are almost equal, i.e.

|skl−1|[ǫ̂=ǫ] ≈ |skl |[ǫ̂=ǫ], (9)

then, to estimate the value ofǫ, we initially propose the
following cost function:

Ji(ǫ̃) =

M∑

l=1

N−1∑

k=0

(|skl | − |skl−1|)2. (10)

CFO is assumed to remain constant overM contiguous
OFDM symbols andJi(ǫ̃) should be minimized with respect
to parameter̃ǫ, which is the trial value ofǫ. Thereby:

ǫ̂ = arg min
ǫ̃∈(−0.5,0.5)

Ji(ǫ̃). (11)

However, the two terms
∑N−1

k=0 |skl |2 and
∑N−1

k=0 |skl−1|2 are
independent ofǫ̃ and ǫ (see Appendix A for the proof).
Consequently, minimizing (10) is reduced to maximizing the
following final cost function with respect tõǫ:

Jf (ǫ̃) =

M∑

l=1

N−1∑

k=0

|skl ||skl−1|, (12)

so that we can deduce the CFO estimate valueǫ̂.
It is worth noting that, if we assume the OFDM symbol

energy (
∑N−1

k=0 |skl |2) to be almost insensitive to the Doppler
effect, maximizing (12) could be seen as the maximization
of the signal-to-interference-and-noise ratio (SINR) as intro-
duced in [14]. Indeed, to estimate the CFO, the authors have
proposed maximizing a frequency-orientedSINR estimate.
However, our proposed scheme is based on a new approach
exploiting channel coherence in time, appropriately. The op-
timization operation of (12) might be realized using several
techniques. As the use of the gradient descent is not possible
because the function is not differentiable, exhaustive search on
a discrete set of values can be employed. However, it should be



3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
50

52

54

56

58

60

62

64

ζ

J f(ζ)

 

 

N = 64

Fig. 1. Jf versusζ in case ofN = 64.

noted that the exhaustive search will require more computation
time and complexity, thus making it impractical. Therefore,
while seeking simplicity of implementation and using the basic
assumption (9), we come up with a quasi-regular function,
which is a good approximation ofJf (ǫ̃), namely:

Jf (ǫ̃) ≈ α · cos[2π(ǫ− ǫ̃)] + β, (13)

whereα andβ are constants, and above all independent ofǫ
and ǫ̃. They have positive real values and depend only on the
frequency channel response and the sequence of information
symbols. Through simulations, we always obtain a quasi-
sinusoidal shape forJf (ζ), where ζ = ǫ − ǫ̃. The channel
coefficients used are independent complex Gaussian random
variables with zero mean and any power delay profile. In
Fig. 1, we have considered aTs-spaced10-discrete-path fading
channel, which has normally-distributed random taps with
decaying power delay profile. Furthermore, in Appendix B, we
prove that the functionJf is 1-periodic and also even. Aiming
to perform straightforward maximization operation with less
computing time, we decided to make use of the curve-fitting
process [11]. Similarly to the method description in [15], we
first evaluate function (12) at three distinctive points:ǫ̃ = a, b
and c. Then, we compute the two intermediate paramameters
γ andδ defined as:



















γ := [Jf (ǫ̃ = a)− Jf (ǫ̃ = c)] · [sin(2πb)− sin(2πc)]

+ [Jf (ǫ̃ = c)− Jf (ǫ̃ = b)] · [sin(2πa)− sin(2πc)]

δ := [Jf (ǫ̃ = b)− Jf (ǫ̃ = c)] · [cos(2πa)− cos(2πc)]

+ [Jf (ǫ̃ = c)− Jf (ǫ̃ = a)] · [cos(2πb)− cos(2πc)]
(14)

Finally, the CFO estimate is given by:

ǫ̂ =
1

2π
· arg(γ + j · δ). (15)

If we takea = −1/4, b = 1/4 and c = 0 in particular, (15)
becomes simpler.

In comparison with [14], for implementation, we use the
curve-fitting method, which is simple without any parameters
to set, unlike the early-late-gate recovery loop implemented in
[14].

