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Université Pierre et Marie Curie - Paris 6, CNRS UMR 7606,

LIP6, 4 place Jussieu, case courrier 169, 75005 Paris, France

Abstract

The objective of any tutoring system is to provide resources to learners that are
adapted to their current state of knowledge. With the availability of a large variety of
on-line contents, and the disjunctive nature of results provided by traditional search
engines, it becomes crucial to provide learners with adapted learning paths that pro-
pose a sequence of resources that match their learning objectives. In an ideal case, the
sequence of documents provided to the learner should be such that each new document
relies on concepts that have been already defined in previous documents. Thus, the
problem of determining an effective learning path from a corpus of web documents
depends on the accurate identification of outcome and prerequisite concepts in these
documents and on their ordering according to this information. Until now, only few
works have been proposed to distinguish between prerequisite and outcome concepts
and to the best of our knowledge no method have been introduced so far to benefit
from this information to produce meaningful learning path. To this aim, this paper
first describes a concept annotation method that relies on machine learning techniques
to predict the class of each concept: prerequisite or outcome, on the basis of contextual
and local features. Then, this categorization is exploited to produce an automatic re-
sources sequencing on the basis of different representations and scoring functions that
transcribe the precedence relation between learning resources. Experiments conducted
on a real data set built from on-line resources show that our concept annotation ap-
proach outperforms the baseline method and that the learning paths automatically
generated are consistent with the ground truth provided by the author of the on-line
contents.

Keywords: Prerequisite-outcome annotation, resources sequencing, machine learning.

1 Introduction

The availability of a large variety of contents in the electronic media has given rise to
new paradigms of learning and knowledge delivery [39]. In this context, e-learning (or
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on-line learning) has emerged as a very promising application that stands for all forms of
Internet-enabled and/or computer supported learning. It refers to the use of computer
and computer network technologies to create, deliver, manage and support learning, usu-
ally independent of specific locations or times [2]. However, the development of e-learning
systems is expensive in terms of the time and effort required to develop high quality learn-
ing materials annotated with semantically rich, standardized, widely used and recognized
metadata.

As a consequence, two major problems arise when the learners want to access personal-
ized learning materials on the web. First, learning materials are generally not well indexed
because of the lack of metadata annotation, which causes inaccuracy in the answers pro-
vided to the learner. Second, the answer of traditional search engines results as a set (or
disjunction) of potentially interesting documents, which may not be adapted to the learn-
ing problem. Indeed, according to the psychologist David Ausubel [1], learning results are
meaningful when the learner explicitly ties new knowledge to the known concepts within
her/his current state of knowledge. In Ausubel’s view the most important thing a learner
could bring to a learning situation is what she/he already knows. For this reason and
contrary to search engines, it becomes crucial to provide learners with adapted learning
paths that aggregate the results of the search as a sequence of resources that match their
learning objectives. In other words, the challenge is not only to make learning resources
easily accessible on the web, but to make them usable in a way that satisfies the specific
requirements of a given learner that pursue a given course.

In an ideal case, the sequence of documents provided to the learner should be such
that each new document relies on concepts that have been already defined in previous
documents. Thus, the problem of determining an effective learning path from a corpus of
web documents is a two-fold problem. It first depends on the accurate preliminary iden-
tification of outcome concepts, i.e. concepts that can be learned from the document, and
prerequisite concepts, i.e. concepts that are to be known before studying the document.
Second, it depends on the ordering of the documents according to prerequisite/outcome
concepts.

As a consequence, this paper introduces several new methods to order the web doc-
uments returned by a web search engine on a given topic, on the basis of the automatic
annotation of their prerequisite and outcome concepts.

Until now, only few works have been proposed to distinguish between prerequisite and
outcome concepts and to the best of our knowledge no method have been introduced so far
to benefit from this information to produce meaningful learning path. To this aim, this pa-
per first describes an automatic concept annotation method that relies on machine learning
techniques to predict the class of each concept: prerequisite or outcome, on the basis of
contextual and local features. The machine learning method is based on the early fusion
[26] of n-grams of increasing orders for representing sentences. The motivation behind the
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use of grams of higher orders is to mix features with increasing lengths for representing
expressions of definitions. While unigrams are widely employed for representing documents
in the classical text classification task, they do not seem to provide enough description in
the case of concepts categorization. By fusing grams of increasing orders, the proposed ap-
proach is able to make use of richer features to describe the naturally complex expressions
that characterize concepts. New comparative experiments conducted versus a rule-based
approach and the baseline proposed by Brusilowski [8] show that our machine learning
based approach with local and contextual descriptors outperforms the other approaches on
our real on-line tutorial data set.

Then, this paper introduces new methods to produce an automatic pedagogical se-
quencing of web documents that relies on the previous categorization of concepts that
they use and define. This ordering is performed on the basis of different representations
and scoring functions that transcribe the precedence relation between learning resources.
Several methods are experimented for this task: a basic succession method, a ranking
approach based on machine learning algorithms and a variety of methods based on prece-
dence relation matrices. Experiments are performed on a set of web documents for which
an ideal ordering is known. Then for each topic in the documents, results are evaluated
as the agreement between the ideal sequence of documents and the sequences produced by
our approaches according to the Kendall’s Tau. Results show that our method is able to
produce a meaningful sequence of web documents for a given pedagogical topic.

This paper is organized as follows: Section 2 presents related works in the domain of
prerequisite-outcome annotation as well as on document sequencing and ranking. Section
3, gives an improved description and evaluation of the prerequisite-outcome annotation
method first introduced in [11][12]. Then, Section 4 introduces novel methods for the
automatic sequencing of documents returned by a web search engine. Different approaches
are studied and compared on the basis of their ability to generate the same learning path
as the one defined in the real data set used for the experiments. Finally, conclusions and
perspectives of this work are given in Section 5.

2 Related work

The objective of our study is to propose a novel method for automatically ordering web
documents into a learning path that reflects the implicit ranking of document based on
their prerequisite and outcomes concepts. Thus, two major problems are tackled in this
paper: first, our system has to determine automatically prerequisite and outcome concepts
from a set of web documents. Second, our system has to produce a meaningful sequence
of the pedagogical documents belonging to this set, on the basis of previously extracted
metadata.
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Several works use manual outcome-prerequisite annotation to support learning and to
add implicit guidance to Intelligent Tutoring Systems. However, to the best of our knowl-
edge, very few studies have been done on automatic outcome-prerequisite annotation, and
while resource sequencing has been extensively studied in the context of Adaptive Edu-
cational Hypermedia Systems (AEHS) [6], the problem of automatic resources sequencing
from their prerequiste-outcome metadata annotation is still an open problem. The following
sections discuss existing related works on prerequisite-outcome annotation and automatic
resource sequencing.

2.1 Prerequisite-outcome concepts annotation

[8] introduce the NavEx system which serves as an adaptive navigational support for stu-
dents accessing programming examples in web-enhanced education. To help students se-
lecting the most appropriate example, the approach applies adaptive prerequisite-outcome
annotation. The algorithm relies on a sequence of example groups. Each group is formed
by examples introduced in the same lecture. Groups are then ordered according to the or-
der of lectures in the course. The design of their prerequisites/outcomes division algorithm
is based on the following assumptions:

• while analyzing examples from some lecture, concepts corresponding to examples
from all preceding lectures are considered to be completely defined;

• in each example, all concepts introduced in the previous lectures are considered to
be prerequisites to this concept, while the concepts first introduced in the current
lecture are viewed as outcomes;

• the set of new concepts found in all examples associated with the lecture is considered
to be the pedagogical goal of the lecture.

The limit with this approach is that pedagogical resources do not really follow these
assumptions. In fact, in our experiments, we observed that concepts can be cited in a
document and defined later in a following document of the same or a later lesson. Addi-
tionally, a concept can be defined in two different lessons with different levels of details.
In this paper, we experiment the approach proposed in Navex as a baseline, and we show
that our proposal gives much better results.

Other works related to prerequisite-outcome annotation generally states that the anno-
tation has been performed manually or, at least preliminary to the study, and thus relies
on this information.

In [33], authors present an approach to represent information related to a course based
on a specific ontology with has-prerequisite relationships. This ontology provides an ar-
rangement of concepts involved in teaching a course in a hierarchical order that is consistent
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with the learning process. However, in their work, authors focus on ontology representation
but not on concept categorization, which is fundamental to achieve an overall study.

