Simplified detection and labeling of overlapping communities of interest in question-and-answer sites

Abstract : In many social networks, people interact based on their interests. Community detection algorithms are then useful to reveal the sub-structures of a network and in particular interest groups. Identifying these users’ communities and the interests that bind them can help us assist their life-cycle. Certain kinds of online communities such as question-and-answer (Q&A) sites or forums, have no explicit social network structure. Therefore, many traditional community detection techniques do not apply directly. In this paper, we propose TTD (Topic Trees Distributions) an efficient approach for extracting topic from Q&A sites in order to detect communities of interest. Then we compare three detection methods we applied on a dataset extracted from the popular Q&A site StackOverflow. Our method based on topic modeling and user membership assignment is shown to be much simpler and faster while preserving the quality of the detection.
Type de document :
Communication dans un congrès
2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Dec 2015, Singapore, Singapore. pp.107-114 〈10.1109/WI-IAT.2015.184〉
Domaine :
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01187400
Contributeur : Catherine Faron Zucker <>
Soumis le : mercredi 13 juillet 2016 - 18:18:38
Dernière modification le : mardi 19 juillet 2016 - 11:36:17

Fichier

bare_conf_wi2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Zide Meng, Fabien Gandon, Catherine Faron-Zucker. Simplified detection and labeling of overlapping communities of interest in question-and-answer sites. 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Dec 2015, Singapore, Singapore. pp.107-114 〈10.1109/WI-IAT.2015.184〉. 〈hal-01187400〉

Partager

Métriques

Consultations de la notice

431

Téléchargements de fichiers

83