Bayesian Fusion of Multi-Band Images
Qi Wei, Nicolas Dobigeon, Jean-Yves Tourneret

To cite this version:

HAL Id: hal-01187286
https://hal.archives-ouvertes.fr/hal-01187286
Submitted on 26 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 14212

To link to this article: DOI:10.1109/JSTSP.2015.2407855
URL: http://dx.doi.org/10.1109/JSTSP.2015.2407855

To cite this version: Wei, Qi and Dobigeon, Nicolas and Tourneret, Jean-Yves Bayesian Fusion of Multi-Band Images. (2015) IEEE Journal of Selected Topics in Signal Processing, vol. 9 (n° 6). pp. 1117-1127. ISSN 1932-4553

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Bayesian Fusion of Multi-Band Images

Qi Wei, Student Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper presents a Bayesian fusion technique for remotely sensed multi-band images. The observed images are related to the high spectral and high spatial resolution image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or subsampling defined by the sensor characteristics. The fusion problem is formulated within a Bayesian estimation framework. An appropriate prior distribution exploiting geometrical considerations is introduced. To compute the Bayesian estimator of the scene of interest from its posterior distribution, a Markov chain Monte Carlo algorithm is designed to generate samples asymptotically distributed according to the target distribution. To efficiently sample from this high-dimension distribution, a Hamiltonian Monte Carlo step is introduced within a Gibbs sampling strategy. The efficiency of the proposed fusion method is evaluated with respect to several state-of-the-art fusion techniques.

Index Terms—Fusion, super-resolution, multispectral and hyperspectral images, deconvolution, Bayesian estimation, Hamiltonian Monte Carlo algorithm.

I. INTRODUCTION

The problem of fusing a high spatial and low spectral resolution image with an auxiliary image of higher spectral but lower spatial resolution, also known as multi-resolution image fusion, has been explored for many years [2]. When considering remotely sensed images, an archetypal fusion task is the pansharpening, which generally consists of fusing a high spatial resolution panchromatic (PAN) image and low spatial resolution multispectral (MS) image. Pansharpening has been addressed in the literature for several decades and still remains an active topic [2]–[4]. More recently, hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands, has opened a new range of relevant applications, such as target detection, classification and spectral unmixing [5]. The visualization of HS images is also interesting to be explored [6]. Naturally, to take advantage of the newest benefits offered by HS images, the problem of fusing HS and PAN images has received some attention in the literature [7]–[9]. Capitalizing on decades of experience in MS pansharpening, most of the HS pansharpening approaches merely adapt existing algorithms for PAN and MS fusion [10], [11]. Other methods are specifically designed to the HS pansharpening problem (see, e.g., [8], [12], [13]). Conversely, the fusion of MS and HS images has been considered in fewer research works and is still a challenging problem because of the high dimensionality of the data to be processed. Indeed, the fusion of MS and HS differs from traditional MS or HS pansharpening by the fact that more spatial and spectral information is contained in multi-band images. This additional information can be exploited to obtain a high spatial and spectral resolution image. In practice, the spectral bands of panchromatic images always cover the visible and infra-red spectra. However, in several practical applications, the spectrum of MS data includes additional high-frequency spectral bands. For instance the MS data of WorldView-3 have spectral bands in the intervals [400–1750] nm and [2145–2365] nm whereas the PAN data are in the range [450–800] nm. Another interesting example is the HS+MS suite (called hyperspectral imager suite (HISUI)) that has been developed by the Japanese ministry of economy, trade, and industry (METI) [14]. HISUI is the Japanese next-generation Earth-observing sensor composed of HS and MS imagers and will be launched by the H-IIB rocket in 2015 or later as one of mission instruments onboard JAXA’s ALOS-3 satellite. Some research activities have already been conducted for this practical multi-band fusion problem [15]. However, a lot of pansharpening methods, such as component substitution [2], relative spectral contribution [16] and high-frequency injection [17] are inapplicable or inefficient for the HS + MS fusion problem. To address the challenge raised by the high dimensionality of the data to be fused, innovative methods need to be developed, which is the main objective of this paper.

As demonstrated in [18], [19], the fusion of HS and MS images can be conveniently formulated within a Bayesian inference framework. Bayesian fusion allows an intuitive interpretation of the fusion process via the posterior distribution. Since the fusion problem is usually ill-posed, the Bayesian methodology offers a convenient way to regularize the problem by defining an appropriate prior distribution for the scene of interest. Following this strategy, Hardie et al. proposed a Bayesian estimator for fusing co-registered high spatial-resolution MS and high spectral-resolution HS images [18]. To improve the denoising performance, Zhang et al. implemented the estimator of [18] in the wavelet domain [19].

In this paper, a prior knowledge accounting for artificial constraints related to the fusion problem is incorporated within the model via the prior distribution assigned to the scene to be estimated. Many strategies related to HS resolution enhance-
A priori modeled by an inhomogeneous Gaussian Markov random field (IGMRF). The parameters of this IGMRF are empirically estimated from a PAN image in the first step of the analysis. In [18] and related works [20], [21], a multivariate Gaussian distribution is proposed as prior distribution for the unobserved scene. The resulting conditional mean and covariance matrix can then be inferred using a standard clustering technique [18] or using a stochastic mixing model [20], [21], incorporating spectral mixing constraints to improve spectral accuracy in the estimated high resolution image. In this paper, we propose to explicitly exploit the acquisition process of the different images. More precisely, the sensor specifications (i.e., spectral or spatial responses) are exploited to properly design the spatial or spectral degradations affecting the image to be recovered [22]. Moreover, to define the prior distribution assigned to this image, we resort to geometrical considerations well admitted in the HS imaging literature devoted to the linear unmixing problem [23]. In particular, the high spatial resolution HS image to be estimated is assumed to live in a lower dimensional subspace, which is a suitable hypothesis when the observed scene is composed of a finite number of macroscopic materials.

Within a Bayesian estimation framework, two statistical estimators are generally considered. The minimum mean square error (MMSE) estimator is defined as the mean of the posterior distribution. Its computation requires multidimensional integrations. Conversely, the maximum a posteriori (MAP) estimator is defined as the mode of the posterior distribution and is usually associated with a penalized maximum likelihood approach. Mainly due to the complexity of the integration required by the computation of the MMSE estimator (especially for high-dimension data), most of the Bayesian estimators have proposed to solve the HS and MS fusion problem using a MAP formulation [18], [19], [24]. However, optimization algorithms designed to maximize the posterior distribution may suffer from the presence of local extrema, that prevents any guarantee to converge towards the actual maximum of the posterior. In this paper, we propose to compute the MMSE estimator of the unknown scene by using samples generated by a Markov chain Monte Carlo (MCMC) algorithm. The posterior distribution resulting from the proposed forward model and the a priori modeling is defined in a high dimensional space, which makes difficult the use of any conventional MCMC algorithm, e.g., the Gibbs sampler or the Metropolis-Hastings algorithm [25]. To overcome this difficulty, a particular MCMC scheme, called Hamiltonian Monte Carlo (HMC) algorithm, is investigated [26], [27]. It differs from the standard Metropolis-Hastings algorithm by exploiting Hamiltonian evolution dynamics to propose states with higher acceptance ratio, reducing the correlation between successive samples. Thus, the main contributions of this paper are two-fold. First, the paper presents a new hierarchical Bayesian fusion model whose parameters and hyperparameters can be estimated from the observed images. This model is defined by the likelihood, the priors and the hyper-priors detailed in the following sections. Second, a hybrid Gibbs sampler based on a Hamiltonian MCMC method is introduced to sample the desired posterior distribution. These samples are subsequently used to approximate the MMSE estimator of the fused image.