[39] use trigger words like: defined, derived, called, known, etc., in order to give a
semantic relationship between words. Different inference rules are then constructed to
categorize the concepts as prerequisites or outcomes. The limitation of the method lies
in the impossibility for the algorithm to handle sentences following some special patterns.
Moreover, the list of trigger words is constructed manually and as a consequence can miss
other words that may be used to define concepts. Besides, rules are generated manu-
ally by analyzing each case separately which is time consuming and cannot be applied to
heterogeneous corpora as in our case.

Other works exploit a-priori manually annotated documents to add intelligent help and
implicit guidance to their Intelligent Tutoring Systems. The ELM-ART system [7] uses
manual prerequisite-outcome annotation to warn the students when they choose to learn a
material with unlearned prerequisites and proposes links to the documents which define the
unlearned prerequisite concepts. Prerequisite-based annotation is also used to check the
consistency and the quality of a course. The system presented in [5] measures the overall
complexity of a material using the number of concepts it contains. It also checks the con-
sistency of the exercises with respect to a course. It finds situations where an assessment
requires knowledge that are not presented yet or, vice versa, where presented knowledge
are never assessed.

Finally, the limitation of these studies lays in the fact that the prerequisite-outcome
annotation is done manually or by means of fixed rules that are time consuming and sub-
ject to annotator consistency in labeling. As manual annotation has always been criticized
as difficult, expensive and time consuming, we show in this paper that it is possible to pro-
duce an efficient automatic prerequisite-outcome annotation of learning materials based on
machine learning techniques. This categorization is then used to produce an automatic
documents sequencing according to the pedagogical order implied by the concepts that
they use and define.

2.2 Learning resources sequencing

Web search engines provide a low cost index access that can find the required resources
in the large portion of documents on the Internet. However, this indexing is not suitable
for more sophisticated retrieval tasks [19] that require the consideration of pedagogical
relationships between documents.

A lot of studies have been proposed so far in the domain of Adaptive Educational Hy-
permedia (AEH) to personalize the learning experience with adapted sequences of learning
materials tailored for a specific user and given a learning goal. Generally these systems
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relies on 4 entities [27]: a knowledge space that contains a description of learning concepts
and learning materials, a user model that indicates the knowledge already acquired by the
learner and her (his) preference in term of pedagogy, a set of observations that is a result
of the monitoring of users, and finally an adaptation model that is in charge to produce
effectively the adapted sequences of learning materials based on the other entities in the
system. This modeling can be found in many AEH systems such as [32, 42, 23, 40, 22] that
rely on a representation of the concepts that can be learned (as an ontology or a concep-
tual network as in [42]) a user model and learning materials to produce adapted courses
or exercises as in [23]. In [40], authors improve the MANIC system with an adapted rec-
ommendation of topics based on an evaluation of pre-topics (i.e. prerequisite documents).
The system presented in [32] implements a resources sequencing approach based on a graph
containing all possible learning paths between learning resources. The system selects the
best path based on a decision model that estimates the suitability of learning resources for
a targeted learner. Finally, the system developed in [22] produces a sequencing of technical
(or pedagogical) documents retrieved by an adapted search engine on the basis of key-
words specified by users. Documents are enriched with metadata indicating instructional
role and relations between topics (that correspond to the concepts that are taught in the
other systems). Resources are projected into a graph of topics (ie the knowledge system)
and are weighted according to their relevance to the user query (the learning goal). Then
several instructional policies are available to further select and order the resources.

The main limit of these previous approaches is that they rely on a (manual) domain
knowledge description as a learning goals hierarchy, a concepts hierarchy and structural
relations between resources based on the prerequisite and outcome concepts they contain.
These preliminary designing processes are time consuming and require designers to have
good knowledge of the parameters of the system. These works can not be applied in the
more general context of a pedagogical web documents search on Internet where nor the
user model, neither concept ontologies or learning goals hierarchies are available.

For this reason, the system proposed in this paper proposes first an automatic labeling
of prerequisite and outcome concepts from a set of web documents and second a method to
order documents based on this preliminary annotation. Thus, it is interesting not only to
consider works that directly focus on learning resources sequencing, but also more general
works that deal with the problem of documents retrieval and ranking from an explicit user
query that acts in this case as an implicit learning goal.

In most of the document retrieval tasks, even if a ranking of the document is produced,
the objective is to order them according to their proximity to the user query and not
to allow a pedagogical navigation through the resources. In these systems, the ranking
task is performed by using a ranking model f(q, d) to sort the documents d based on a
user query q expressed a set (bag) of words. Traditionally, the ranking model f(q, d) is
created without training. In the BM25 model, for example, it is assumed that f(q, d) is
represented by a conditional probability distribution P (r|q, d) where r ∈ {0, 1} denotes the
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relevance of the document. In Language Model for Information Retrieval (LMIR), f(q, d)
is represented as a conditional probability distribution P (q|d). The probability models can
be calculated with the words appearing in the query and document, and thus no training
is needed (only tuning of a small number of parameters is necessary) [18]. A new trend
has recently arisen in document retrieval, particularly in web search, that is, to employ
machine learning techniques to automatically construct the ranking model f(q, d).

One popular approach is to learn a preference function over pairs of documents with
respect to the query [9, 10, 31, 20, 43]. In the pairwise framework, instead of taking
documents in isolation, document pairs are taken as instances in the learning process.
The goal in this setting is to learn a preference function over document pairs, where the
output of the learned function indicates the degree to which one document is preferred over
another for a given query. When these preference functions are transitive, as is typically
the case, the document collection can be ranked in descending order of preference. This
approach is appealing for several reasons. First, learning a preference function on pairs of
documents reduces the ranking problem to a binary classification problem: a correct (or
incorrect) classification corresponds to correctly (or incorrectly) ordering a document pair.
Many classification algorithms have been adapted to this task, including support vector
machines [31], perceptron algorithms [20, 25] as well as gradient descent algorithms [9].
Second, this approach imposes very few assumptions on the structure of the training data
and only preferences among pairs of documents have to be expressed. To that aim, in
pairwise-ranking, features are generally extracted from the query combined with the body
of the text represented as TF-IDF1 scores and the number of words in a query.
In our problem, a pairwise learning ranking algorithm has been experimented on the basis of
features like the number of concepts defined in a document and used in the other documents
forming the considered pair. Comparative experiments show that our approach that relies
on valued matrix representation gives better results than our baseline pairwise machine
learning approach.

3 Prerequisite-outcome annotation

3.1 Concepts types

Concepts considered in our work are elementary pieces of learning material. The size of
a concept is not fixed, it can be composed of one word (the concept force in physics for
example), or more than a word (Kinetic energy, Newton’s third law, etc.). A concept that
is mentioned in a learning material and particularly in a lesson can be either a new notion
that is explained in the lesson or a notion which is supposed to be known by the reader
and is used to explain the content of the document.
An example of a pedagogical document is given in Figure 1. It defines the concepts distance

1Term Frequency-Inverse Document Frequency
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http://www.physicsclassroom.com/Class/1DKin/U1L1c.cfm

Figure 1: Example of a pedagogical document. Framed concepts are defined in the document and
underlined concepts are prerequisite.

and displacement using the concepts scalar quantity, vector quantity, object, motion and
position.

3.2 Concept extraction and document parsing

In our study, we are dealing with pedagogical tutorials in HTML format. To extract
the concepts from an HTML page, we use Text2Onto [15], a tool for ontology learning
from textual sources which includes a whole battery of statistical and linguistic text min-
ing components. This framework represents the learned knowledge into a meta level in
the form of instantiated model primitives, which they termed the Probabilistic Ontology
Model (POM). In this way, learned knowledge remained independent of a concrete target
language. Several measures are implemented to assess the relevance of a certain concept
with respect to the corpus in question: Relative Term Frequency (RTF), TFIDF (Term
Frequency Inverted Document Frequency), Entropy and the C-value/NC-value method.
For each term, the values of these measures are normalized into the interval [0..1] and used
as corresponding probability in the POM. Nevertheless, we manually filter the global list
of concepts generated by Text2Onto when applied to our corpus since it makes some errors
by considering common word as concepts.

In our study, each sentence containing one or more concepts is analyzed as follows:

• The sentence is tokenized by identifying the different tokens (words and digits).
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• All the words are then stemmed using the Porter algorithm [37]. Stemming allows
us to treat different variations on a phrase as the same. For example, kinematic
quantities and kinematic quantity are essentially the same, but without stemming
they would have to be treated as different concepts. In addition, we use the stemmed
versions to compare words in documents to the annotated concepts. A concept is
successfully identified if, when stemmed, it is the same as a set of words, also stemmed,
in the document.

