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Abstract: In this paper we present a novel semi-implicit time-discretization of the level set method
introduced in [8] for fluid-structure interaction problems. The idea stems form a linear stability analy-
sis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter
operating as a post-processing on the level set function. It applies to multiphase flows driven by surface
tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stabil-
ity constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It
is validated through comparisons with the original explicit scheme and refinement studies on two and
three-dimensional membranes.

1. Introduction

Level set methods are classical methods to capture Lagrangian interfaces moving in complex flows [21]. In
these methods the interface is implicitly given by the zero level of a function which is solution to an advection
equation. Level set methods offer an alternative to interface capturing methods where interfaces are explicitly
parametrized and followed along the flow. Compared to interface capturing methods one advantage of level set
methods is their simplicity, since they only rely on the discretization of an advection equation, and their ability
to follow topology changes of the interfaces. The accuracy of these methods, and in particular the fulfillment of
conservation properties, rely on that of the discretization method used to solve the advection equation.

In Computational Fluid Dynamics, since the pioneering works [29, 6] level set methods are mostly applied
to compute multiphase flows. In that case the level set function is used to compute geometrical information
on the interface, typically the local normal and curvature, which allows to express capillary forces. Surface
advection can be coupled to the interface motion [32]. Several recent works, often combining level set methods
with Volume-of-Fluid (VOF) methods, have in particular been devoted to improve the accuracy of the curvature
evaluation [24, 14] or to couple .

Level set methods have been extended to account for elastic forces in fluid-structure interaction problems
involving elastic membranes in three dimensions. Originally devised for membrane elasticity given by area
changes in incompressible flows [7, 8], these methods were further extended to the case of compressible flows
[1] and to handle general 3D elasticity [9]. They were implemented for biological applications in the context of
three-dimensional finite-difference methods [17, 5] or two-dimensional finite-element methods [25]. The case of
elastic membranes with elasticity governed by shear and area change was recently studied in [19].

Whether based on front capturing Immersed Boundary Methods [22, 23] or level set methods, stability issues
often arise in the calculation of multiphase flows and fluid-structure interaction problems and impose some
strong constraints on the size of the time-steps.

The stability of the Immersed Boundary Method is well known to be sensitive to the stiffness of the elastic
force applied on the structure when it is discretized in an explicit fashion. In order to remove the time step re-
strictions, several works have been dedicated to the derivation and study of implicit schemes [31, 18, 28, 27, 20].
However these schemes seem to be of limited practical interest because of the large computational cost related
to the iterative resolution of a strongly non-linear coupling at each time step. The definition of semi-implicit or
approximate implicit schemes leads to more realistic methods (see [31, 28, 27, 10, 11] and [2] and the references
therein for details about such schemes). The search for an unconditionally stable scheme for curvature forces
in an immersed boundary framework was already addressed specifically for the calculation of surface tension
[15, 30].

There exist several ways to carry out the stability analysis of time-discretization schemes of fluid-structure
coupling methods. Among them is the control of discrete energy conservation [2, 20], which is based on the
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corresponding physical property of the continuous underlying models. Another way is to perform a linear
analysis near an equilibrium state of the system. In [28, 27] this approach enables the authors to show that the
instability is in particular enhanced by the combination of a small fluid viscosity and a strong elastic force.

In the unpublished work [3] stability conditions on the time step for explicit and implicit discretization,
schemes were derived for a linearized version of a simplified one-dimensional version of the level set model [8].
Despite the simplifications involved in this analysis, this ad-hoc model enabled us to exhibit relationships between
the fluid viscosity, the elastic force, and the numerical parameters. The results allowed to recover already known
results obtained by Brackbill et al. [4] and Vigneaux [12, 13], depending on the physical parameters range. Like
in these references, explicit schemes were shown to require time step values of the order of λ∆x3/2, where λ
is the stiffness of the membrane, in fluid-structure interaction problems, or the surface tension in multiphase
flows.

In the present work, we introduce a new semi-implicit scheme, which is linearly unconditionally stable and
applies both to multiphase flows and to fluid-structure interaction problems. Our strategy consists of solving a
diffusion equation to predict the interface position where curvature or elastic forces are computed.

An outline of this paper is as follows. In section 2 we recall the approach defined in [7, 8] to derive level set
methods for immersed membranes. In section 3 we summarize the stability analysis performed in [3]. In section
4 we derive our semi-implicit scheme and shows its unconditional stability. Section 5 is devoted to numerical
illustrations of the stability and accuracy of this semi-implicit scheme, both for capillary flows and fluid-structure
interactions. Finally, we draw in section 6 some conclusions and indicate directions for future work.