The paper is organized as follows. Section II formulates the fusion problem in a Bayesian framework, with a particular attention to the forward model that exploits physical considerations. Section III derives the hierarchical Bayesian model to obtain the joint posterior distribution of the unknown image, its parameters and hyperparameters. In Section IV, the hybrid Gibbs sampler based on an HMC step is introduced to sample the desired posterior distribution. Simulations are conducted in Section V and conclusions are finally reported in Section VI.

II. PROBLEM FORMULATION

A. Notations and Observation Model

Let \(\mathbf{Z}_1, \ldots, \mathbf{Z}_P \) denote a set of \(P \) multi-band images acquired by different optical sensors for a same scene \(\mathbf{X} \). These measurements can be of different natures, e.g., PAN, MS and HS, with different spatial and/or spectral resolutions. The observed data \(\mathbf{Z}_{p}, p = 1, \ldots, P \), are supposed to be degraded versions of the high-spectral and high-spatial resolution scene \(\mathbf{X} \), according to the following observation model

\[
\mathbf{Z}_p = \mathcal{F}_p(\mathbf{X}) + \mathbf{e}_p.
\]

In (1), \(\mathcal{F}_p(\cdot) \) is a linear or nonlinear transformation that models the degradation operated on \(\mathbf{X} \). As previously assumed in numerous works (see for instance [3], [19], [24], [28], [29] among some recent contributions), these degradations may include spatial blurring, spatial decimation and spectral mixing which can all be modeled by linear transformations. In what follows, the remotely sensed images \(\mathbf{Z}_p \) and the unobserved scene \(\mathbf{X} \) are assumed to be pixelated images of sizes \(n_{x,p} \times n_{y,p} \times n_{\lambda,p} \) and \(m_{x} \times m_{y} \times m_{\lambda} \), respectively, where \(x \) and \(y \) refer to both spatial dimensions of the images, and \(\lambda \) is for the spectral dimension. Moreover, in the right-hand side of (1), \(\mathbf{e}_p \) is an additive error term that reflects the mismodeling and the observation noise.

Classically, the observed image \(\mathbf{Z}_p \) can be lexicographically ordered to build the \(N_p \times 1 \) vector \(\mathbf{z}_p \), where \(N_p = n_{x,p} n_{y,p} n_{\lambda,p} \) is the total number of measurements in the observed image \(\mathbf{Z}_p \). For writing convenience, but without any loss of generality, the band interleaved by pixel (BIP) vectorization scheme (see ([30], pp. 103–104) for a more detailed description of these data format conventions) is adopted in what follows (see paragraph III-B.1). Considering a linear degradation, the observation equation (1) can be easily rewritten as follows

\[
\mathbf{z}_p = \mathbf{F}_p \mathbf{x} + \mathbf{e}_p
\]

where \(\mathbf{x} \in \mathbb{R}^M \) and \(\mathbf{e}_p \in \mathbb{R}^{N_p} \) are ordered versions of the scene \(\mathbf{X} \) (with \(M = m_{x} m_{y} m_{\lambda} \)) and the noise term \(\mathbf{e}_p \), respectively. In this work, the noise vector \(\mathbf{e}_p \) will be assumed to be a band-dependent Gaussian sequence, i.e.,

\[
\mathbf{e}_p \sim \mathcal{N}(\mathbf{0}_{N_p}, \mathbf{\Lambda}_p)
\]

where \(\mathbf{0}_{N_p} \) is an \(N_p \times 1 \) vector made of zeros and \(\mathbf{\Lambda}_p = \mathbf{I}_{n_{x,p} n_{y,p} n_{\lambda,p}} \otimes \mathbf{S}_p \) is an \(N_p \times N_p \) matrix where \(\mathbf{I}_{n_{x,p} n_{y,p} n_{\lambda,p}} \in \mathbb{R}^{n_{x,p} n_{y,p} n_{\lambda,p} \times n_{x,p} n_{y,p} n_{\lambda,p}} \) is the identity matrix, \(\otimes \) is the Kronecker product and \(\mathbf{S}_p \in \mathbb{R}^{n_{x,p} n_{y,p} n_{\lambda,p} \times n_{x,p} n_{y,p} n_{\lambda,p}} \) is a diagonal matrix containing the noise variances, i.e.,

\[
\mathbf{S}_p = \text{diag}(s_{p,1}^2, \ldots, s_{p,n_{x,p}}^2).
\]

In (2), \(\mathbf{F}_p \) is an \(N_p \times M \) matrix
that reflects the spatial and/or spectral degradation \(F_p(\cdot) \) operated on \(x \). For instance, when applied to a single-band image (i.e., \(n_{Y_p} = m_x = 1 \)) with a decimation factor \(d \) in both spatial dimensions, it is easy to show that \(F_p \) is an \(n_x n_y m_x m_y \) block diagonal matrix with \(m_x = d n_x p \) and \(m_y = d n_y p \) [31]. Another example of degradation frequently encountered in the signal and image processing literature is spatial blurring [19], where \(F_p(\cdot) \) usually represents a 2-dimensional convolution by a kernel \(k_p \). Similarly, when applied to a single-band image, \(F_p \) is an \(n_x n_y \) Toeplitz matrix. The problem addressed in this paper consists of recovering the high-spectral and high-spatial resolution scene \(x \) by fusing the various spatial and/or spectral information provided by all the observed images \(z = \{x_1, \ldots, x_P\} \).

B. Bayesian Estimation of \(x \)

In this work, we propose to estimate the unknown scene \(x \) within a Bayesian estimation framework. In this statistical estimation scheme, the fused highly-resolved image \(x \) is inferred through its posterior distribution \(f(x | z) \). Given the observed data, this target distribution can be derived from the likelihood function \(f(z | x) \) and the prior distribution \(f(x) \) by using the Bayes formula \(f(x | z) \propto f(z | x) f(x) \), where \(\propto \) means “proportional to”. Based on the posterior distribution, several estimators of the scene \(x \) can be investigated. For instance, maximizing \(f(x | z) \) leads to the MAP estimator

\[
\hat{x}_{\text{MAP}} = \mathop{\arg\max}_{x} f(z | x).
\]

This estimator has been widely exploited for HS image enhancement (see for instance [18], [20], [21] or more recently [3], [19]). This work proposes to focus on the first moment of the posterior distribution \(f(x | z) \), which is known as the posterior mean estimator or the MMSE estimator \(\hat{x}_{\text{MMSE}} \). This estimator is defined as

\[
\hat{x}_{\text{MMSE}} = \int x f(x | z) dx = \frac{\int x f(z | x) f(x) dx}{\int f(z | x) f(x) dx}.
\]

In order to compute (3), we propose a flexible and relevant statistical model to solve the fusion problem. Deriving the corresponding Bayesian estimator \(\hat{x}_{\text{MMSE}} \) defined in (3), requires the definition of the likelihood function \(f(z | x) \) and the prior distribution \(f(x) \). These quantities are detailed in the next section whereas notations are summarized in Table I.