• Each sentence is analyzed through a natural language processing using the Stanford
Parser [34] in order to generate syntactic information and morphological informa-
tion. Concerning the syntactic information, each word is labeled with a grammatical
relation, such as subject, direct object or noun compound modifier. Concerning the
morphological information, each word in the sentence is tagged with the correspond-
ing part-of-speech (POS) tag using the Brill tagger [4]. A part of speech tag is a
linguistic category of words; common linguistic categories include noun and verb,
among others.

In this paper, two approaches are performed to automatically categorize the identified
concepts in the HTML documents: a rule based approach inspired from the (LP)2 and
a machine learning approach that relies on well-known algorithms paired with local and
contextual features to describe the concepts.

3.3 The rule based approach

In order to categorize the concepts, a first study has been performed by adapting the (LP)2

algorithm [16] to our problem. The (LP)2 is a well-known algorithm initially designed to
generate rules for named entities extraction from text. It is an adaptive algorithm that
makes use of shallow Natural Language Processing in order to overcome data sparseness
in texts.

In particular, (LP)2’s main loop starts by selecting a tag in the training corpus and
extracts from the text a window of w words to the left and w words to the right. Each piece
of information stored in the 2∗w words window is transformed into a condition in the initial
rule pattern. Each initial rule is then generalized by considering additional knowledge for
each word in the initial pattern like lemma, POS tags and case information. Conditions
on each element in the rule pattern are relaxed by substituting constraints on words with
constraints on some parts of the additional knowledge. A generated rule is kept if, when
applied to all the examples, it covers a minimum number of examples and with an error
rate ε (wrong/matched) below a given threshold. The best generalizations are then kept:
the retained rules become part of the best rules pool. When a rule enters such a pool, all
the instances covered by the rule are removed from the positive examples pool and are no
longer used for rule induction ((LP)2 is a sequential covering algorithm). Rule induction
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continues by selecting new instances and learning rules until the pool of positive examples
is empty. More details about the (LP)2 algorithm are given in [16].

In our context, as already detailed in [14], we adapt the (LP)2 algorithm in order to
characterize the concepts. To that aim, in addition to contextual information, rules en-
close local information such as the format, the capitalization, and the typography of each
concept.

We notice that a concept that is defined in a document may be used in the rest of
the document to define other concepts. In this case, it is not efficient to consider all the
occurrences of a concept for rules generation. To that aim, we rather consider the sentence
containing the first occurrence of the concept in the document. Indeed, in a pedagogical
point of view, it seems more suitable to define a concept before using it.

The (LP)2 algorithm depends on a parameter k that specifies the number of best rules
(i.e. rules that best cover the concept space) that are kept for each concept. In our exper-
iments, best rules are obtained with k = 8 and when the error threshold ε is initially fixed
to 0.5. The algorithm tries then to optimize the error threshold ε by restricting the rules
conditions, therefore excluding some other rules. The reduced rules set is then tested on the
training corpus and pruning is stopped when the accuracy decreases. The final obtained
error threshold ε = 0.7. An example of the rules induction process is illustrated in Figure 2.

Given a new concept C, if all the rules matching C have the same class label, this label
is simply assigned to the new concept. If the rules are not consistent in class labels, the
rules are divided into groups according to the class labels: all rules in a group share the
same class label and each group has a distinct label. The effects of the groups are then
compared and the concept C is assigned to the strongest group. To compare the strength
of groups, we use a weighted χ2 measure [36].

3.4 The machine learning approach

This section gives more details and improves the evaluation of the machine learning ap-
proach that has been first introduced in [13] for automatic concept annotation. The novelty
of the approach relies in the use of contextual and local features to encompass syntactic or
word based patterns and stylistic features to discriminate between outcome and prerequisite
concepts.

3.4.1 Contextual features

Contextual features are binary features made of the relevant n-grams of the training set.
n-grams are extracted from the contextual windows enclosing each defined concept: Part-
Of-Speech (POS) tags widows and stemmed words windows. Four lists of n-grams are thus
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Figure 2: Rules generation with the (LP)2 algorithm, wi, POSi and casi refer successively to the
word, POS and case of the word situated at position i from the candidate concept. Format−0
gives information on the format of the candidate concept. VBZ refers to a third person singular
simple present tense verb, VBN: a past participle verb, and IN a preposition or a subordinating
conjunction

generated: both a right and a left list of POS n-grams and of stemmed words n-grams.

Given a specific gram’s order n, we refer hereafter to the set of all unique n-grams in
the training set extracted from the left windows and the right window as the dictionary
D−n and Dn.

The total number of orders employed in the proposed approach is limited by one fac-
tor: above a given n value, high order can become less successful depending on datasets.
Indeed, an n-gram representation with a high n value may draw a major part of a sen-
tence as a feature for describing the dataset. The resulting features then suffer of a lack
of representativity in the whole dataset. On the other hand, unigrams suffer of an over
representativity in the whole dataset. Indeed, unigrams can be prepositions and articles
which, when alone, do not give representative information. In the experiments reported in
Section 3.5.4, as we compute n-grams representations up to trigrams, we observe that both
bigrams and trigrams give better performance and can better characterize the context of
a concept in a cross-validation setting.

As the size of the dictionary drastically increases with grams’ orders, we keep only the
most frequent n-grams. As detailed in Section 3.5.4, this was realized by experimentally
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Figure 3: n-grams extraction from a contextual window, LW: left window, RW: right window

fixing the number of n-grams in each list to 50. Contextual features are then constructed
from these lists: a binary feature is associated to each n-gram to indicate the absence or
the presence of each n-gram in a given contextual window.
Given a concept c, we apply the early fusion strategy, and we compute the contextual
features of c:

c =

( ︸︷︷︸
D−2(POS)

, ︸︷︷︸
D−3(POS)

), ( ︸︷︷︸
D−2(stem)

, ︸︷︷︸
D−3(stem)

)


As an example, among the retained elements of the dictionaries D−2(stem) and D−3(stem),
we may cite the followings: is the, is a, refer to, can be, as follow, in the, is an, repres by,
state that, is often, defin as, refer to the, it is, as a, that the, describ as, ar those, wa defin,
consist of , occur at , result when , is equival , is equival to , equival to , sinc it, sinc it is,
the result, the result of.

Figure 3 illustrates the different steps to get the list of n-grams from a contextual win-
dow. Let suppose the left window of a defined concept contains the following expression:
“is described as”. Its corresponding morphological transformation is “VBZ VBN IN” (des-
ignating successively an s-form of a lexical verb, a past participle of a lexical verb and a
preposition) and its corresponding stemmed transformation is “is describ as”. The set of
n-grams we can extract from the POS window contains the following elements: {VBZ,
VBN, IN, VBZ VBN, VBN IN, VBZ VBN IN}. Likewise, the set of n-grams extractable
from the stemmed window contains the following elements: {is, describ, as, is describ,
describ as, is describ as}. Accordingly, it appears that for each concept, four n-gram lists
can be constructed, two lists from each window side. These lists are then used to construct
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our contextual features.

3.4.2 Local features

In addition to the contextual information, other features are also used to characterize the
candidate concepts:

• Format features: four binary features are constructed to describe the format of the
current concept. This features indicate whether the concept is written in bold format,
in italic format, in colored format or in big size format compared to the rest of the
page. The style detection is done using the Cobra java toolkit 2 as well as some
emphasizing HTML tags (like strong, b, big, etc).

• Capitalization: a binary feature indicates whether the concept has a capitalized first
letter.

• Syntactic information: the syntactic category of each concept is obtained using the
Stanford Parser. Examples of these categories are the subject, the direct object or the
noun compound. This information is obtained using the dependency relations found
through lexical analysis of the current sentence. A binary attribute is associated with
each syntactic category.

We call these features the local features hereafter.

3.4.3 Concepts representations

A feature vector is constructed for each occurrence of a concept in the document. The
instance is labeled as defined or not defined depending on whether the corresponding con-
cept is defined in the current document or whether it is a prerequisite. This representation
is called the all occurrences representation hereafter.

However, we notice that the same concept can be defined first in the document and
then used as a prerequisite to define other concepts. As a consequence, considering each
occurrence of a concept in a document as a training example may not be the best repre-
sentation to obtain a generalizable learning model. To address this issue, we propose to
compare two other concepts representations:
• First sentence representation:

As already mentioned with the (LP)2 method, a concept can be defined first in the docu-
ment, then used as a prerequisite to define other concepts in the rest of the document. As
a consequence, in this representation, we consider for each concept the first sentence where
it occurs in the document.