2. Level set methods for fluid-structure interaction

We recall here the derivation of Eulerian level set methods for the fluid structure interaction resulting form an
elastic membrane immersed in and incompressible fluid [7, 8]. We consider a computational domain Ω in Rd
with d = 2 or d = 3, filled with a viscous incompressible and homogeneous fluid of density ρ > 0 and viscosity
µ > 0, containing an elastic membrane Γe(t). For simplicity here we assume that he membrane is massless,
and external forces are neglected. We also assume that this membrane only reacts to area changes, but not to
tangential shear. This is for instance the case for models of membrane cells considered in biophysics, such as
phospholipidic bilayers.

We introduce a level set function φ initialized as the signed distance to the initial membrane Γe(0), and such
that :

Γe(t) = {x ∈ Ω, φ(t, x) = 0}, ∀t ∈ [0, T ].

In the case when the tangential shear does not create a stress, it can be shown that the surface elastic energy
for this membrane can be approached by the volume energy:

Eε(φ) =

∫
Ω

Ee(|∇φ|)
1

ε
ζ(
φ

ε
)dx (1)

where ε > 0 is a small numerical parameter related to interface smoothing, and ζ a mollifying 1D function of
total integral equal to 1. The elastic force that results from this energy is given by

Fε[φ] =

{
P∇φ⊥(∇[E′(|∇φ|)])− E′(|∇φ|)κ(φ)

∇φ
|∇φ|

}
|∇φ|1

ε
ζ(
φ

ε
), (2)

where P∇φ⊥ := I− ∇φ⊗∇φ|∇φ|2 is the projector on the tangent plane, and νe and κ(φ) are respectively the stiffness
coefficient and the mean curvature of Γe(t). The Eulerian level set model then reads:

ρ (∂tu+ u · ∇u) +∇p− µ∆u = Fε

div u = 0

∂tφ+ u · ∇φ = 0

(3)

We will focus on two particular cases of stress-strain relationship, corresponding to quadratic or linear energy:

E′e(r) = νe(r − 1) or E′e(r) = νe (4)

The first case corresponds to linear elasticity while in the second case, there is no tangential component in the
force Fε which reduces to the usual capillary force on the interface between two fluids.
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3. A stability analysis for explicit and implicit coupling schemes

From now on we assume without a loss of generality that the cut-off function ζ is an even function, with support
in [−1,+1], and that ζ(r) is a decreasing function of r > 0. For simplicity we will also set ρ = 1, but the general
case can be recovered by substituting µ and νe in by µ/ρ and νe/ρ in (3) and (4)

We summarize in this section the analysis performed in [3]. We consider the case of a linear potential. A
one-dimensional version of the model (3) is given by :∂tu+ u∂xu− µ∂2

xxu = −νe ∂2
xxφ∂xφ

1

ε
ζ

(
φ

ε

)
,

∂tφ+ u∂xφ = 0.
(5)

We investigate the stability of this system around the trivial stationary solution (u, φ) given by u(x) = 0, φ(x) =
x. The linearized model is: 

∂u

∂t
− µ∂

2u

∂x2
= −νe

ε

∂2φ

∂x2
on [0, T ]× R,

∂tφ+ u = 0 on [0, T ]× R,
u(0, x) = f(x), φ(0, x) = g(x) on R.

(6)

Equivalently, φ verifies a strongly damped wave equation:

∂2φ

∂t2
− µ ∂3φ

∂x2∂t
− νe

ε

∂2φ

∂x2
= 0.

We consider a classical centered discretization of second order derivatives, with grid size ∆x. The time step is
denoted by ∆t and we set tn = n∆t.

The natural explicit scheme consists of first computing the velocity at time tn+1 by solving the Navier-Stokes
equations in [tn, n+ 1] with the value of φ at time tn, and then use this velocity to advect the level-set function.
This gives the following equations:

un+1
j − unj

∆t
− µ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= −νe

ε

φnj+1 − 2φnj + φnj−1

(∆x)2
,

φn+1
j − φnj

∆t
+ un+1

j = 0,

u0
j = fj , φ0

j = gj .