III. Hierarchical Bayesian Model

A. Likelihood Function

The statistical properties of the noise vectors \(e_p \) (\(p = 1, \ldots, P \)) allow one to state that the observed vector \(z_p \) is normally distributed with mean vector \(F_p x \) and covariance matrix \(\Lambda_p \). Consequently, the likelihood function, that represents a data fitting term relative to the observed vector \(z_p \), can be easily derived leading to

\[
f(z_p | x, \Lambda_p) = (2\pi)^{-P/2} \Lambda_p^{-1/2} \exp \left(-\frac{1}{2} (z_p - F_p x)^T \Lambda_p^{-1} (z_p - F_p x) \right)
\]

where \(\Lambda_p \) is the determinant of the matrix \(\Lambda_p \). As mentioned in the previous section, the collected measurements \(z \) may have been acquired by different (possibly heterogeneous) sensors.

B. Prior Distributions

The unknown parameters of the likelihood (4) are the scene \(x \) to be recovered and the noise covariance matrix \(\Lambda \). As a consequence, the joint likelihood function of the observed data is

\[
f(z | x, \Lambda) = \prod_{p=1}^{P} f(z_p | x, \Lambda_p)
\]

with \(\Lambda = (\Lambda_1, \ldots, \Lambda_P)^T \).

1) Scene Prior: Following a BIP strategy, the vectorized image \(x \) can be decomposed as \(x = [x_1^T, x_2^T, \ldots, x_T^T]^T \), where \(x_i = [x_{i,1}, x_{i,2}, \ldots, x_{i,m_x}]^T \) is the \(m_x \times 1 \) vector corresponding to the \(i \)th spatial location (with \(i = 1, \ldots, m_x n_y \)). Since adjacent HS bands are known to be highly correlated, the HS vector \(x_i \) usually lives in a subspace whose dimension is much smaller than the number of bands \(m_x \) [32], i.e.,

\[
x_i = V^T u_i
\]

where \(u_i \) is the projection of the vector \(x_i \) onto the subspace spanned by the columns of \(V^T \in \mathbb{R}^{m_x \times m_x} \). Note that \(V^T \) is possibly known \textit{a priori} from the scene or can be learned from the HS data. In the proposed framework, we exploit the dimensionality reduction (DR) as prior information instead of reducing the dimensionality of HS data directly. Another motivation for DR is that the dimension of the subspace \(m_x \) is generally much smaller than the number of bands, i.e., \(m_x < m_x \). As a consequence, inferring in the subspace \(\mathbb{R}^{m_x \times 1} \) greatly decreases the computational burden of the fusion algorithm. Note that the DR transformation defined by (5) has been used in some related HS analysis references, e.g., [23], [32]. More experimental justifications for the necessity of DR can be found in [33].

Table I

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z)</td>
<td>unobserved scene/target image</td>
<td>(m_x \times m_y \times m_x \times m_y)</td>
</tr>
<tr>
<td>(z_i)</td>
<td>vectorization of (x)</td>
<td>(m_x m_y m_x \times 1)</td>
</tr>
<tr>
<td>(s_i)</td>
<td>ith spectral vector of (x)</td>
<td>(m_x \times 1)</td>
</tr>
<tr>
<td>(u)</td>
<td>vectorized image in subspace</td>
<td>(m_x m_y \tilde{m}_\Lambda \times 1)</td>
</tr>
<tr>
<td>(\mu_n)</td>
<td>prior mean of (u)</td>
<td>(\tilde{m}_\Lambda \times 1)</td>
</tr>
<tr>
<td>(\Sigma_u)</td>
<td>prior covariance of (u)</td>
<td>(m_x m_y \tilde{m}\Lambda \times m_x m_y \tilde{m}\Lambda)</td>
</tr>
<tr>
<td>(\mu_{u_i})</td>
<td>prior mean of (u_i)</td>
<td>(\tilde{m}_\Lambda \times 1)</td>
</tr>
<tr>
<td>(\Sigma_{u_i})</td>
<td>prior covariance of (u_i)</td>
<td>(\tilde{m}\Lambda \times \tilde{m}\Lambda)</td>
</tr>
<tr>
<td>(P)</td>
<td>number of multi-band images</td>
<td>1</td>
</tr>
<tr>
<td>(z_p)</td>
<td>pth remotely sensed images</td>
<td>(n_x n_y m_x, n_x n_y m_x)</td>
</tr>
<tr>
<td>(z)</td>
<td>set of (P) observation (z_p)</td>
<td>(n_x n_y n_x n_y, n_x n_y n_x n_y)</td>
</tr>
</tbody>
</table>
distribution to the vectors x_i, we propose to define a prior for the projected vectors u_i, \(i = 1, \ldots, m \times m_y\)

$$u_i, \mu_{u_i}, \Sigma_{u_i}, \sim N(\mu_{u_i}, \Sigma_{u_i}) \quad (6)$$

As u_i is a linear transformation of x_i, the Gaussian prior assigned to u_i leads to a Gaussian prior for x_i, which allows the ill-posed problem (2) to be regularized. The covariance matrix Σ_{u_i} is designed to explore the correlations between the different spectral bands after projection in the subspace of interest. Also, the mean μ_{u_i} of the whole image u as well as its covariance matrix Σ_{u_i} can be constructed from μ_u and Σ_u as follows

$$\bar{\mu}_u = \left[\mu_u^T, \cdots, \mu_u^{n_{m \times m_y}} \right]^T$$
$$\bar{\Sigma}_u = \text{diag} \left[\Sigma_{u_1}, \cdots, \Sigma_{u_{m \times m_y}} \right]$$

The Gaussian prior assigned to u implies that the target image u is a priori not too far from the mean vector $\bar{\mu}_u$, whereas the covariance matrix Σ_u tells us how much confidence we have for the prior (the choice of the hyperparameters $\bar{\mu}_u$ and Σ_u will be discussed later in Section III-C). Choosing a Gaussian prior for the vectors u_i is also motivated by the fact that this kind of prior has been used successfully in several works related to the fusion of multiple degraded images, including [20], [34], [35]. Note finally that the Gaussian prior has the interest of being a conjugate distribution relative to the statistical model (4). As it will be shown in Section IV, coupling this Gaussian prior distribution with the Gaussian likelihood leads to simpler estimators constructed from the posterior distribution $f(u | z)$.