2http://lobobrowser.org/cobra.jsp
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Figure 4: Features aggregation

• Aggregation representation:
A concept can be defined in the beginning of a document and then used to define other
concepts. As a consequence, considering each occurrence of a concept as a training example
is not sufficiently representative to obtain a generalizable learning model. Thus, in this
representation, all the occurrences of the same concept in a document are aggregated into a
single representation. To this aim, we use a binary disjunction operator over the attributes
of all occurrences of the same concept. More formally, the resulting binary feature vector
xc representing a concept c in a document d is computed as the union of binary feature
vector in the set O(c, d) of all the occurrences of the concept c in document d as follows:

xc =
⋃

xic∈O(c,d)

xic (1)

where xic denotes the ith occurrences of concept xc in document d.
An example is given in Figure 4: suppose “kinetic energy” is a concept in a docu-

ment and that it occurs three times in the page. Hence, we have three binary feature
vectors, one for each occurrence, V1 = [0,1,0,1,0,1...,0,1], V2 = [1,1,0,0,0,1...,0,1], and
V3 = [0,1,0,1,1,0,...,0,1]. The key idea is to construct a feature vector ‘V’ representing all
the occurrences of the concept “kinetic energy” in the page, V is the disjunction of the
three vectors: V = [V1 OR V2 OR V3] = [1,1,0,1,1,1,...,0,1].
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3.5 Experimental validation

3.5.1 Data set

The experiments are conducted on 150 HTML learning tutorials from the physics domain
collected from an online tutorial 3. A list of concepts is extracted from each document
using the Text2Onto tool. However, this list has to be manually filtered since Text2Onto
produces some errors by considering common word as concepts (such as value, field, prob-
lem, turn, characteristic, etc.). As a consequence, from an initial list of 320 concepts, only
76 are kept.

As our objective is to evaluate the feasibility of the automatic prerequisite-outcome an-
notation from an heterogeneous HTML corpus, it is crucial that concept extraction is the
less noisy as possible. In a completely automated system, one should develop an adapted
heuristic to filter efficiently the results returned by Text2Onto, but this problem is out of
the scope of this paper. Nevertheless, the use of Text2Onto makes the annotation task
easier although this manual filtering phase may appear time consuming.

Each concept in a document is then labeled manually as a defined concept or a prereq-
uisite concept to obtain 370 labeled as defined and 3163 concepts labeled as prerequisite. In
order to ensure the smallest possible variability in the annotation process, which is crucial
for the learning, only one annotator in our study has realized all annotations.

3.5.2 Experiments

A supervised learning technique is used to categorize the concepts. Let {(x1, y1)...(xn,yn)}
be a two-class training data set, with xi a training feature vector (composed of contextual
and local features) and their labels yi (1 for the class defined and −1 for the class prereq-
uisite).
Since the corpus is relatively small, a 10-folds cross validation has been used in all the
experiments for better reliability of the classifier results. Thus all the results are averaged
over 10 trials. For each trial, the n-gram dictionaries are constructed from the training
examples and then used to construct the features of the test examples.
Experiments are conducted using different machine learning algorithms [29]: SVM [41]
with a polynomial kernel, Decision Tree (C4.5) [38], Random Forest (RF) [3] and k-Nearest
Neighbors (KNN) [17] with k = 3 (which is the value that gives best results in our experi-
ments).

Performance is evaluated using precision, recall and F1-measure described as follows:

- A : The number of concepts correctly labeled as belonging to the class defined.

3http://www.physicsclassroom.com/Class/
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Method Algorithm Precision (SD) Recall (SD) F1-measure (SD)
Aggregation k-Nearest Neighbors 0,656 (± 0,077) 0,530 (± 0,078) 0,583 (± 0,062)

Decision tree 0,713 (± 0,075) 0,628 (± 0,101) 0,665 (± 0,082)
Random Forest 0,738 (± 0,070) 0,570 (± 0,053) 0,641 (± 0,047)
SVM 0,815 (± 0,073) 0,726 (± 0,078) 0,764 (± 0,056)

First sentence k-Nearest Neighbors 0,575 (± 0,098) 0,427 (± 0,100) 0,487 (± 0,094)
Decision tree 0,668(± 0,099) 0,389 (± 0,084) 0,489 (± 0,085)
Random Forest 0,597 (± 0,067) 0,499 (± 0,086) 0,541 (± 0,076)
SVM 0,685(± 0,089) 0,372 (± 0,065) 0,481 (± 0,070)

All occurrences k-Nearest Neighbors 0,352 (± 0,015) 0,241 (± 0,019) 0,286 (± 0,016)
Decision tree 0,532 (± 0,046) 0,278 (± 0,078) 0,365 (± 0,071)
Random Forest 0,542 (± 0,046) 0,254 (± 0,078) 0,345 (± 0,071)
SVM 0,352 (± 0,053) 0,141 (± 0,018) 0,201 (± 0,026)

Table 1: Concepts categorization results with different concepts representation methods
and different machine learning algorithms, SD: standard deviation.

- B : The number of concepts incorrectly labeled as belonging to the class defined.

- C : The number of concepts not labeled as belonging to the class defined but which
should have been.

Precision measures the number of correctly identified defined concepts as a percentage
of the number of identified defined concepts: Precision = A

A+B .
Recall measures the number of correctly identified defined concepts as a percentage of the
total number of defined concepts: Recall = A

A+C .
Precision can be seen as a measure of exactness or fidelity, whereas Recall is a measure of
completeness.
Both are combined into a single measure: Fl-measure metric which is the weighted harmonic
mean of precision and recall:

F1−measure =
2 ∗ Precision ∗Recall
Precision+Recall

F-measure exhibits the desirable properties of being highest when both recall and precision
are high .

Figure 5 summarizes the results in terms of F1-measure obtained with the three concept
representations: the aggregation, the first sentence and the all occurrences representations.
More detailed results are given in Table 1.

The results obtained with the first sentence representation show that the sentence con-
taining the first occurrence of a defined concept is not necessarily the sentence that defines
it. It may be an introductory sentence while the concept is defined later in the document
and consequently the features of its first occurrence are not necessarily the most represen-
tative.
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Figure 5: Results with different concepts representation methods and different machine learning
algorithms

17



Precision Recall F1-measure Number of rules
0.75 0.43 0.55 21

Table 2: The (LP)2 results

Precision Recall F1-measure
0.33 0.53 0.41

Table 3: The results obtained with the [8] approach for concepts categorization

The all concept representation considers all the occurrences of a concept in a document.
For a defined concept, some of these occurrences can be used to explain other concepts
after being defined, which may affect the accuracy of the model.
The results obtained with the aggregation representation are significantly better to those
obtained with the other representations. Indeed, this representation provides richer con-
textual information to characterize a concept in a document since it takes into account
all the occurrences of the concept in the document. Besides, a concept that is defined in
a document can occur in the title or in a subtitle of the document and may accordingly
have particular formatting properties. These properties cannot be obtained with the first
sentence representation.

With the (LP)2 method, a 10-folds cross validation is also performed. For each trial,
rules are generated from the training instances and then applied to the test instances.
The obtained results are illustrated in Table 2. An example of the generated rules is the
following:

lemma1=is, pos2=DT, pos3=NN =⇒ class = defined

The premise of this rule characterizes the right contextual window of the concept. This
rule can be translated as follows: if the lemma of the word at position 1 from the candidate
concept is: is and the POS tags of the words at positions 2 and 3 are successively: DT and
NN then the current concept is defined in the document. The obtained result is interesting
insofar as it is better than the result obtained with the first sentence representation in
terms of the F1-measure. However, the recall is very low, the number of false negatives
is hence important. More information should be considered to cover all possible cases of
defined concepts. With the classical machine learning method, the aggregation representa-
tion has solved this problem by considering all the properties that characterize a concept
in a document. Yet, the aggregation method cannot be applied with the (LP)2 algorithm.

As a baseline method, we also realized a new experimentation with the [8] approach,
which is based on the following assumptions: in each resource, all concepts introduced in
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the previous lectures are considered to be prerequisites to this resource, while the concepts
first introduced in the current lecture are viewed as outcomes. The resources of our corpus
are organized in a learning sequence by the tutorial author. By applying the [8] method,
we obtain the results illustrated in Table 3.
It can be noticed that our approach gives significantly better results than the baseline.
Indeed, in a lesson, concepts can be cited in a document and defined later in a following
document. Additionally, a concept can be defined in two different tutorials with different
levels of details. As a consequence, considering the learning sequencing cannot be suffi-
ciently reliable to automatically distinguish between defined and prerequisite concepts in
learning resources.