(7)

We now classically assume that ε is proportional to ∆x and for simplicity we set ε = ∆x. The stability condition
obtained in [3] for this scheme then reads:

∆t .
µ∆x + max(µ,

√
νe ∆x) ∆x

νe
. (8)

In the limit of inviscid fluids, for which µ = 0, or for high Reynolds numbers of surface tension coefficient, we
recover the condition of Brackbill et al. [4], namely

∆t .
∆x

3
2

√
νe
. (9)

Alternatively when the fluid is viscous enough and/or the surface tension coefficient small enough, then the
condition reduces to the one derived by Galusinski and Vigneaux [12],

∆t . µ
∆x

νe
. (10)

This kind of mixed stability condition was also obtained in [13], but our linear analysis seems more elementary,
and extends to the following implicit scheme :

un+1
j − unj

∆t
− µ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= −νe

ε

φn+1
j+1 − 2φn+1

j + φn+1
j−1

(∆x)2
,

φn+1
j − φnj

∆t
+ un+1

j = 0,

u0
j = fj , φ0

j = gj .

(11)
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For this scheme one can prove unconditional stability.
Observe that for the real fluid-structure coupling problem, the implicit scheme corresponding to (11) is nearly

intractable since it would involve the resolution of a fully nonlinear problem coupling the Navier-Stokes equations
with nonlinear source term and a transport equation. By contrast, we propose in next section a semi-implicit
scheme which is unconditionally stable at negligible additional cost compared to the explicit scheme. In [3] the
validity and limitations of the above analysis are illustrated by numerical experiments on oscillating droplets.

4. A semi-implicit time-discretization

To derive our semi-implicit method, we first start with the 1D toy problem that allowed to analyze the linear
stability of the explicit and implicit schemes. We then consider the case of flows driven by surface tension, which
corresponds to a linear elastic potential, and finally the general level set model.

4.1. Linear model

We start from the system (3) and its implicit time-discretization coupled with a centered finite-difference
approximation of the Laplace operator (11). We can rewrite the first equation of (11) as

un+1 = un − νe ∆t

ε
∆hφ

n+1 + µ∆t ∆hu
n+1, (12)

where ∆hφj = (φj−1 − 2φj + φj+1) ∆x−2. We then keep the two first terms in the right hand side above and
use that as an approximation of un+1 in the second equation of (11). We obtain a prediction ψn+1 of φn+1 as
the solution of

ψn+1 − φn

∆t
− νe ∆t

ε
∆hψ

n+1 = −un (13)

This is a classical implicit Euler scheme for a diffusion equation, which is now uncoupled to the calculation of
un+1. It can be solved in an efficient way on Cartesian grids using fast (FFT-based) Poisson solvers. We use this
prediction to compute the source term of the first equation (in u) and then use the computed un+1 to advect
φn, which produces φn+1. The semi-implicit scheme finally reads :

ψn+1−φn

∆t − νe ∆t
ε ∆hψ

n+1 = −un
un+1 − un

∆t
− µ∆hu

n+1 = −νeε ∆hψ
n+1

φn+1 − φn

∆t
+ un+1 = 0

u0
j = fj , φ0

j = gj

(14)

Proposition 1. The semi-implicit scheme (14) is unconditionally stable.

Proof. We classically use Fourier expansions of the grid values (unj )j∈Z, (φnj )j∈Z, (ψnj )j∈Z :

unj =
∑
k∈Z

ûn(k)e2iπkj∆x, φnj =
∑
k∈Z

φ̂n(k)e2iπkj∆x ψnj =
∑
k∈Z

ψ̂n(k)e2iπkj∆x.

We set βk =
4νe ∆t

∆x3
sin2 (πk∆x) (recall that we assumed ε = ∆x) and δk =

4µ∆t

(∆x)2
sin2 (πk∆x) and obtain

from (12),(13)

ψ̂n+1(k)(1 + ∆tβk) = φ̂n(k)−∆t ûn(k) (15)

ûn+1(k)(1 + δk) = ûn(k) + βkψ̂
n+1(k) (16)

φ̂n+1 = φ̂n(k)−∆t ûn+1(k) (17)
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or, equivalently, by substituting the first equation into the second one,

Ak

(
ûn+1(k)

φ̂n+1(k)

)
= Bk

(
ûn(k)

φ̂n(k)

)
where

Ak =

(
1 + δk 0

∆t 1

)
Bk =

(
1

1+∆t βk

βk

1+∆t βk

0 1

)
.

The eigenvalues λ1, λ2 of A−1
k Bk are the solutions of det(A−1

k Bk − λI) = 0 or equivalently det(Bk − λAk) = 0
that is ∣∣∣∣ 1

1+∆t βk
− λ(1 + δk) βk

1+∆t βk

−λ∆t 1− λ

∣∣∣∣ = 0,

or equivalently ∣∣∣∣1− λβ′kδ′k βk
−λ∆t 1− λ

∣∣∣∣ = 0,

where we have set β′k = 1 + ∆tβk, δ
′
k = 1 + δk. This gives the following equation verified by λ1, λ2:

β′kδ
′
kλ

2 − λ[1 + β′kδ
′
k −∆tβk] + 1 = 0.