2) **Noise Variance Priors:** Inverse-gamma distributions are chosen as prior distributions for the noise variances $s^2_{p,i}$, \(i = 1, \ldots, n_{x,p}, p = 1, \ldots, P\)

$$s^2_{p,i}, \nu, \gamma \sim IG\left(\frac{\nu}{2}, \frac{\gamma}{2}\right) \quad (7)$$

The inverse-gamma distribution is a very flexible distribution whose shape can be adjusted by its two parameters. For simplicity, we propose to fix the hyperparameter ν whereas the hyperparameter γ will be estimated from the data. This strategy is well defined, which is the case for the proposed fusion model.

$$f(s^2 | \nu, \gamma) = \prod_{p=1}^{P} \prod_{i=1}^{n_{x,p}} f(s^2_{p,i} | \nu, \gamma) \quad (8)$$

C. **Hyperparameter Priors**

The hyperparameter vector associated with the parameter priors defined above includes μ_u, Σ_u and γ. The quality of the fusion algorithm investigated in this paper depends on the values of the hyperparameters that need to be adjusted carefully. Instead of fixing all these hyperparameters a priori, we propose to estimate some of them from the data using a hierarchical Bayesian algorithm ([37], Chap. 8). Specifically, we propose to fix μ_u as the interpolated HS image in the subspace of interest following the strategy in [18]. Similarly, to reduce the number of statistical parameters to be estimated, all the covariance matrices are assumed to equal, i.e., $\Sigma_{u_i} = \Sigma_u$ (for $i = 1, \ldots, m \times m_y$). Thus, the hyperparameter vector to be estimated jointly with the parameters of interest is $\Phi = \{ \Sigma_u, \gamma \}$. The prior distributions for these two hyperparameters are defined below.

1) **Hyperparameter Σ_u:** Assigning a conjugate a priori inverse-Wishart distribution to the covariance matrix of a Gaussian vector has provided interesting results in the signal and image processing literature [38]. Following these works, we have chosen the following prior for Σ_u

$$\Sigma_u \sim W^{-1}(\Psi, \eta) \quad (9)$$

whose density is

$$f(\Sigma_u | \Psi, \eta) = \frac{1}{\Gamma_{\frac{n_{m \times m_y}}{2}}} \frac{1}{\Psi^{\frac{n_{m \times m_y}}{2}}} |\Sigma_u|^{-\frac{n_{m \times m_y}}{2} - 1} e^{-\frac{1}{2}\text{tr}(\Sigma_u^{-1})} \quad (10)$$

Again, the hyper-hyperparameters Ψ and η will be fixed to provide a non-informative prior.

2) **Hyperparameter γ:** To reflect the absence of prior knowledge regarding the mean noise level, a non-informative Jeffreys prior is assigned to the hyperparameter γ

$$f(\gamma) \propto \frac{1}{\gamma} 1_{\mathbb{R}^+}(\gamma) \quad (10)$$

The use of the improper distribution (10) is classical and can be justified by different means (e.g., see ([37], Chap. 1)), providing that the corresponding full posterior distribution is statistically well defined, which is the case for the proposed fusion model.

D. **Inferring the Highly-Resolved HS Image From the Posterior Distribution of Its Projection u**

Following the parametrization used in (5), the unknown parameter vector $\theta = \{ u, s^2 \}$ is composed of the projected scene u and the noise variance vector s^2. The joint posterior distribution of the unknown parameters and hyperparameters can be computed following the hierarchical structure $f(\theta, \Phi | z) \propto f(\{ u, s^2 \} | \Phi) f(\Phi)$.

By assuming prior independence between the hyperparameters Σ_u and γ and the parameters u and s^2, conditionally upon (Σ_u, γ), the following results can be obtained $f(\theta, \Phi | z) = f(\{ u, \Sigma_u \} | s^2, \gamma) f(\Phi)$.

The posterior distribution of the projected target image u, required to compute the Bayesian estimators (3), is obtained by marginalizing out the hyperparameter vector Φ and the noise variances s^2 from the joint posterior distribution $f(\theta, \Phi, z)$

$$f(u | z) \propto \int f(\theta, \Phi | z) d\Phi ds^2_{1,1}, \ldots, ds^2_{P, n_{x,p}} \quad (11)$$

The posterior distribution (11) is too complex to obtain closed-form expressions of the MMSE and MAP estimators \hat{u}_{MMSE} and \hat{u}_{MAP}. As an alternative, this paper proposes to use an MCMC algorithm to generate a collection of N_{MC} samples $\mathcal{U} = \{ u^{(1)}, \ldots, u^{(N_{MC})} \}$ that are asymptotically distributed according to the posterior of interest $f(u | z)$. These samples will
be used to compute the Bayesian estimators of \mathbf{u}. More precisely, the MMSE estimator of \mathbf{u} will be approximated by an empirical average of the generated samples

$$\hat{\mathbf{u}}_{\text{MMSE}} \approx \frac{1}{N_{\text{MC}} - N_{\text{bi}}} \sum_{t = N_{\text{bi}} + 1}^{N_{\text{MC}}} \hat{\mathbf{u}}^{(t)}$$ \hspace{1cm} (12)$$

where N_{bi} is the number of burn-in iterations. Once the MMSE estimate $\hat{\mathbf{u}}_{\text{MMSE}}$ has been computed, the highly-resolved HS image can be computed as $\mathbf{x}_{\text{MMSE}} = \mathbf{F}^T\hat{\mathbf{u}}_{\text{MMSE}}$. Sampling directly according to the marginal posterior distribution $f(\mathbf{u}|\mathbf{z})$ is not straightforward. Instead, we propose to sample according to the joint posterior $f(\mathbf{u}, \mathbf{u}^2, \mathbf{z})$ (note that γ has been marginalized) by using a Metropolis-within-Gibbs sampler, which can be easily implemented since all the conditional distributions associated with $f(\mathbf{u}, \mathbf{u}^2, \mathbf{z})$ are relatively simple. The resulting hybrid Gibbs sampler is detailed in the following section.

IV. HYBRID GIBBS SAMPLER

The Gibbs sampler has received a considerable attention in the statistical community to solve Bayesian estimation problems [25]. The interesting property of this Monte Carlo algorithm is that it only requires to determine the conditional distributions associated with the distribution of interest. These conditional distributions are generally easier to sample than the joint target distribution. The block Gibbs sampler that we have considered to sample according to $f(\mathbf{u}, \mathbf{u}^2, \mathbf{z})$ is defined by a 3-step procedure reported in Algorithm 1. The distribution involved in this algorithm are detailed below.

Algorithm 1: Hybrid Gibbs sampler

for $t = 1$ to N_{MC} do
 % Sampling the image variances – see paragraph IV-A
 Sample $\hat{\Sigma}^{(t)}_{\mathbf{u}}$ from the conditional distribution (13)
 % Sampling the high-resolution image – see paragraph IV-B
 Sample $\hat{\mathbf{u}}^{(t)}$ using an HMC algorithm detailed in Algorithm 2
 % Sampling the noise variances – see paragraph IV-C
 for $p = 1$ to P do
 for $i = 1$ to $n_{\lambda, u}$ do
 Sample $\hat{\mathbf{u}}^{(t)}$ from the conditional distribution (18)
 end for
 end for
end for

A. Sampling $\Sigma_{\mathbf{u}}$ According to $f(\Sigma_{\mathbf{u}} | \mathbf{u}, \mathbf{u}^2, \mathbf{z})$

Standard computations yield the following inverse-Wishart distribution as conditional distribution for the covariance matrix $\Sigma_{\mathbf{u}}$ of the scene to be recovered

$$\Sigma_{\mathbf{u}} | \mathbf{u}, \mathbf{u}^2, \mathbf{z} \sim \mathcal{W}^{-1} \left(\Sigma_{\mathbf{u}}^{0} + \sum_{i = 1}^{m_{\mathbf{u}}} (\mathbf{u}_i - \mu_{\mathbf{u}_i})^T (\mathbf{u}_i - \mu_{\mathbf{u}_i}), m_{\mathbf{u}} m_{\mathbf{z}} + \eta \right)$$ \hspace{1cm} (13)$$