The PDE (PDE-F and PDE-T) cost functions consist of
terms where the signal amplitude is raised to the4th power.

Therefore, the impact of narrow-band noise on one subcarrier,
or even more, would have a significant paralizing effect.
Concerned subcarriers’ terms will drastically reduce the con-
tribution of the other subcarriers’ terms in the sum. Thus, the
value obtained by the estimation process will be considerably
different from the real value. In contrast, (12) will experience
much less degradation in case of narrow-band noise. This is
due to the low power of all the elements of the sum. Further-
more, the gain control in digital communication systems is an
inevitable process. Inappropriate increase or decrease ingain
over one OFDM symbol period could often occur. In such
a case, the ADE-T performance is not affected. Indeed, the
desired parameter when maximizing

∑N−1
k=0 |skl ||skl−1| (12) or∑N−1

k=0 ρ|skl ||skl−1| is exactly the same, whereρ is a (non-zero)
positive real number that corresponds to the gain variationon
the lth OFDM symbol andk = 0, 1, ..., N − 1. Thus, the cost
function used is gain variation independent unlike the function
employed in [15].

IV. SIMULATION RESULTS

We consider a conventional quadrature phase-shift keying
(QPSK) OFDM system havingN = 64 subcarriers with a
cyclic prefix length ofNcp = 16. Monte Carlo simulations
were conducted on multipath Rayleigh fading channel using
106 OFDM symbols on each simulation run. The channel
varies every sampling periodTs =

Tu

N
and Jakes’ model [17] is

used to generate the fading channel coefficients.ǫ is assumed
to be uniformly distributed in the range(−0.5, 0.5) and keeps
constant over two consecutive OFDM symbols (M = 1).
It changes randomly from one pair of OFDM symbols to
the next. The channel model used is identified by five path
delays [0 Ts 2.Ts 6.Ts 11.Ts] with average power gains
[0.34 0.28 0.23 0.11 0.04]. The normalized Doppler frequency
fdTt is set to different values, wherefd designates the Doppler
frequency. The underlying OFDM system operates at a central
carrier frequency of2.6 GHz while the subcarriers’ data rate is
16.68 kb/s. The regular mean squared error (MSE) is used to
assess the ADE-T performance with respect to that of PDE-F
and PDE-T.

A. General estimator performance analysis

First, we perform the maximization process using the ex-
haustive search method with a precision of10−3 by testing
1000 equally spaced̃ǫ candidates over the range(−0.5, 0.5).
We are interested in this optimization method to get an
idea about achievement limits as a benchmark for the three
schemes in question. Fig. 2 shows the results from simulations
conducted over a frequency-selective Rayleigh fading channel
with fdTt = 0.030 and 0.042. These values correspond to
vehicle speeds greater than100 km/h. One can notice that the
three estimators display very similar levels of performance.
However, the exhaustive search method requires important
memory resources and is too time-consuming to be practical
for real-time wireless communication applications.

While being a good trade-off between performance and
complexity, the curve-fitting method described in (14) and
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Fig. 2. MSE versus theSNR using the exhaustive search method over
frequency-selective channel forfdTt = 0.030 and0.042.
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selective channel forfdTt = 0.030 and0.042.

(15) is employed since the three functions targeted for op-
timization could be approximated by classic sine curves. Note
that the exhaustive search method has involved at least333
times more operations than curve-fitting. Fig. 3 shows the
simulation results when the curve-fitting method is used for
the three schemes. The first general observation to make is
that, compared to the exhaustive search results, there is a
performance loss of approximately one decade in terms of
MSE. Nevertheless, ADE-T outperforms PDE-F and PDE-T
for both values offdTt and over the entire range ofSNRs.
The gain achieved with respect to PDE-T is less significant
than that with respect to PDE-F. In the whole subsection
coming after, the curve-fitting method will be used.

B. Estimator performance exploration in particular scenarios
of interest

Let us now consider the potential contribution of the
proposed method in another important context. Narrow-band
noise is an interesting case from a practical perspective
(cognitive radio, underwater acoustic communications,... etc).
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Fig. 4. MSE versus the signal to narrow-band noise ratio overfrequency-
selective channel forfdTt = 0.024 and0.042.