The product λ1λ2 is equal to 1/(β′kδ
′
k) < 1. If the eigenvalues are complex conjugate, their modulus is therefore

less than 1. Their sum has the sign of 1 + β′kδ
′
k −∆tβk = 2 + δk + ∆tβkδk > 0. As a result if λi are real they

are both positive. Moreover we can easily derive the following bounds

λi ≤
1 + β′kδ

′
k −∆tβk +

√
(1 + β′kδ

′
k −∆tβk)2 − 4β′kδ

′
k

2β′kδ
′
k

≤
1 + β′kδ

′
k +

√
(1 + β′kδ

′
k)2 − 4β′kδ

′
k

2β′kδ
′
k

≤
1 + β′kδ

′
k +

√
(1− β′kδ′k)2

2β′kδ
′
k

= 1.

The spectral radius of A−1
k Bk is therefore less than one and the scheme is unconditionnally stable.

One may wonder if the diffusion coefficient for φ used in (14) is optimal. If we carry out the same analysis
using θβk, with θ ≤ 1, instead of βk in (15) then we obtain a similar equation in λ:

β′kδ
′
kλ

2 − λ[1 + β′kδ
′
k − (2− θ) ∆tβk] + 1− (1− θ)βk ∆t = 0.

with the modification β′k = 1 + ∆t θβk. A short computation shows that the product of roots is still less than
one if θ ≥ 1

2 . For smaller values of θ, instability could arise for βk∆t > 2+δk
1−(2+δk)θ , which for inviscid flows gives

∆t >
√

2
(1−2θ)νe

∆x
3
2 . Even in the case θ ≥ 1

2 , the roots are not complex conjugate for 1 − (1 − θ)βk ∆t < 0,

which can hold for some k if ∆t > ∆x
3
2√

(1−θ)νe
. Then their sum has the same sign as 2 + δk + (θ(1 + δk)− 1)βk ∆t

which could become negative for ∆t large enough provided that θ < 1
1+δk

. For high Reynolds fluids, that is
when δk � 1, or even for non viscous fluids where δk = 0, we therefore observe a change of behavior for θ < θc
with θc close or equal to 1. This would lead to restrictions on time step of the same nature as in (9).

While this observation does not formally prove a change toward conditional stability, it at least gives some
solid grounds to use as minimal diffusion coefficient the coefficient given in (14). Conversely, we will see in the
sequel that taking a diffusion coefficient too large creates a gap between the filtered and the advected level set
which can produce inconsistent results.

Remark 1. One can also consider the following variant, along the lines of the Crank-Nicolson method, of the
semi-implicit scheme: 

un+1 − un

∆t
− µ

2 ∆hu
n+1 − µ

2 ∆hu
n = −νeε ∆hφ

n+ 1
2

φn+1 − φn

∆t
+ 1

2 (un+1 + un) = 0

u0
j = fj, φ0

j = gj

(18)
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Using the following approximations (well justified for small µ/νe):

φn+ 1
2 ≈ 1

2
(φn+φn+1) =

1

2
(φn+φn−∆t

2
(un+1+un)) ≈ φn−∆t

4
(un−νe ∆t

ε
∆hφ

n+ 1
2 +un) = φn−∆t

2
un+

νe ∆t2

4ε
∆hφ

n+ 1
2 ,

this provide another semi-implicit scheme which amounts to solving at each iteration the uncoupled system:
ψn+ 1

2 − νe ∆t2

4ε ∆hψ
n+ 1

2 = φn − ∆t
2 u

n

un+1 − µ∆t
2 ∆hu

n+1 = un + µ∆t
2 ∆hu

n − νe ∆t
ε ∆hψ

n+ 1
2

φn+1 = φn − ∆t
2 (un+1 + un)

u0
j = fj, φ0

j = gj

(19)

The same analysis as above leads to the following matrices:

Ak =

(
1 + δk 0

∆t
2 1

)
Bk =

( 1−∆t βk

1+∆t βk
− δk 4βk

1+∆t βk

−∆t
2 1

)
.

with βk =
νe ∆t

∆x3
sin2 (πk∆x), and the equation on λ:

δ′kβ
′
kλ

2 − 2(1− βk ∆t)λ+ (1− δk)β′k = 0.

The product of the roots is thus 1−δk
1+δk

∈ [0, 1]. In the case of inviscid flows, this ratio is close to 1 and the
discriminant is −16βk ∆t < 0. The scheme is therefore unconditionally stable.