From Figure 5, it can be underlined that the best result is obtained with the aggregation
representation using the SVM algorithm (in this case the difference has been proved to be
significant with a Student T-test). Indeed, SVM is known to have a solid theoretical
foundation, and studies have already shown that it performs classification more accurately
than most other algorithms in many applications [30, 35]. In fact, SVM avoids over-fitting
by choosing the maximum margin separating hyperplane from the many that can separate
the positive from negative examples in the feature space. Moreover, SVM is known to
perform well on data sets that have many attributes, even if there are very few cases on
which to train the model. The rest of the results given hereafter are obtained using the
SVM algorithm.
The results obtained with this algorithm show that the proposed method is able to perform
well to distinguish defined concepts from prerequisite concepts.

It is worth noting that the given results are obtained with a window size equal to 3
and with bigrams and trigrams as contextual features. The choice of these parameters is
explained later in this paper.

Further investigations have been conducted on the obtained results to illustrate false
positive and false negative examples. A false positive illustration is as follows: a document
D defines the properties of a wave (its frequency and its period). The concept wave has
been defined in a previous document, however a recall of the term wave is given in the
beginning of the document D as follows: “In Lesson 1, it was mentioned that a wave is
created in a slinky by the periodic and repeating vibration of the first coil of the slinky”.
Moreover, the title of the document D is “The properties of a wave”, The concept wave
is then put in a highlighted format without being the outcome of the document. For all
these reasons, the model makes error by considering the concept wave as defined in the
document.

An example of false negative is the following: a document defines the frequency as well
as its unit the Hertz as follow: “Another unit for frequency is the Hertz (abbreviated Hz)
where 1 Hz is equivalent to 1 cycle/second”. In this sentence, the word Hertz appears in
bold and in colored format. Thus, the definition of the concept Hertz is not very explicit
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Precision Recall F1-measure
Contextual features 0.771 0.609 0.677
Local features 0.604 0.377 0.444

Table 4: Results obtained with contextual features and local features separately

Precision Recall F1-measure
n-grams of stemmed words 0.704 0.535 0.607
n-grams of POS tags 0.643 0.35 0.453

Table 5: Contextual features contributions

in the document when more importance is given to define the concept frequency.

3.5.3 Features contribution

We investigate the contribution of each category of features for concept type categorization.
Experiments are conducted using each family of features separately: contextual features
and local features. The results obtained using the aggregation representation are summa-
rized in Table 4. It appears that the contextual features give better results than the local
features underlining the fact that linguistic information can better characterize a concept
than its local properties. However, combining both types of features contributes to improve
the global result.

Concerning the contextual features, we further investigate the contribution of the dif-
ferent features. We first evaluate the model using 1) the n-grams of stemmed words, and
2) the POS n-grams separately. The obtained results illustrated in Table 5 show that the
stemmed words give better results than the POS tags, and particularly a better recall.
This can be due to the fact that stemmed words contain more semantic information than
the POS tags and allows a better coverage.

3.5.4 Parameters effectiveness

In this section we experimentally justify the values of different parameters used in the
machine learning method to categorize the concepts and particularly with the concept ag-
gregation representation. All the experiments are realized with a 10-folds cross validation.

• Contextual window size:
We investigate the contribution of the window size in concepts types categorization by
varying the window sizes from 1 to 5 tokens. The results in terms of F1-measure with each
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window size are illustrated in Figure 6. It can be observed that the best result is obtained
with a 3-window size: a small window size may miss useful information and larger sizes do
not give representative information. It appears that, for English texts, a window size of 3
encloses the relevant contextual information and gives better results.
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Figure 6: Results obtained with different
contextual window sizes
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Figure 7: Results obtained by varying the
number of n-grams

• Number of n-grams:
To construct the contextual features, we consider the 50 first frequent n-grams. Figure 7
presents the results obtained when varying this threshold from 25 to 100. It can be observed
that the best result is obtained with a threshold equal to 50, it is therefore unnecessary to
increase this size which induces more attributes and implies a larger time complexity to
create and train the model and then to classify new examples.

• Gram’s order:
We further investigate the contribution of the gram’s order in concepts types categorization.
Experiments are first performed with unigrams, bigrams, and trigrams separately, and
then with bigrams and trigrams at the same time, the obtained results are illustrated in
Table 6. We observe that, when trained separately, bigrams hold better performances
than grams of higher orders. It follows our intuition that grams of high orders are more
specific and that representations relying uniquely on them do not provide enough coverage.
Moreover, unigrams appear to be not sufficiently representative to characterize the context
of a concept. Indeed, some unigrams are prepositions or articles which, when used alone,
do not give enough information. As shown in Table 6, best results are obtained using the
combination of bigrams and trigrams.

3.5.5 Data size effectiveness

We investigate the influence of the training data size in the model effectiveness. A 10-folds
cross validation is held: we vary the size of each training data set by removing successively
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Gram’s order Precision Recall F1-measure
1 0.677 0.585 0.625
2 0.793 0.714 0.748
3 0.775 0.625 0.689
2 and 3 0.815 0.726 0.764

Table 6: Gram’s order influence
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Figure 8: Result obtained by reducing the size of training examples (from 0% to 90%)

from 10% to 90% of the training examples. For each data removal, we keep the same ratio
between positive and negative examples (almost 9).
At each stage of the cross validation, 10 models are constructed for each sub-part of the
training data set and are applied to the same test examples. The cross validation results
obtained with each percentage of removal are averaged and summarized in Figure 8. It can
be observed that up to 50% data reduction, the recall is almost unchanged and even shows
a slight increase, whereas the precision is more affected. As a consequence, up to 50%
data reduction, our approach maintains a constant false negative rate, still not so high.
However, the rate of the false positives, i.e. the number of non-defined concepts that are
predicted as defined, is increasing progressively. Beyond 50% of the data set reduction, the
overall performance decreases. Nevertheless, up to 50% of the data set, the F1-measure is
above 70% and the classifier is stable insofar as it does not vary significantly with the size
of the training data set.
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Method Precision Recall F1-measure
First occurrence 0.641 0.546 0.589
Aggregation 0.855 0.610 0.712
All occurrences 0.762 0.051 0.096

Table 7: Generalization evaluation of the different concepts representations methods

3.5.6 Generalization of the concept categorization method

To assess the generalization of our approach, experiments are conducted by considering
the instances of the previous corpus for training and examples from a new corpus for
test. To that aim, 15 pages of a new online physics tutorial4 are annotated using the same
annotation method presented above. A feature vector is constructed for each concept using
the n-grams dictionaries constructed with the training examples. The results obtained with
different concepts representations using the SVM algorithm are illustrated in Table 7.

It can be noticed that good performance is obtained in the expense of coverage (good
precision with lower recall). The model does not detect some defined concepts. Indeed,
the expressions of some definitions are not very explicit in these documents. For example
a document defines the concept diode as follow: “Diode rectifies or converts alternating
current (AC) to direct current (DC). Diode is made of two different parts...”, and another
document defines the concept velocity as follow: “Velocity shows how fast an object is
moving to which direction”. Where the concepts diode and velocity are not very frequent
in the corresponding documents and do not represent the most important outcomes.

Yet, the model gives a good precision with all the experimented methods. Moreover, it
can be underlined that, again, the aggregation method gives the best result, whereas, the
all occurrences method gives a very low recall due to incomplete characterization of the
concepts.

4 Automatic resources sequencing

4.1 Resources sequencing methodology

As described in Section 2, many works have already been proposed for the automatic
sequencing of pedagogical or technical resources. However, these systems are limited to
specific use cases, as they massively rely on ontologies, resources metadata annotations and
user models to produce the expected pedagogical sequences. Similarly to the work proposed
in [22], our objective is to generate sequences of documents retrieved from a search engine,
so that documents are presented to users in a pedagogical order. We then expect this pe-
dagogical order to facilitate the learning process of users. As stated in [22], such a system
can provide an overview of a domain and thus guide the knowledge acquisition process,

4http://library.thinkquest.org/10796/
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and can also help understanding new complex material.
To this aim and contrary to other works, our method only relies on the content of doc-

uments retrieved by search engines, from which prerequisite and outcomes concepts can be
learned. Then an ordering of the documents can be achieved on the basis of this concept
annotation.

Let consider a set of documents d1, d2 and d3 returned by a web search engine on
a given topic, and let suppose that the ideal pedagogical ordering of the documents to
understand the topic is d1 ≺ d2 ≺ d3, where “≺” is a precedence relationship. It would
be preferable for a learner to study the documents following the same order: d1 then d2
then d3. In a pedagogical point of view [1], a document d1 which defines a concept must
be studied before a document d2 that uses this concept. Consequently, the document d1
should not use concepts that are defined in d2 and d3 because they are still unknown by
the reader at this moment. In contrast, the documents d2 and d3 can use the concepts
defined in the document d1.