B. Sampling \mathbf{u} According to $f(\mathbf{u}, \mathbf{u}^2, \mathbf{z})$

Choosing the conjugate distribution (6) as prior distribution for the projected unknown image \mathbf{u} leads to the following conditional posterior distribution for \mathbf{u}

$$\mathbf{u} | \Sigma_{\mathbf{u}}, \mathbf{u}^2, \mathbf{z} \sim \mathcal{N} \left(\mu_{\mathbf{u}}, \Sigma_{\mathbf{u} | \mathbf{z}} \right)$$ \hspace{1cm} (14)$$

with

$$\Sigma_{\mathbf{u} | \mathbf{z}} = \Sigma_{\mathbf{u}}^{-1} + \sum_{p = 1}^{P} \mathbf{F}_{p}^T A_{p}^{-1} \mathbf{F}_{p} \mathbf{G}^T$$

$$\mu_{\mathbf{u} | \mathbf{z}} = \Sigma_{\mathbf{u} | \mathbf{z}} \left[\sum_{p = 1}^{P} \mathbf{F}_{p}^T A_{p}^{-1} \mathbf{z}_p + \Sigma_{\mathbf{u}}^{-1} \mathbf{\bar{u}} \right].$$

Sampling directly according to this multivariate Gaussian distribution requires the inversion of an $M \times M$ matrix, which is impossible in most fusion problems. An alternative would be to sample each element u_i ($i = 1, \ldots, M$) of \mathbf{u} conditionally upon the others according to $f(\mathbf{u}_i | \mathbf{u}, \mathbf{u}^2, \Sigma_{\mathbf{u}}, \mathbf{z})$, where \mathbf{u}_i is the vector \mathbf{u} whose ith component has been removed. However, this alternative would require to sample \mathbf{u} by using M Gibbs moves, which is time demanding and leads to poor mixing properties.

The efficient strategy adopted in this work relies on a particular MCMC method, called Hamiltonian Monte Carlo (HMC) method (sometimes referred to as hybrid Monte Carlo method), which is considered to generate vectors \mathbf{u} directly. More precisely, we consider the HMC algorithm initially proposed by Duane et al. for simulating the lattice field theory in [26]. As detailed in [39], this technique allows mixing property of the sampler to be improved, especially for a high-dimensional problem. It exploits the gradient of the distribution to be sampled by introducing auxiliary “momentum” variables $\mathbf{m} \in \mathbb{R}^M$. The joint distribution of the unknown parameter vector \mathbf{u} and the momentum is defined as

$$f(\mathbf{u}, \mathbf{m}, \mathbf{u}^2, \mathbf{z}) = f(\mathbf{u}, \mathbf{u}^2, \Sigma_{\mathbf{u}}, \mathbf{z}) f(\mathbf{m})$$

where $f(\mathbf{m})$ is the normal probability density function (pdf) with zero mean and identity covariance matrix. The Hamiltonian of the considered system is defined by taking the negative logarithm of the posterior distribution $f(\mathbf{u}, \mathbf{m}, \mathbf{u}^2, \mu_{\mathbf{u}}, \Sigma_{\mathbf{u}}, \mathbf{z})$ to be sampled, i.e.,

$$H(\mathbf{u}, \mathbf{m}) = - \log f(\mathbf{u}, \mathbf{m}, \mathbf{u}^2, \mu_{\mathbf{u}}, \Sigma_{\mathbf{u}}, \mathbf{z}) - U(\mathbf{u}) + K(\mathbf{m})$$ \hspace{1cm} (15)$$

where $U(\mathbf{u})$ is the potential energy function defined by the negative logarithm of $f(\mathbf{u}, \mathbf{u}^2, \Sigma_{\mathbf{u}}, \mathbf{z})$ and $K(\mathbf{m})$ is the corresponding kinetic energy

$$U(\mathbf{u}) = - \log f(\mathbf{u}, \mathbf{u}^2, \Sigma_{\mathbf{u}}, \mathbf{z})$$

$$K(\mathbf{m}) = \frac{1}{2} \mathbf{m}^T \mathbf{m}. \hspace{1cm} (16)$$

The parameter space where (\mathbf{u}, \mathbf{m}) lives is explored following the scheme detailed in Algorithm 2. At iteration t of the Gibbs sampler, a so-called leap-frogging procedure composed of N_{leapfrog} iterations is achieved to propose a move from the current state $(\hat{\mathbf{u}}^{(t)}, \hat{\mathbf{m}}^{(t)})$ to the state $(\tilde{\mathbf{u}}^{(t)}$, $\tilde{\mathbf{m}}^{(t)})$ with stepsize
This move is operated in $\mathbb{R}^{\tilde{d}} \times \mathbb{R}^{\tilde{M}}$ in a direction given by the gradient of the energy function

$$\nabla_u U(u) = - \sum_{p=1}^{P} \mathbb{E}_p^T A_p^{-1} (x_p - F_p^T u) + \Sigma_u u - \bar{u}.$$

The new state is accepted with probability $\rho_t = \min \{1, A_t \}$ where

$$A_t = \frac{f(\tilde{u}^{(t)}, \tilde{m}^{(t)} | s^2, \Sigma_u, z)}{f(u^{(t)}, m^{(t)} | s^2, \Sigma_u, z)} \exp \left[H\left(\tilde{u}^{(t)}, \tilde{m}^{(t)}\right) - H\left(\bar{u}^{(s)}, \bar{m}^{(s)}\right) \right].$$

This accept/reject procedure ensures that the simulated vectors $\tilde{u}^{(t)}, \tilde{m}^{(t)}$ are asymptotically distributed according to the distribution of interest. The way the parameters ε and N_L have been adjusted will be detailed in Section V.

Algorithm 2: Hybrid Monte Carlo algorithm

- **% Momentum initialization**
 - Sample $\tilde{m}^{(s)} \sim \mathcal{N}(0_{\tilde{M}}, I_{\tilde{M}})$
 - Set $\tilde{m}^{(t)} \leftarrow \tilde{m}^{(s)}$

- **% Leapfrogging**
 for $j = 1$ to N_L
 - Set $\tilde{m}^{(s)} \leftarrow \tilde{m}^{(s)} - \frac{\varepsilon}{2} \nabla_u U(\tilde{u}^{(s)})$
 - Set $\tilde{u}^{(s)} \leftarrow \tilde{u}^{(s)} + \varepsilon \tilde{m}^{(s)}$
 - Set $\tilde{m}^{(t)} \leftarrow \tilde{m}^{(t)} - \frac{\varepsilon}{2} \nabla_u U(\tilde{u}^{(t)})$
 end for

- **% Accept/reject procedure. See (IV-B)**
 - Sample $w \sim \mathcal{U}\{0, 1\}$
 - if $w < \rho_t$, then
 - $\tilde{u}^{(t+1)} \leftarrow \tilde{u}^{(s)}$
 - else
 - $\tilde{u}^{(t+1)} \leftarrow \tilde{u}^{(t)}$
 end if
 - Set $\tilde{x}^{(t+1)} = \mathbb{G}_T \tilde{u}^{(t+1)}$
 - Run Algorithm 3 to update stepsize

To sample according to a high-dimension Gaussian distribution such as $f(u \Sigma_u, s^2, z)$, one might think of using other simulation techniques such as the method proposed in [40] to solve super resolution problems. Similarly, Orieux et al. have proposed a perturbation approach to sample high-dimensional Gaussian distributions for general linear inverse problems [41]. However, these techniques rely on additional optimization schemes included within the Monte Carlo algorithm, which implies that the generated samples are only approximately distributed according to the target distribution. Conversely, the HMC strategy proposed here ensures asymptotic convergence of the generated samples to the posterior distribution. Moreover, the HMC method is very flexible and can be easily extended to handle non-Gaussian posterior distributions contrary to the methods investigated in [40], [41].