4.2. The case of surface tension

We now consider the fluid-structure interaction model when the elastic force is first reduced to a surface tension.
This corresponds to E′(r) = νe in (4) and the model reads:

∂tu+ u · ∇u− µ∆u+∇p = −νeκ(φ)∇φ1

ε
ζ

(
φ

ε

)
,

div u = 0,

∂tφ+ u · ∇φ = 0.

(20)

A fully implicit time-discretization of the (u, φ) coupling in the above system would read
un+1 − un

∆t
= −νeκ(φn+1)∇φn+1 1

ε
ζ

(
φn+1

ε

)
+R(un, un+1),

div un+1 = 0,
φn+1 − φn

∆t
+ un+1 · ∇φn+1 = 0,

(21)

where R(un, un+1) contains the time discretization of the inertial and diffusion terms in the Navier-Stokes
equations. We further assume that φ is a signed distance function. In that case we have κ(φ) = ∆φ. To
derive our semi-implicit method we replace ζ

(
φn+1/ε

)
by is maximal value that we will assume without loss of

generality equal to 1. If we discard the term R in the right hand side of the equation for u in (21) we obtain
the following O(∆t) approximation of un+1

ũn+1 = un − νe
ε

∆t∆φn+1∇φn+1. (22)

Inserting this expression in the advection equation for φ in (21) we obtain

φ̃n+1
j − φnj

∆t
− νe

ε
∆t∆φ̃n+1 = −un · ∇φn. (23)

The complete semi-implicit time-discretization scheme is thus given at each time step by the following sub-steps:
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Step 1: implicit diffusion on φ
φ̃n+1 − φn

∆t
− νe

ε
∆t∆φ̃n+1 = −un · ∇φn (24)

Step 2: explicit time discretization of the Navier-Stokes equation :
un+1 − un

∆t
− µ∆un+1 + un · ∇un +∇p = −νeκ(φ̃n+1)∇φ̃n+1 1

ε
ζ(
φ̃n+1

ε
) ; div un+1 = 0 (25)

Step 3: explicit advection for φ :
φn+1 − φn

∆t
+ un+1 · ∇φn = 0 (26)

This system has to be complemented by the appropriate boundary conditions for the velocity and level set
functions. Like in the previous section, the semi-implicit character of the scheme only relies on an implicit
time-stepping of a linear diffusion equation.

Several remarks on this scheme are in order.
Equation (24) acts as a filtering on the advection equation. The diffusion coefficient is proportional to ∆t /ε.

In the regime we have in view where the Navier-Stokes equation are dominated by inertia terms the time-step
will be bound by CFL conditions. If the interface width is proportional to the grid size, as it is often the case
in practice, this diffusion coefficient is thus of order 1.

Next, it is important to observe that the original advected equation is not modified which is essential to
preserve volume and prevents interface smearing. The filtering on the level set function acts only as a post-
processing of φ used to calculate the surface tension. It interferes with the advection equation only indirectly
through the computation of the velocity.

Finally one may also consider a semi-implicit scheme by omitting the right hand side of (24). Similarly, in
the case when φ is not a signed distance function, one can expand the curvature, following [26], as:

|∇φ|κ(φ) = ∆φ− ∇φ
|∇φ|

· ∇|∇φ|.

This expression gives an extra source term in the right hand side of (24) in step 1. These two options have been
tested. They do not change significantly the results.

4.3. The semi-implicit scheme in the general case

We finally turn to the general case of an elastic interface immersed in an incompressible fluid. We recall the
expression of the elastic force as it appears in the right hand side of the Navier-Stokes equation, expressed in
terms of tangential and normal components:

Fε[φ] =

{
P∇φ⊥(∇[E′(|∇φ|)])− E′(|∇φ|)κ(φ)

∇φ
|∇φ|

}
|∇φ|1

ε
ζ(
φ

ε
)

where E′(r) = λ(r− 1) and P∇φ⊥ is the projector on the tangent plane. We proceed like in the previous section
and start from an implicit time-stepping for the Navier-Stokes equation

un+1 − un

∆t
= Fε[φ

n+1] +R(un, un+1),

div un+1 = 0,
φn+1 − φn

∆t
+ un+1 · ∇φn+1 = 0,

(27)

from what we deduce the following prediction of un+1 :

ũn+1 = un −∆tFε[φ
n+1].