In our work, we adopt the following assumption: if a document dj uses a concept which
is defined in a document di then di comes before dj . Similarly, if dk uses concepts that are
defined in dj and others that are defined in di, dk is then placed after di and dj . It can be
underlined that, in our case, the precedence relation is transitive: if di ≺ dj and dj ≺ dk
then di ≺ dk.

We adopt this assumption to perform the pedagogical sequencing of resources on the
basis of the concepts that they use and define.

4.2 Limitations of resources sequencing

The problem of automatically generating a sequence of documents from the concept an-
notation is very complex, since it corresponds to the definition of a preorder on a set of
documents for which only pairwise local precedence relations are expressed via our previous
assumption. As such, in few cases, there may be some inconsistencies, and sometimes more
information may be needed to conclude which element to rank first. The major problems
that can be encountered are illustrated hereafter on the basis of the documents and the
concepts described in Table 8.

First, in some cases, several sequences can be eligible based on the precedence relations
on concepts. For example, if we consider only concepts c1 and c2 from Table 8, it can be
observed that d1 ≺ d2, d4 and that d2 ≺ d3, d5. Thus the following sequences are eligible:
{d1, d2, d3, d4, d5} or any of the sequences obtained by a permutation of the final subse-
quence {d3, d4, d5}.

Second, in some other cases, cycle can be produced when two documents mutually use
concepts define in the other. For example, if we consider all concepts from Table 8, it is
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possible to obtain the relationships illustrated in Table 9. In this example, d2 ≺ d3 and
d3 ≺ d2 because the concept c3 is defined in d3 and used in d2 and the concept c2 is defined
in d2 and used in d3. The objective of our sequencing methods described hereafter is to
limit the cases where inconsistent solutions are reached. To that aim, a weighting of the
relations between documents is introduced.

Finally, there can exist pedagogical gaps between the documents returned by the search
engine that lead to several sub sequences but no global sequence. In these case, some con-
cepts are missing and cannot link the whole set of documents retrieved by the search engine.
In our work, we make the hypothesis that the search engine is accurate enough, and re-
turns results that are consistent with the pedagogical objective expressed in the user query.

However, it is interesting to notice that these inconsistencies may not be problematic
in real use cases, as they are frequently encountered in real courses that are still taught
as a sequence of resources. We illustrate hereafter two real world examples of pedagogical
inconsistencies in term of prerequisite / outcome:

1. the concept c1 can be defined in the document d1, used in the document d2 and
redefined (or recalled) in the document d3. We obtain: d1 ≺ d2 and d3 ≺ d2 which
cannot be represented easily as a sequence, if we consider strictly our precedence re-
lation based on prerequisite and outcome concepts. Furthermore, if the concept c2 is
also defined in d2 and used in d3, we may have a cyclic relation: d2 ≺ d3 and d2 ≺ d3;

2. teachers may deliberately generate some inconsistencies in their courses to catch the
student attention by giving an example using a concept not yet presented in the
course, but that can be understood by analogy with the learned material. This
method can also be chosen to make transitions between the different components of
the course.

Despite these potential inconsistencies, it should be underlined that the majority of
concepts as shown in Table 8 still validates our assumption. Therefore, different methods
to sequence the documents are described in the following sections to try to circumvent
these problems. A baseline method is first proposed, which is based on a recursive suc-
cession relation between the different documents. Then, different matrix representations
are proposed to deal with inconsistent cases. Score functions are then applied to these
matrices in order to sort the documents.

4.3 Succession method

Our baseline method relies on the following idea: the more documents use concepts that
are defined in a document d, the lower is the rank of d compared to the other documents.
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Concepts Documents defining Documents using
the concepts the concepts

c1 d1 d2, d4

c2 d2 d3, d5

c3 d1, d3 d2, d5

c4 d4 d5

Table 8: Example of documents that define and use concepts

Documents before Documents after
d1 {d2, d4, d5}
d2 {d3, d5}
d3 {d2, d5}
d4 {d5}
d5 ∅

Table 9: Example of precedence relationships between documents

To that aim, a set F (d) of documents following d is generated by first taking into account
the set of documents L(d) that have at least one prerequisite concept c that is defined in
d.

L(d) = {di/d|∃c ∈ Def(d) ∩ Prereq(di)} (2)

where Def(d) (resp. Prereq(d)) is the set of defined concepts (resp. prerequisite concepts)
in the document d. Then the set F (d) of documents following d is recursively extended by
considering all the documents that follow documents in L(d) until no more new documents
can be added.

Then, a score is computed for each document d as the cardinality of the set of its
following documents F (d) as follows:

S(d) = |F (d)| (3)

Finally, the sequencing of the document is realized by ranking the documents in de-
scending order of their S score. Thus, the precedence relation ≺ between two documents
di and dj can be formalized as follows:

di ≺ dj ⇒ S(di) > S(dj) (4)

With the previous example (Table 8), the list of documents that follows d1 is: {d2,
d3, d4, d5}. The score of d1 is thus 4 as shown in Table 10. The resulting documents
sequencing based on the succession method is illustrated in the graph in Figure 9.

4.4 Matrix-based methods

In order to deal with inconsistency (for example cyclic dependency between two or more
documents), we introduce three matrix-based representations and scores functions to ex-
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Documents di F(di) S(di)
d1 {d2, d3, d4, d5} 4
d2 {d3, d5} 2
d3 {d2, d5} 2
d4 {d5} 1
d5 ∅ 0

Table 10: Scores of the documents presented in Table8

Figure 9: Graph representing the order of the documents presented in Table 8 using the succession
method

press more accurately the relations between documents and to help producing the docu-
ments sequence.

4.4.1 Simple Binary Matrix Model (SBM)

In our first model, we define the binary matrix M1 that relies on a basic relation between
each pair of documents. For each pair of documents di and dj , M1 indicates if at least one
defined concept in di is a prerequisite in dj .

Let ϕ(i, j) be the set of concepts defined in di and used in dj :

ϕ(i, j) = Def(di) ∩ Prereq(dj) (5)

The relation matrix M1 can be formalized as follows:

M1[i][j] =

{
1 if |ϕ(i, j)| ≥ 1
0 otherwise.

(6)

We call this method the Simple Binary Matrix (SBM) method hereafter. Table 11 illus-
trates the relation matrix between documents obtained following the example in Table 8.

4.4.2 Comparison-Based Binary Matrix Model (CBBM)

To deal with the problem of cyclic relations, we propose to define a more gradual relation
between documents in a matrix M2, which allows us to decide which document relies most
on the other in case of cyclic relation based on the previous concept relation ϕ (see Eq.
(5)).
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d1 d2 d3 d4 d5
d1 0 1 0 1 1
d2 0 0 1 0 1
d3 0 1 0 0 1
d4 0 0 0 0 1
d5 0 0 0 0 0

Table 11: Simple Binary Model matrix following the example proposed in Table 8

M2[i][j] =

{
1 if |ϕi,j | > |ϕj,i|
0 otherwise.

(7)

We call this method the comparison-based binary matrix (CBBM) method hereafter.

4.4.3 Valued Matrix Model (VM)

Similarly to the previous matrix representations, the third proposed matrix representation
M3 relies on the set of concepts ϕ(i, j) that are defined in a document di and used in dj ,
but adds a weighting scheme to assess to what extent dj uses the concepts introduced in di.
Thus, the relation between a document di and a document dj is stronger if more defined
concepts from di are prerequisite in dj and whether these concepts are representative of all
the prerequisite concepts used in dj . The matrix relation M3 can be defined as follows:

M3[i][j] =
∑

c∈ϕ(i,j)

scoreUse(c, dj) (8)

with

scoreUse(c, d) =
freq(c, d)∑

ci∈Prereq(d) freq(ci, d)
(9)

where freq(c, d) is the number of occurrences of the concept c in the document d. We call
this representation the valued matrix (VM) method hereafter. Score functions are then
applied to this matrix to sort the documents. These functions are detailed in the next
section.

4.5 Score functions

Generally speaking, the problem of ranking deals with the definition of a preorder on a
finite set of alternatives A based on a given valued preference relation R : A2 → [0, 1].
According to [24], a score S(a,R) related to a candidate a ∈ A using a valued preference
relation R(x, y), x, y ∈ A corresponds to:

S(a,R) = F [R(a, b1), ..., R(a, bn−1),
¬R(b1, a), ...,¬R(bn−1, a)], b 6= a
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where F is a non decreasing function of 2(n − 1) arguments if n represents the cardi-
nality of A.