The phenomenon is even more severe when interferers’ op-
erating frequencies are constantly changing. We evaluate the
performance of the three schemes over a multipath fading
channel introducing narrow-band noise. Results are given
using MSE versus the signal-to-narrow-band-noise ratio
(SNBNR), which is the mean power of emerging narrow-
band interferer signal at the receiver. Two values of the
normalized Doppler frequency are used:fdTt = 0.024 and
0.042. Performance levels obtained are depicted in Fig. 4
and we can see clearly that the ADE-T achievement is much
greater than the other estimators.

The third scenario investigated implies operations of driving
the automatic gain control (AGC) where the amplitude of
the received signal varies over the duration of one OFDM
symbol. As indicated in the previous section, one can identify
the proposed estimator insentivity to gain changes, which is
not the case for PDE-T. In order to pinpoint this issue, we
have conducted simulations wherein we vary the gain in the
range (−3 dB , +3 dB). To compare the performance in
such situations, the metric used once more isMSE versus
the gain variation occured in dB. As demonstrated in Fig. 5
whereSNR = 15 dB, PDE-F and ADE-T are completely
independent of the gain variation, unlike PDE-T which suffers
from a penalizing sensitivity. Additionally, it is obviousthat
ADE-T outperforms PDE-F even if it is insensitive to gain
fluctuations. For the same normalized Doppler frequencies
fdTt = 0.030 and0.042, and in case ofSNR = 20 dB, the
MSE performance presented in Fig. 6 confirm the estimators’
behaviors.

V. CONCLUSION

In this paper, we presented a new method for blind
CFO estimation in full loaded CM signaling based OFDM
systems. It has been proven through numerical simulation
results that the proposed low-complexity technique outper-
forms prominent existing estimators in various situations. In
harsh time-varying propagation environments, modeled using
a frequency-selective Rayleigh fading channel with Doppler
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shift, in a narrow-band noise context and in a situation involv-
ing fluctuating signal gain, the estimator introduced achieves
very solid levels of performance. The efficiency carried out
is due to the judicious manipulation of the received signal
amplitudes to derive the appropriate cost function.

APPENDIX A

In the noise-free case, substituting (6) in (5) gives:

skl =
ej2π

ǫ
N

(l−1)(N+Ncp)

N

N−1
∑

n=0

šnl

N−1
∑

m=0

ej2π
m
N

(n+ζ−k), (16)

whereζ = ǫ− ǫ̃ and šnl := dnl H
n
l . Since we are interested in

the signal amplitude, we obtain:

N−1
∑

k=0

|skl |2 =
1

N2

N−1
∑

n1,n2=0

šn1

l šn2∗

l

×
N−1
∑

m1,m2=0

ej2π
ζ
N

pej
2π
N

(m1n1−m2n2)
N−1
∑

k=0

e−j2π k
N

p, (17)

wherep = m1 −m2. Knowing that:

N−1
∑

k=0

e−j2π k
N

p =

{

N, if p = 0

0, otherwise
(18)

(16) becomes:
N−1
∑

k=0

|skl |2 =
1

N

N−1
∑

n1,n2=0

šn1

l šn2∗

l

N−1
∑

m=0

ej
2π
N

mq, (19)

where q = n1 − n2 and m1 = m2 = m. Accordingly,∑N−1
k=0 |skl |2 is completely independent of̃ǫ andǫ.

APPENDIX B

From (16) we have:

N |skl | =
∣

∣

∣

∣

∣

N−1
∑

n=0

šnl

N−1
∑

m=0

ej2π
m
N

(n+ζ−k)

∣

∣

∣

∣

∣

. (20)

Therefore:

N2|skl ||sk∗l−1| =
∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1

N−1
∑

m1=0

(ej
2π
N

(n1+ζ−k))m1

×
N−1
∑

m2=0

(e−j 2π
N

(n2+ζ−k))m2

∣

∣

∣

∣

∣

.