C. Sampling s^2 According to $f(s^2, \Sigma_u, z)$

The conditional pdf of the noise variance $s^2_{p,i}$ ($i = 1, \ldots, n_{\lambda,p}, p = 1, \ldots, P$) is

$$f(s_{p,i}^2 | u, \Sigma_u, z) \propto \left(\frac{1}{s_{p,i}^2} \right)^{n_{x,p} n_{y,p}} \exp \left(- \frac{\| (x_p - F_p^T u)_{p,i} \|^2}{2 s_{p,i}^2} \right)$$

where $(x_p - F_p^T u)_{p,i}$ contains the elements of the ith band. Generating samples $s_{p,i}^2$ distributed according to $f(s_{p,i}^2 | u, \Sigma_u, z)$ is classically achieved by drawing samples from the following inverse-gamma distribution

$$s_{p,i}^2 | u, z \sim IG \left(\frac{n_{x,p} n_{y,p}}{2}, \| (x_p - F_p^T u)_{p,i} \|^2 \right).$$

In practice, if the noise variances are known a priori, we simply replace the noise variances by their known values and forget their sampling.

D. Complexity Analysis

The MCMC method can be computationally costly compared with optimization methods. The complexity of the proposed Gibbs sampler is mainly due to the HMC method whose complexity is $\mathcal{O}(\tilde{m}_\lambda^3)$, which is highly expensive as m_λ increases. Generally the number of pixels $m_\lambda m_y$ cannot be reduced significantly. Thus, projecting the high-dimensional $m_\lambda \times 1$ vectors to a low-dimension space to form $\tilde{m}_\lambda \times 1$ vectors decreases the complexity while keeping the most important information.

V. SIMULATION RESULTS

This section studies the performance of the proposed Bayesian fusion algorithm. The reference image, considered here as the high spatial and high spectral image, is an hyperspectral image acquired over Moffett field, CA, in 1994 by the JPL/NASA airborne visible/infrared imaging spectrometer (AVIRIS)\(^2\). This image was initially composed of 224 bands that have been reduced to 177 bands ($n_{\lambda,1} = 177$) after removing the water vapor absorption bands.

A. Fusion of HS and MS Images

We propose to reconstruct the reference HS image from two lower resolved images. First, a high-spectral low-spatial resolution image z_1, denoted as HS image, has been generated by applying a 5×5 averaging filter on each band of the reference image. Besides, an MS image z_2 is obtained by successively averaging the adjacent bands according to realistic spectral responses. More precisely, the reference image is filtered using the LANDSAT-like spectral responses depicted in the top of Fig. 1, to obtain a 7-band ($n_{\lambda,2} = 7$) MS image\(^3\). Note here that the observation models F_1 and F_2 corresponding to the HS and MS images are perfectly known. In addition to the blurring and spectral mixing, the HS

\(^2\)http://aviris.jpl.nasa.gov/.

\(^3\)Complementary results obtained on another dataset with an alternative multispectral sensor are available in [33].
and MS images have been both contaminated by zero-mean additive Gaussian noises. The noise power \(s_{p,i}^2 \) depends on the signal to noise ratio \(\text{SNR}_{p,i} (i = 1, \ldots, n \lambda, p = 1, 2) \) defined by \(\text{SNR}_{p,i} = 10 \log_{10} \left(\frac{\| \mathbf{f}_{p,i} \|_F^2}{s_{p,i}^2} \right) \), where \(\| \cdot \|_F \) is the Frobenius norm. Our simulations have been conducted with \(\text{SNR}_{1,i} = 35 \) dB for the first 127 bands and \(\text{SNR}_{1,50} = 30 \) dB for the remaining 50 bands of the HS image. For the MS image, \(\text{SNR}_{2,i} \) is 30 dB for all bands. A composite color image, formed by selecting the red, green and blue bands of the high-spatial resolution HS image (the reference image) is shown in the bottom right of Fig. 2. The noise-contaminated HS and MS images are depicted in the top left and top right of Fig. 2.

1) Subspace Learning: Learning the matrix \(\mathbf{V} \) in (5) is a preprocessing step, which can be solved by different strategies. A lot of DR methods might be exploited, such as locally linear embedding (LLE) [42], independent component analysis (ICA) [43], hyperspectral signal subspace identification by minimum error (HySime) [32], minimum change rate deviation (MCRD) [44] and so on. In this work, we propose to use the principal component analysis (PCA), which is a classical DR technique used in HS imagery. It maps the original data into a lower dimensional subspace while preserving most information about the original data. Note that the bases of this subspace are the columns of the transformation matrix \(\mathbf{V}^T \), which are exactly the same for all pixels (or spectral vectors). As in paragraph III-B.1, the vectorized HS image \(\mathbf{z}_1 \) can be written as \(\mathbf{z}_1 = \left[\mathbf{z}_{1,1}^T, \mathbf{z}_{1,2}^T, \ldots, \mathbf{z}_{1,n_\lambda,1}^T \right]^T \), where \(\mathbf{z}_{1,i} = [z_{1,i,1}, z_{1,i,2}, \ldots, z_{1,i,n_\lambda,1}]^T \). The sample covariance matrix of the HS image \(\mathbf{z}_1 \) is diagonalized leading to

\[
\mathbf{W}^T \mathbf{Y} \mathbf{W} = \mathbf{D}
\]

where \(\mathbf{W} \) is an \(m_\lambda \times m_\lambda \) orthogonal matrix \((\mathbf{W}^T = \mathbf{W}^{-1}) \) and \(\mathbf{D} \) is a diagonal matrix whose diagonal elements are the ordered eigenvalues of \(\mathbf{Y} \) denoted as \(d_1 \geq d_2 \geq \cdots \geq d_{m_\lambda} \). The dimension of the projection subspace \(m_\lambda \) is defined as the minimum integer satisfying the condition \(\sum_{i=1}^{m_\lambda} d_i / \sum_{i=1}^{m_\lambda} d_i > 0.99 \). The matrix \(\mathbf{V} \) is then constructed as the eigenvectors associated with the \(m_\lambda \) largest eigenvalues of \(\mathbf{Y} \). As an illustration, the eigenvalues of the sample covariance matrix \(\mathbf{Y} \) for the Moffett field image are displayed in Fig. 3. For this example, the \(m_\lambda = 10 \) eigenvectors contain 99.93% of the information. To conclude this part, we invite the readers to consult the technical report [33] containing additional results obtained for this image with and without PCA (illustrating the importance of DR).