Upon inserting this expression in the advection equation for φ one observes that the tangential component of
the force does not give any contribution and we are left with

φ̃n+1
j − φnj

∆t
− E′(|∇φn|)∆t

ε
∆φ̃n+1 = −un · ∇φn. (28)

The semi-implicit method therefore goes along the following sub-steps:
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Step 1: implicit diffusion on φ
φ̃n+1 − φn

∆t
− E′(|∇φn|)∆t

ε
∆φ̃n+1 = −un · ∇φn (29)

Step 2: explicit time discretization of the Navier-Stokes equation
un+1 − un

∆t
− µ∆un+1 + un · ∇un +∇p = Fε[φ̃

n+1] ; div un+1 = 0 (30)

Step 3: explicit advection for φ
φn+1 − φn

∆t
+ un+1 · ∇φn = 0 (31)

As in the case of free surface flows with surface tension, we emphasize the fact that the filtering step on φ acts
only as a post-processing used to compute forces and does not interfere directly with the advection of the level
set function.

Unlike in the previous cases, the diffusion equation in step 2 is not a constant coefficient equation. To use
fast Poisson solvers one may either replace the coefficient E′(|∇φ̂

n
|) by its maximal value, or split this term

into two parts: its maximal value and the residual. The diffusion equation (30) is then replaced by

φ̃n+1 − φn

∆t
−maxE′(|∇φn|)∆t

ε
∆φ̃n+1 =

[
E′(|∇φ̂

n
| −maxE′(|∇φn|)

] ∆t

ε
∆φn − un · ∇φn (32)

for which a fast Poisson solver can be used. We observed in our tests that the first option, where the diffusion
coefficient is fixed at its maximum value, is over-diffusive and does not produce consistent results. We will come
back to this point in section 5.2. The discretization (32) was used in our 3D experiments, while in 2D we used
the original diffusion equation (29) together with a Choleski factorization at each time step.

4.4. Discretization scheme

The incompressible Navier-Stokes equation was solved using a classical projection method over a staggered
MAC mesh grid. For the Reynolds numbers considered in this paper, this solver did not introduce stability
constraints beyond the stability conditions related to the coupling with the forcing term in the right hand side
of the Navier-Stokes equation.

In our 2D calculation he Poisson equations involved in the projection step and the diffusion equation (29) on
φ were solved directly using a Choleski factorization. In the 3D implementation, to reduce the computational
cost, we used the decomposition (30) together with the constant coefficient Poisson solver of the FISHPACK
library [?].

Finally, for the advection equation on φ, a fifth order WENO scheme was used with a CFL equal to ??. When
the time-step of the Navier-Stokes equation violated this CFL condition, sub-iterations were performed for the
advection equation.

5. Numerical tests

5.1. Test case 1: surface tension for a relaxing droplet

Although our main interest in this work is the fluid-structure interaction problem, we first consider the case of
a viscous droplet subject to surface tension. In this case the semi-implicit scheme amounts to the very simple
diffusion equation (24) .

We consider an initial interface of elliptic shape, with axis of sizes 0.5 and 0.75 respectively. Under the effect
of surface tension the droplet relaxes to a circle with the same area. The surface tension coefficient was taken
equal to 1. All tests were performed with a constant time step of 0.0025, for the equation (25). The interface
width was taken as ε = 6dx. Figure 1 compares for N = 256 the evolution of the two axis of the ellipse obtained
by the level set method in the case of semi-implicit and explicit scheme. For these parameters the semi-implicit
scheme, unlike the explicit scheme, proves to be stable.

Although a more systematic study will be performed in the next section, we show in Figure 2 a first illustration
of the numerical convergence of our semi-implicit scheme as the mesh size tends to zero. In this figure the
evolution of the small and large axis is depicted depicted for N = 256 and N = 512.
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Fig 1. Oscillating droplet with N = 256 and ∆t = 0.0025. Time variation of radii obtained with the semi-implicit scheme (left
picture) and the explicit scheme (right picture).

Our Eulerian model enjoys good conservation properties as it is based on a projection scheme on a staggered
grid, which ensures at computer accuracy a zero divergence of the velocity field. To illustrate this feature we
show in Figure 2 the volume loss inside the droplet for resolutions ranging from N = 64 to N = 512. One can
see that the volume loss during the oscillations is kept below 1.5% for the coarsest resolution and below 0.1%
for the higher resolution.

Fig 2. Oscillating droplet with the semi-implicit scheme. Left picture: Evolution of horizontal (blue) and vertical (red) radii, for
N = 256 (crosses) and N = 512 (continuous lines). Right picture: Variation of volume inside the membrane (in %) for N = 64
(red), N = 128 (blue), N = 256 (magenta) and N = 512 (cyan), with respect to time.

Note that in the present work we do not address the questions related to the accuracy of the computation of
the surface tension (see for instance [24]) . This is a delicate issue, in particular for high Reynolds number flows,
due to the singularity of the curvature term. The behavior of the semi-implicit scheme regarding this issue will
be investigated in a future work.