Authors in [24] propose to rank alternatives inA according to scores which are computed
from a graph representation of the alternatives and their preference relation R. A weighted
directed graph G(A,R) is defined such as each vertex is associated to one candidate and
each directed edge between two candidates a and b is weighted by the degree of preference
of the candidate a over candidate b. Then, it is possible to define for each vertex (or
candidate) three scores which correspond to the entering flow (SE), the leaving flow (SL)
and the net flow (SL/E) as follows:

SE(a,R) = −
∑

c∈A\{a}

R(c, a)

SL(a,R) =
∑

c∈A\{a}

R(a, c)

SL/E(a,R) =
∑

c∈A\{a}

[R(a, c)−R(c, a)]

= SL(a,R) + SE(a,R)

Candidates are then ordered according to the decreasing order of their scores:

a ≥E b iff SE(a,R) ≥ SE(b, R)

a ≥L b iff SL(a,R) ≥ SL(b, R)

a ≥L/E b iff SL/E(a,R) ≥ SL/E(b, R)

In our study, we consider the degree of preference R as a precedence relationship be-
tween documents as formalized by the three matrix-based methods (see Section 4.4). Then,
the graph derived scores SE , SL and SL/E can be applied to rank the documents according
to their concepts definition precedence relation and produce the expected pedagogical or-
der. As an example, let consider the matrix obtained with the SBM model presented earlier
(see Table 11). The different scores assigned to each document are given in Table 12. To
each score corresponds a complete ranking, that can, in turn, be represented as a directed
graph (see Figure 10).

In our study, we use these scores to rank the documents by adopting the above matrix
representations.

4.6 Pairwise learning method

In this paper, we also propose to use a pairwise ranking algorithm approach that traduces
the original ranking problem into a traditional 2-class classification problem that can be
solved with well-known classification algorithms. In this context, each example given to
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SL SE SL/E

Doc1 3 0 3
Doc2 2 -2 0
Doc3 2 -1 1
Doc4 1 -1 0
Doc5 0 -4 -4

Table 12: Documents scores

Figure 10: Graph order representation with different scores

the machine-learning algorithm, instead of corresponding to one document, represents a
pairwise relation between two documents. This relation is denoted (d1, d2) and indicates
that d1 comes before d2. The class that is attributed to this relation is 1 when d1 comes
before d2 and 0 otherwise.

With this kind of representation, only one pair (d1, d2) is needed to fully represent the
possible relations between documents d1 and d2.
In our model, each pair (d1, d2) is represented by two attributes scoreDef1Used2 and
scoreDef2Used1 that denotes respectively the ratio between the number of concepts defined
in d1 (resp. d2) used in d2 (resp. d1) and the number of concepts in d1 (resp. d2). The set
of all examples given to machine learning algorithms contains the comparisons of d1 with
d2, . . . , dn, the comparisons of d2 with d3, . . . , dn and so on.

4.7 Experiments and results

4.7.1 Resources sequencing evaluation

Several methods have been described in the literature to evaluate the pedagogical resource
sequencing systems. For example, in [22], the system is evaluated according to ratings
expressed by a set of more than 100 representative users, and then validated by analyzing
their behaviors. This study allows the authors to conclude to which extent the proposed
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sequences were helpful to learn new material. In [32], authors compare the path generated
by their system to the ideal path obtained when simulating a perfect rule-based system.
In our case, neither a representative panel of users, nor a perfect ordering of the document
could be achieved. Furthermore, a manual ordering of documents retrieved by a search en-
gine would be too much time consuming. As a consequence, we choose to simulate queries
on a web search engine with a physics tutorial web site (see Sections 3.5 and 4.7.2) in which
resources are already ordered in a pedagogical way, as a sequence of lessons. It is then possi-
ble, similarly to [32], to validate our approach by comparing the sequence generated by our
system to the ideal sequence of documents proposed by the author of the tutorial. Hence,
we could conclude that our sequencing method is effective, only if our system manages to
produce automatically, on the only basis of prerequisites and outcomes concepts annotated
automatically, the ideal sequences of pages as appearing in the outline of the online tutorial.

To evaluate the agreement between two sequences, we use the Kendall’s tau metric [21]
which measures the total number of pairwise inversions between two lists.

Let n denote the number of objects to be ranked, the total number of distinct pairs is
n(n− 1)/2. The generalized Kendall’s tau between two lists σ1 and σ2 is formally defined
as follows:

K(σ1, σ2) =
2

n(n− 1)

∑
(i,j)∈[1,n]2,i 6=j

Pσ1,σ2(i, j)) (10)

where:

Pσ1,σ2(i, j) =

{
0 if (i, j) is a concordant pair.
1 if (i, j) is a discordant pair.

(11)

The higher the Kendall’s tau, the greater the discordance between the two lists.

4.7.2 Web search engine results simulation

As already indicated, experiments are conducted on the physics tutorial web site introduced
in Section 3.5. Resources available in this web site are divided into 13 topics more or less
independent (1-D Kinematics, Newton’s Law, Vectors, Work Energy and Power, Statistic
electricity, Waves, etc.). In order to simulate a request on a web search engine on a given
topic, we consider that all the resources from that topic on the tutorial web sites are
returned. Thus, our study takes place in an ideal environment in which all documents
returned are pertinent, and where there is, a priori, no pedagogical gap. Moreover, as the
tutorial web site is organized as a sequence of lessons (and each lesson as a sequence of
documents), it is possible to access the outline of each lesson to retrieve an ideal order of
the resources for that particular lesson.
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Succession method (SD)
Kendall’s tau 0.37 (± 0.15)

Table 13: Results obtained with the succession method, SD: standard deviation

SL (SD) SE (SD) SL/E (SD)
The SBM method 0.33 (± 0.08) 0.27 (± 0.09) 0.29 (± 0.11)
The CBBM method 0.33 (± 0.09) 0.25 (± 0.08) 0.28 (± 0.08)
The VM method 0.30 (± 0.06) 0.22 (± 0.05) 0.26 (± 0.07)

Table 14: Results obtained with the matrix methods in terms of Kendall’s tau, SD: standard
deviation

In the experiments, each topic from the tutorial web site is evaluated separately. For
each topic, documents are analyzed to extract their prerequisite and outcome concepts and
the sequencing method are applied. The resulting sequence is then compared to the ideal
sequence for this topic according to Kendall’s tau. The overall Kendall’s tau is obtained
by considering the average of the Kendall’s tau for all the topics.

Experiments with the pairwise learning method are conducted with a cross-validation
over the 13 topics: learning is performed on documents retrieved on 12 topics and the
remaining topic is used for test purpose. Ideally, other tests should be conducted on
several web sites to be more consistent with the documents returned by a real web search
engines on a given topic.

4.7.3 Experiments

In this section, we report the experiments related to the sequencing methods presented pre-
viously. Table 13 illustrates the results in terms of Kendall’s tau which are obtained with
the succession method. The results obtained with the matrix methods using the different
score functions are reported in Table 14. Finally, Table 15 describes the results obtained
with our pairwise ranking methods using SVM with a polynomial kernel. SVM algorithm
has been selected because it has been often used in the literature for document ranking
and generally referenced as ranking SVM [28, 10].

It can be first underlined that best results are obtained with the matrix methods com-
pared to the succession method. With the matrix methods, even if the Kendall’s tau are

SVM (SD)
Kendall’s tau 0.342 (± 0.084)

Table 15: Results obtained with the pairwise ranking methods in terms of Kendall’s tau,
SD: standard deviation
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relatively close for the three methods, the valued matrix (VM) representation seems to of-
fer the best overall results (in particular for the Leaving Flow SL method). Indeed, as the
VM method takes into account the amount of use of each concept in each document. This
representation gives more importance to prerequisite concepts that are used frequently in
a document than those rarely used. Thus, this representation can deal with cases when a
document mentions a concept not yet defined in the lesson to prepare a transition to the
following document.

Moreover, it can be observed that the scores assigned to the entering flow (SE) give
better results than those assigned to the leaving flow (SL). So, it appears that, in our case,
the documents sequencing depends more on the entering flow than on the leaving flow.
Indeed, for each document, the precedence relationship is based on prerequisite concepts
that are defined in the previous documents and so in documents preceding the current one,
i.e. its entering flow.

As the results of our different methods are very close, future works have to test our
method on other, eventually larger, data sets to state more clearly if the differences ob-
served are statistically significant.