2) Hyper-Hyperparameter Selection: In our experiments, fixed hyper-hyperparameters have been chosen as follows: \(\Psi = \mathbf{I}_{m_\lambda}, \eta = \tilde{m}_\lambda + 3 \). These choices can be motivated by the following arguments:

- The identity matrix assigned to \(\Psi \) ensures a non-informative prior.
- Setting the inverse gamma parameters to \(\eta = \tilde{m}_\lambda + 3 \) also leads to a non-informative prior [36].
- The parameter \(\nu \) disappears when the joint posterior is integrated out with respect to parameter \(\gamma \).

B. Stepsize and Leapfrog Steps

The performance of the HMC method is mainly governed by the stepsize \(\varepsilon \) and the number of leapfrog steps \(N_L \). As pointed out in [27], a too large stepsize will result in a very low acceptance rate and a too small stepsize yields high computational complexity. In order to adjust the stepsize parameter \(\varepsilon \), we propose to monitor the statistical acceptance ratio \(\tilde{\rho}_\varepsilon \) defined as \(\tilde{\rho}_\varepsilon = \frac{N_A}{N_W} \) where \(N_W \) is the length of the counting window (in our experiment, the counting window at time \(t \) contains the vectors \(\mathbf{x}(t-N_W+1), \mathbf{x}(t-N_W), \ldots, \mathbf{x}(t) \) with \(N_W = 56 \)) and \(N_{A,t} \) is the number of accepted samples in this window at time \(t \). As explained in [45], the adaptive tuning should adapt less and less
as the algorithm proceeds to guarantee that the generated samples form a stationary Markov chain. In the proposed implementation, the parameter ε is adjusted as in Algorithm 3. The thresholds have been fixed to $(\alpha_d, \alpha_u) = (0.3, 0.9)$ and the scale parameters are $(\beta_d, \beta_u) = (1.1, 0.6)$ (these parameters were adjusted by cross-validation). Note that the initial value of ε should not be too large to ‘blow up’ the leapfrog trajectory [27]. Generally, the stepsize converges after some iterations of Algorithm 3.

Algorithm 3: Adjusting Stepsize

Update $\hat{\rho}_t$ with $N_{a,t}$:

\[
\begin{align*}
\text{if } & \hat{\rho}_t > \alpha_u, \text{ then} \\
& \text{Set } \varepsilon = \beta_u \varepsilon \\
\text{else if } & \hat{\rho}_t < \alpha_d, \text{ then} \\
& \text{Set } \varepsilon = \beta_d \varepsilon \\
\end{align*}
\]

Regarding the number of leapfrogs, setting the trajectory length N_{t} by trial and error is necessary [27]. To avoid the potential resonance, N_{t} is randomly chosen from a uniform distribution from N_{min} to N_{max}. After some preliminary runs and tests, $N_{\text{in}} = 50$ and $N_{\text{max}} = 55$ have been selected.

C. Evaluation of the Fusion Quality

To evaluate the quality of the proposed fusion strategy, different image quality measures can be investigated. Referring to [19], we propose to use RSNR, SAM, UIQI, ERGAS and DD as defined below. These measures have been widely used in the HS image processing community and are appropriate for evaluating the quality of the fusion in terms of spectral and spatial resolutions [18], [46], [47].

1) RSNR: The reconstruction SNR (RSNR) is related to the difference between the actual and fused images RSNR$(\mathbf{x}, \hat{\mathbf{x}}) = 10\log_{10} \left(\frac{|\mathbf{x}|^2}{|\mathbf{x} - \hat{\mathbf{x}}|^2} \right)$. The larger RSNR, the better the fusion quality and vice versa.

2) SAM: The spectral angle mapper (SAM) measures the spectral distortion between the actual and estimated images. The SAM of two spectral vectors \mathbf{z}_n and $\hat{\mathbf{z}}_n$ is defined as

\[
\text{SAM}(\mathbf{z}_n, \hat{\mathbf{z}}_n) = \arccos \left(\frac{\mathbf{z}_n \cdot \hat{\mathbf{z}}_n}{|\mathbf{z}_n||\hat{\mathbf{z}}_n|} \right).
\]

The average SAM is finally obtained by averaging the SAMs of all image pixels. Note that SAM value is expressed in radians and thus belongs to $[0, \pi]$. The smaller the absolute value of SAM, the less important the spectral distortion.

3) UIQI: The universal image quality index (UIQI) was proposed in [48] for evaluating the similarity between two single-band images. It is related to the correlation, luminance distortion and contrast distortion of the estimated image to the reference image. The UIQI between $\mathbf{a} = [a_1, a_2, \ldots, a_N]$ and $\hat{\mathbf{a}} = [\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N]$ is defined as

\[
\text{UIQI}(\mathbf{a}, \hat{\mathbf{a}}) = \frac{\sum_{i=1}^{N} (a_i - \bar{a})(\hat{a}_i - \bar{\hat{a}})}{\sqrt{\sum_{i=1}^{N} (a_i - \bar{a})^2 \sum_{i=1}^{N} (\hat{a}_i - \bar{\hat{a}})^2}},
\]

where \bar{a} and $\bar{\hat{a}}$ are the sample means and variances of a and \hat{a}, and σ^2_a, $\sigma^2_{\hat{a}}$ is the sample covariance of a and \hat{a}. The range of UIQI is $[-1, 1]$ and UIQI $= 1$ when $\mathbf{a} = \hat{\mathbf{a}}$.

4) ERGAS: The relative dimensionless global error in synthesis (ERGAS) calculates the amount of spectral distortion in the image [49]. This measure of fusion quality is defined as

\[
\text{ERGAS} = 100 \times \frac{1}{N} \sqrt{\frac{1}{N_{\text{bands}}} \sum_{i=1}^{N_{\text{bands}}} \left(\frac{\text{RMSE}(i)}{\mu_i} \right)^2},
\]

where $1/d^2$ is the ratio between the pixel sizes of the MS and HS images, μ_i is the mean of the ith HS image band, and N_{bands} is the number of HS bands. The smaller ERGAS, the smaller the spectral distortion.

5) DD: The degree of distortion (DD) between two images \mathbf{X} and $\hat{\mathbf{X}}$ is defined as $\text{DD} = \frac{1}{2} ||\text{vec}(\mathbf{X}) - \text{vec}(\hat{\mathbf{X}})||_1$. The smaller DD, the better the fusion.