5.2. Test case 2: an elastic interface in R2

We now consider an elastic membrane, governed by the quadratic elastic potential (4). In this section and the
next one, the value of the stiffness coefficient λ is set to 10. We use the same test case as in [16, 8]. It consists
of an elliptical membrane, with major and minor axis respectively equal to 0.75 and 0.5, stretched from an
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equilibrium circular state. This corresponds to a uniform stretching rate of about 1.262. This case test, albeit
simple, is in particular a good benchmark to verify the conservation properties of the method. Throughout
this section, ∆t is the time-step used to solve the Navier-Stokes equation with the elastic force. As laready
mentioned, depending on its value, sub-iterations may be used in the advection equation of the level set to
satisfy the appropriate CFL condition.

We first address the already mentioned issue concerning the implementation of the variable-coefficient diffu-
sion equation for the level set function. In Figure 3 we show the oscillations of the membrane when the value
max |E′(∇φn)| is used at time tn as diffusion coefficient in (29), compared to the reference results obtained
with the explicit scheme. The parameter were N = 128, ∆t = 1.5 10−3 for the explicit scheme and ∆t = 8 10−3

for the semi-implicit scheme. One can see that this diffusion parameter does not produce correct oscillations.
In particular the membrane does not relax to a circle. In the rest of the paper we therefore implemented the
variable-coefficient diffusion equation, in tis original form (29) in 2D, and in its approximation (32) in 3D.
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Fig 3. Relaxing elastic membrane. Semi-implicit scheme using the maximum of E′ in the diffusion equation (29), for N = 128.
Solid lines are horizontal and vertical radii for the semi-implicit scheme with ∆t = 8 10−3 and dotted data corresponds to the
reference explicit scheme with ∆t = 1.5 10−3.

We next investigate the stability properties of the semi-implicit scheme. For this purpose we performed two
series of refinement studies. In the first series of test we kept for the semi-implicit scheme the same time-step for
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the level set equation for all grid resolutions, with a value ∆t = 0.01. In the second series of tests, the time-step
chosen for the semi-implicit scheme was refined using a CFL condition of 0.25 while, for the explicit scheme, it
had to be defined on the basis of the stability condition (9). Table 1 shows the values of the resulting time-steps
for the explicit and semi-implicit schemes.

Table 1
Time step values used in the 2D experiments for the explicit and semi-implicit scheme.)

N explicit semi-implicit
64 3.5 10−3 10−2

128 1.5 10−3 8. 10−3

256 6.5 10−4 4. 10−3

512 2. 10−4 2. 10−3

Figure 4 shows the relaxation of the membrane, for resolutions corresponding to a number of grid-points in
each direction ranging from N = 64 to N = 256, when the semi-implicit scheme is used with the time-step 0.01.
These experiments confirm the stability of the semi-implicit but also show that for relatively high resolution
and large time-steps the membrane undergoes in a primary stage non-physical oscillations. The reason is that,
for large values of ∆t, the elastic force, obtained from the filtered value of φ, is applied at a location which
differs significantly from the advected level set. Note however that if one is mostly interested in the equilibrium
state, rather than in the details of the oscillations, large values of the time-step remain admissible.
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Fig 4. Relaxation of an elastic elliptical membrane. Time evolution of the large and small radii with the semi-implicit scheme for
∆t = 10−2 and, from left to right, N = 64, 128, 256.

We now turn to the second series of refinement tests and compare in figure 5, for the time-steps given in
Table 1, the results obtained with the explicit and semi-implicit schemes, for N = 128 and N = 256. On the
left picture, for N = 128, we used ∆t = 1.5 10−3 for the explicit scheme and ∆t = 8 10−3 for the semi-implicit
scheme. On the right picture, we fixed ∆t = 6.510−4 for the explicit scheme and ∆t = 4 10−3 for the semi-
implicit scheme. Given that for N = 256 the time-step for the semi-implicit scheme is eight times smaller than
for the explicit scheme, this experiment illustrates the gain offered by the semi-implicit method.

Figure 6 shows the oscillations of the membrane obtained with the semi-implicit scheme for N = 256 and
N = 512, and the respective time-steps given in Table 1, for ε = 1.5dx and λ = 10. It serves as a first illustration
of the convergence properties of the semi-implicit scheme.