(21)

Now, since:
N−1
∑

m1=0

(ej
2π
N

(n1+ζ−k))m1 = (−1)n1−keπζ(1− 1
N

)

× ejπ(n1−k)(1− 1
N

) sin(πζ)

sin[ π
N
(n1 + ζ − k)]

,

(22)

and ejπ(n1−n2) = ejπ(n1+n2) = (−1)n1+n2 = (−1)n1−n2 , (21)
can be expressed as:

N2|skl ||sk∗l−1| =
∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
jπ

n1−n2
N

× sin2(πζ)

sin[ π
N
(n1 + ζ − k)] sin[ π

N
(n2 + ζ − k)]

∣

∣

∣

∣

∣

.

(23)

Hence, forM = 1 (12) might be formulated as:

Jf (ζ) =

N−1
∑

k=0

|skl ||skl−1| =
1

N2

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1

× ejπ
n1−n2

N
sin2(πζ)

sin[ π
N
(n1 + ζ − k)] sin[ π

N
(n2 + ζ − k)]

∣

∣

∣

∣

∣

.

(24)

Now, let’s show thatJf (ζ) is periodic with period1. From
(24) we have:

Jf (ζ + 1) =
1

N2

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
jπ

n1−n2
N

× sin2(πζ + π)

sin[ π
N
(n1 + ζ − (k − 1))] sin[ π

N
(n2 + ζ − (k − 1))]

∣

∣

∣

∣

∣

.

(25)
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which can be expressed otherwise whenk′ = k − 1 as:

Jf (ζ + 1) =
1

N2

N−2
∑

k′=0

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
jπ

n1−n2
N

× sin2(πζ)

sin[ π
N
(n1 + ζ − k′)] sin[ π

N
(n2 + ζ − k′)]

∣

∣

∣

∣

∣

+
1

N2

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l

× šn2∗

l−1e
jπ

n1−n2
N

sin2(πζ)

sin[ π
N
(n1 + ζ + 1)] sin[ π

N
(n2 + ζ + 1)]

∣

∣

∣

∣

∣

.

(26)

Since:

sin[
π

N
(n1 + ζ + 1)] sin[

π

N
(n2 + ζ + 1)]

= sin[
π

N
(n1 + ζ − (N − 1))] sin[

π

N
(n2 + ζ − (N − 1))] (27)

We obtain:

Jf (ζ + 1) =
1

N2

N−1
∑

k′=0

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
jπ

n1−n2
N

× sin2(πζ)

sin[ π
N
(n1 + ζ − k′)] sin[ π

N
(n2 + ζ − k′)]

∣

∣

∣

∣

∣

,

(28)

and therefore:Jf (ζ+1) = Jf (ζ). Besides, let’s prove thatJf (ζ)
is even. Still from (24) we get:

Jf (−ζ) =
1

N2

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
jπ

n1−n2
N

× sin2(πζ)

sin[ π
N
(−n1 + ζ + k)] sin[ π

N
(−n2 + ζ + k)]

∣

∣

∣

∣

∣

(29)

knowing that:

sin[
π

N
(−n1 + ζ + k)] sin[

π

N
(−n2 + ζ + k)]

= sin[
π

N
(n′

1 + ζ − k′)] sin[
π

N
(n′

2 + ζ − k′)], (30)

wheren′

1 = N−1−n1 , n′

2 = N−1−n2 andk′ = N−1−k . The
term ejπ

n1−n2
N in (24) and (29) does not have any significant

weight at all, since we can for instance take in the following
equalities:

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
jπ

n1−n2
N

× sin2(πζ)

sin[ π
N
(n1 + ζ − k)] sin[ π

N
(n2 + ζ − k)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N−1
∑

n1=0

N−1
∑

n2=0

šn1

l šn2∗

l−1e
j π
N

(n1−n2+NN+1)

× sin2(πζ)

sin[ π
N
(n1 + ζ − k)] sin[ π

N
(n2 + ζ − k)]

∣

∣

∣

∣

∣

,

(31)

wheren1 −n2 +NN+1 ≈ NN+1 and |ejπNN+1 | = |ejπNN | = 1.
We can conclude that:Jf (−ζ) ≈ Jf (ζ).
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