Second, it can be read from Table 15 that, our pairwise learning method (PL), based
on SVM ranking, gives better results than the simple binary matrix method. Indeed in the
PL method, normalized scores are used to represent the relation between the documents
which makes the comparison between the documents more suitable than a simple count of
the number of concepts as is the case with the SBM approach.

Furthermore, the PL method learns the precedence relation from more examples than
the simple binary matrix. Indeed, in PL method all the concepts of 12 topics are used
to order the resources in the 13th topic whereas in the simple binary matrix method only
concepts of a given topic are used to order its resources.

However, the PL method gives less interesting results than the VM approach. Indeed,
very limited information is used with the PL method to characterize the pairwise docu-
ments relations compared to the VM method, making it difficult to predict the ranking
of the documents. With the PL method, features are grouped into two global properties,
whereas the VM approach assign a score to each concept mentioned in a documents, giving
greater importance to the most frequent concepts. Yet, assigning features to all the con-
cepts cannot not be used with the PL method since concepts may be used in the learning
examples and not in the test example and vice versa. Consequently, such features become
inappropriate with a machine learning approach.

Finally, Table 16 illustrates the results obtained by considering all the documents, when
they are not grouped according to their topics, as if a user requested the search engines
with a query about a general term like “physics”. As expected, it can be observed that
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VM method Succ.
SL SE SL/E method

Kendall’s tau 0.51 0.46 0.48 0.47

Table 16: Ranking results obtained using all the documents

the obtained Kendall’s tau are very high, which means that there is a low agreement
between the order implied by the prerequisite / outcome concepts sequencing on all the
documents and the order in which topics are presented in our physics tutorial. In fact, it
can be observed from the tutorial web site that topics are not presented as a sequence and
that the order does not necessarily have a pedagogical meaning, which in turn explains this
result. However, in each topic, lessons and resources that compose each lesson are organized
as sequences. For this reason, our method is efficient when considering the resources of
one topic at a time. Similarly, some subsequences of documents are coherent when all the
topics are considered.

- Calculating the Amount of Work Done by Forces

- Power

- Definition and Mathematics of Work

- Potential Energy

- Kinetic Energy

- Mechanical Energy

- Internal vs. External Forces

- Analysis of Situations Involving External Forces

- Analysis of Situations in Which Mechanical Energy is Conserved

- Application and Practice Questions

- Bar Chart Illustrations

The obtained rank

The original rank

Figure 11: Example of a generated rank compared to the original rank

Figure 11 illustrates an example of a rank produced by the VM method using the (SE)
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scores compared to the order chosen by the tutorial author. From Figure 11, it can be
noticed that the resources of the section “Lesson 1” are ranked before the resources of the
section “Lesson 2”, which is a macro correct order. More precisely, all the documents in
Lesson 2 are ranked correctly, whereas, in Lesson 1, some documents have been reversed,
for example the first and the second document. This is due to the fact that both of them
define the concept work. Then, Document 1/e. entitled power is ranked second since it
uses the concept work as a prerequisite, whereas the concepts defined in Documents 1/b.,
1/c. and 1/d. are not prerequisite for that document. Consequently, Document 1/e. is
placed before them.

All our experiments show that it is possible to generate a meaningful sequence of doc-
uments retrieved from a search engine on the basis of prerequisite and outcome concepts.
However, documents sequencing in a pedagogical order is a real challenging research domain
as even two manual orderings of pedagogical documents by two human experts can lead
to slightly different sequences, and that some inconsistencies can exist if not enough infor-
mation on precedence between documents is available or in case of cyclic reference. In this
context, the proposed method proves to be efficient by trying not to violate prerequisite-
outcome constraints while still getting close to the ground truth expert ordering.

5 Conclusions and perspectives

As already mentioned in the introduction of this paper, the objective of any tutoring system
is to provide resources to learners that are adapted to their current state of knowledge, or
in a way that facilitates the acquisition of new knowledge. Current search engines generally
answers a set of isolated documents covering a given topic related to the user query. In the
context of e-learning, it is crucial to propose a learner a sequence of these documents to
help her (him) structure and build efficiently her (his) knowledge. To that aim, this paper
introduces a novel automatic method for pedagogical sequencing of documents returned
by a web search engine that relies on automatic concepts annotation. Very few works have
been conducted to this day on automatic prerequisite-outcome annotation and to the best
of our knowledge, no research describes a method to produce a consistent sequence of ped-
agogical documents from this information. The contribution of this paper is two-fold: first
it describes a machine learning method for prerequisite-outcome annotation and second
several document sequencing algorithms on the basis of the previous prerequisite-outcome
annotations.

The first contribution of this paper is to enrich the preliminary research introduced in
[13]. Compared to existing works on prerequisite and outcome annotations, the novelty of
the proposed method relies on the use of machine learning techniques to predict the class
of each concept on the basis of contextual and local features. The paper then presents
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an extended evaluation of this approach, compared to a variant of the rule based (LP)2

algorithm [14], and to the baseline method proposed in [8]. Experiments conducted on a
data set made of 150 HTML documents show that our machine learning based approach
paired with an SVM classifier outperforms the two other methods when aggregating the
features of the occurrences of a concept in a document.

In a second part of the study, we introduce a novel method for documents sequencing
based on the previous concepts annotation. As indicated in Section 2, several works have
been conducted in the domain of pedagogical document sequencing. All these systems rely
on a knowledge model (ontologies), a user model, instructional policies and an explicit
pedagogical objective that the generated sequence of resources tries to achieve. However,
these studies are in the context of tailoring the learning experience of each user while our
objective, that differs slightly, is to present an ordered view of web search results to facil-
itate the understanding of new pedagogical material. To achieve this objective, the main
intuition is to use prerequisites and outcomes of each returned documents with the simple
assumption that a document that defines a concept should precede the other documents
that use it. To that aim, we introduce different scoring functions to transcribe the prece-
dence relationship between learning resources based on prerequisites and outcomes. Our
evaluation is similar to [32], but as it is not possible to compute automatically or define
manually a perfect sequence of documents resulting from a user query on a search engine,
in our simulations we compare our generated learning path with the ideal path that is
implicitly defined by the tutorial author from which documents are retrieved. A pairwise
learning approach is also performed to predict the rank between each pair of documents,
the overall ranking being generated afterward by transitivity. First experiments realized
on documents retrieved from a physics tutorial web site show that better results are ob-
tained using a valued matrix representation that indicates to what extent each document
comes before the others. These first experimental results provide evidences that the pro-
posed methodology can generate accurate ordering of search results, avoiding the need for
defining complex manual rules.

However, it appears that other tests should be conducted on more data sets to validate
our approach. Indeed, extended tests should be conducted on real documents returned
by web search engines on predefined user queries related to several pedagogical objectives,
that are more or less general (for example “physics” versus “kinetic energy”). In order to
be independent from the indexing method of a particular search engine, tests should also
be repeated on several search engines. Then tests could also be conducted to evaluate the
robustness of our model to pedagogical gap so that our methods could be improved to bet-
ter handle this kind of problem. Finally, tests should also be conducted on web documents
for which an ordering is known to validate our method.

The research described in this paper can be further improved either on the aspects
related to concept annotation or on the aspect related to documents sequencing. Con-
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cerning the concept annotation problem, further studies should be conducted on new data
sets to evaluate more accurately the generalization of our model even if tests reported in
Section 3.5 show promising results. Second, extended tests should be conducted to eval-
uate in real use case, the quality of annotation based on potentially erroneous concept
identification (in our paper, the automatic concept identification is manually corrected to
evaluate more accurately the benefits of our approaches). Finally, further research should
be conducted to define a more flexible weighting scheme between local and contextual fea-
tures to adapt automatically to different concepts contexts.

Similarly to concept annotation, our documents sequencing algorithm could be im-
proved. The sequencing strategy could be further involved in an Intelligent Tutoring Sys-
tem to help a professor in the preparation of a new course in a given topic, and to help
a student following the most appropriate learning path depending on her (his) skill and
competence as in other AEH systems (see Section 2). Further research can be performed
to extend the proposed approach in order to realize a personalized resource sequencing
on the basis of all the information that characterize a student: which documents she has
accessed in the past, how long she interacted with them, how many times she came back
to a specific resource, etc. Documents sequencing could then also be adapted according
to the student need as in other systems, while still relying on prerequisite and outcome
concepts annotation.

Finally, in our work, prerequisite-outcome concepts annotation is exploited for auto-
matic pedagogical sequencing. Concepts annotation can be further exploited to graphically
visualize the relations between concepts and even between documents. This graph can rep-
resent an overview of a knowledge domain as returned by a search engine and help the
student to better access to the required information.
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