In order to measure in a more quantitative fashion the consistency of the semi-implicit scheme, Table 2
monitors the values of the horizontal radius at time t = 2 for the explicit and implicit scheme for decreasing
grid sizes corresponding to values of N ranging from 64 to 1024.
Convergence studies concerning the discretization of equations (3) are rather delicate . In the limit ε → 0 the
right hand side of (30) is singular and one expects that convergence requires to keep ε >> ∆x. In the present
study we have chosen to set ε proportional to

√
∆x. For this study we have defined the result of the explicit

scheme for N = 1024 as the reference result to which we compare the results of the explicit and semi-implicit
schemes at coarser resolutions. The results show that the semi-implicit scheme converges, albeit at a lower
convergence rate than the explicit scheme. In this study the time-step was set along the lines of table 1 to
satisfy the stability condition (9) for the explicit scheme and, for the semi-implicit scheme, a CFL condition
with a CFL number equal to 0.25. It is worthwhile to mention that for the finest resolution, with N = 1024
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Fig 5. Relaxing 2D elastic membrane. Time variations of ellipse radii. Semi-implicit (continuous lines) vs explicit (× and +)
schemes for N = 128 (left) and 256 (right).
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Parameters: N=512 dt=0.003 lint=1.5 lambda=10
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Fig 6. Relaxing 2D elastic membrane. Time variations of ellipse radii with the semi-implicit scheme for N = 256 (dotted data)
and 512 (continuous line).
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points in each direction, the cost/time-step for the explicit scheme ...

Table 2
Horizontal radii for explicit and semi-implicit schemes at time t = 2 for the elastic membrane for grids ranging from N = 64 to
N = 1024 grid points in each direction. re (resp ri) is the value obtained with the explicit (resp. semi-implicit) scheme. δre (resp.

δri) is the relative error with respect to the reference result (corresponding to the explicit scheme at the highest resolution)
obtained with the explicit scheme (resp. semi-implicit) and qe (resp qi) is the numerical order of convergence for the explicit

(resp. implicit) scheme.

N re ri δre qe δri qi
64 0.643587 0.63089 0.021 0.041
128 0.652348 0.638246 0.0080 1.39 0.029 0.5
256 0.654439 0.643734 0.0048 0.74 0.021 0.46
512 0.656084 0.6473 0.0023 1.23 0.016 0.4
1024 0.657617 0.653769 0. 0.006 1.41

5.3. Test case 3: elastic interface in R3

We finally consider the case of an immersed elastic surface inside a three-dimensional flow, endowed with an
elastic law limited to area variation. The case of full membrane energy, including tangential shear, cannot be
written in terms of φ only, and is therefore more intricate. It is studied in a forthcoming work [19]. We present
below a test case to show the ability of our numerical method to deal with this 3D case. The elastic ellipse has
radii of 0.8, 0.6 and 0.4 in the x, y, z directions. We plot in Figure7 the variations of those three dimensions
while the ellipse is relaxing to a sphere, using our semi-implicit scheme for N = 128 and a time step of 2.5 10−3.
Figure 8 depicts the values of the pressure in cross sections though the center of the sphere and f the elastic
stretching along the membrane.

Fig 7. Relaxing 3D elastic membrane with the semi-implicit scheme for N = 128 and ∆t = 2.5 10−3. Left picture: time variation
of x-radius (red), y-radius (green) and z-radius (blue). Right picture : contours of stretching on the membrane and pressure value
on cross-section through the center at t = 0.1.

6. Conclusion

In this paper we have presented a novel semi-implicit scheme for the temporal discretization of level set methods
in the context of multiphase flows or fluid-structure interaction problems. This method stems from the analysis
of a linearized 1D model of such problems. Although based on a very simplified model, this analysis allows
to recover classical stability constraints for explicit schemes in level set methods and to derive and prove
unconditional linear stability for the semi-implicit scheme.
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Fig 8. Relaxing 3D elastic membrane with the semi-implicit scheme for ∆t = 2.5 10−3 and N = 128. Contours of stretching on
the membrane and pressure values on cross-section through the center at t = 1; 2; 2.5; 5; 15; 30.
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The semi-implicit scheme is based on a variable coefficient diffusion equation for the level set equation, the
coefficient of which is determined by the surface tension in the case of multiphase flows and by the elastic force
in the case of the interaction of a fluid with an elastic membrane. This diffusion equation is used as a post-
processing to determine the values of the level set functions to be used for the computation of the the surface
tension or the elastic force in the Navier-Stokes equation. It does not interfere with the advection equation that
determines the location of the interface and therefore does not compromise the conservation properties of the
overall method.

A series of comparisons with the explicit scheme and refinement studies demonstrate that, for moderate
to high grid resolution, this method allows to significantly increase the time-step value, and thus reduce the
computational cost, without deteriorating the desired accuracy. Future plans consist in particular of extending
the method to level set models for generic fluid-structure interaction problems along the lines of [9, 19].
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