D. Comparison With Other Bayesian Models

The Bayesian model proposed here differs from previous Bayesian models [18], [19] in three aspects. First, in addition to the target image \mathbf{x}, the hierarchical Bayesian model allows the distributions of the noise variances σ^2 and the hyperparameter Σ_u to be inferred. The hierarchical inference structure makes this Bayesian model more general and flexible. Second, the covariance matrix Σ_u is assumed to be block diagonal, which allows us to exploit the correlations between spectral bands. Third, the proposed method takes advantage of the relation between the MS image and the target image by introducing a forward model \mathbf{F}_2. This paragraph compares the proposed Bayesian fusion method with the two state-of-the-art fusion algorithms of [18], [19] for HS + MS fusion. The MMSE estimator of the image using the proposed Bayesian method is obtained from (12). In this simulation, $N_{\text{MC}} = 500$ and $N_{\text{in}} = 500$. The fusion results obtained with different algorithms are depicted in Fig. 2. Graphically, the proposed algorithm performs competitively with the state-of-the-art methods. This result is confirmed quantitatively in Table II which shows the RSNR, UIQI, SAM, ERGAS and DD for the three methods. Note that the HMC method provides slightly better results in terms of image restoration than the other methods. However, the proposed method allows the image covariance matrix and the noise variances to be estimated. The samples generated by the MCMC method can also be used to compute confidence intervals for the estimators (e.g., see error bars in Fig. 4).
E. Estimation of the Noise Variances

The proposed Bayesian method allows the noise variances $\sigma_i^2, (i = 1, \cdots, n, p = 1, \cdots, P)$ to be estimated from the samples generated by the Gibbs sampler. The MMSE estimators of $s_{1,1}^2$ and $s_{2,1}^2$ are illustrated in Fig. 4. Graphically, the estimations can track the variations of the noise powers within tolerable discrepancy.

F. Robustness With Respect to the Knowledge of \mathbf{F}_2

The sampling algorithm summarized in Algorithm 2 requires the knowledge of the spectral response \mathbf{F}_2. However, this knowledge can be partially known in some practical applications. As the spectral response is the same for each vector \mathbf{x}_i, $i = 1, \cdots, m$, \mathbf{F}_2 is a block diagonal matrix whose blocks are f_2 of size $m \times m$, i.e., $\mathbf{F}_2 = \text{diag}[f_2, \cdots, f_2]$. This paragraph is devoted to testing the robustness of the proposed algorithm to the imperfect knowledge of f_2. In order to analyze this robustness, a zero-mean white Gaussian error has been added to any non-zero component of f_2 as shown in the bottom of Fig. 1. Of course, the level of uncertainty regarding f_2 is controlled by the variance of the error denoted as σ^2. The corresponding FSNR is defined as $\text{FSNR} = 10 \log_{10} \left(\frac{\| \mathbf{f}_2 \|^2}{\sigma^2} \right)$ and adjusts the knowledge regarding f_2. The larger FSNR, the more knowledge we have about f_2. The RSNRs between the reference and estimated images are displayed in Fig. 5 as a function of FSNR. Obviously, the performance of the proposed Bayesian fusion algorithm decreases as the uncertainty about f_2 increases. However, as long as the FSNR is above 8 dB, the performance of the proposed method outperforms the MAP and wavelet-based MAP methods. Thus, the proposed method is quite robust with respect to the imperfect knowledge of f_2.

G. Application to Pansharpening

The proposed algorithm can also be used for pansharpening, which is an important and popular application in the area of remote sensing. In this section, we focus on fusing panchromatic and hyperspectral images (HS + PAN), which is the extension of conventional pansharpening (MS + PAN). The reference image considered in this section (the high spatial and high spectral image) is a $128 \times 64 \times 93$ HS image with very high spatial resolution of 1.3 m/pixel) acquired by the Reflective Optics System Imaging Spectrometer (ROSIS) optical sensor over the urban area of the University of Pavia, Italy. The flight was operated by the Deutsches Zentrum für Luft- und Raumfahrt (DLR, the German Aerospace Agency) in the framework of the HySens project, managed and sponsored by the European Union. This image was initially composed of 115 bands that have been reduced to 93 bands after removing the water vapor absorption bands (with spectral range from 0.43 to 0.86 m). This image has received a lot of attention in the remote sensing literature [50]. The HS blurring kernel is the same as in paragraph V-A whereas the PAN image was obtained by averaging all the high resolution HS bands. The SNR of the PAN image is 30 dB. Apart from [18], [19], we also compare the results with the method of [51], which proposes a popular pansharpening method. The results are displayed in Fig. 6 and the quantitative results are reported in Table III. The proposed Bayesian method still provides interesting results.

![Fig. 6. ROSIS dataset: (Top left) Reference. (Top right) PAN Image. (Middle left) Adaptive IHS [51]. (Middle right) MAP [18]. (Bottom left) Wavelet MAP [19]. (Bottom right) Hamiltonian MCMC.](image)
VI. CONCLUSION

This paper proposed a hierarchical Bayesian model to fuse multiple multi-band images with various spectral and spatial resolutions. The image to be recovered was assumed to be degraded according to physical transformations included within a forward model. An appropriate prior distribution that exploited geometrical concepts encountered in spectral unmixing problems was defined. The resulting posterior distribution was efficiently sampled thanks to a Hamiltonian Monte Carlo algorithm. Simulations conducted on pseudo-real data showed that the proposed method competed with some state-of-the-art techniques to fuse MS and HS images. These experiments also illustrated the robustness of the proposed method with respect to the misspecification of the forward model. Future work includes the estimation of the parameters involved in the forward model (e.g., the spatial and spectral responses of the sensors) to obtain a fully unsupervised fusion algorithm. The incorporation of spectral mixing constraints for a possible improved spectral accuracy and the generalization to nonlinear degradations would also deserve some attention. Finally, a comparison with very recent fusion methods [47], [52] would be clearly interesting.

ACKNOWLEDGMENT

The authors thank Dr. Paul Scheunders and Dr. Yifan Zhang for sharing the codes of [19] and Jordi Inglada, from Centre National d’Études Spatiales (CNES), for providing the LANDSAT spectral responses used in the experiments. The authors also acknowledge Prof. José M. Bioucas Dias for valuable discussions about this work that were handled during his visit in Toulouse within the CIMI Labex.

REFERENCES

Qi Wei (S’13) was born in Shanxi, China, in 1989. He received the B.Sc. degree in electrical engineering from Beihang University (BUAA), Beijing, China, in 2010. From February to August of 2012, he was an exchange master student with the Signal Processing and Communications Group in the Department of Signal Theory and Communications (TSC), Universitat Politècnica de Catalunya (UPC). Since September of 2012, he has been a Ph.D. student with the National Polytechnic Institute of Toulouse (University of Toulouse, INSEENIIHT). His research has been focused on statistical signal processing, especially on inverse problems in image processing.

Nicolas Dobigeon (S’05–M’08–SM’13) was born in Angoulême, France, in 1981. He received the Engineering degree in electrical engineering from ENSEEIHT, Toulouse, France, and the M.Sc. degree in signal processing from the INP Toulouse, both in 2004, and the Ph.D. degree and Habilitation Diriger des Recherches in signal processing from INP Toulouse in 2007 and 2012, respectively. From 2007 to 2008, he was a Post-Doctoral Research Associate with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor.

Since 2008, he has been at INP Toulouse, University of Toulouse, where he is currently an Associate Professor. He conducts his research within the Signal and Communications Group, IRIT Laboratory, and he is also an Affiliated Faculty Member of the TeSA Laboratory. His recent research activities have been focused on statistical signal and image processing, with a particular interest in Bayesian inverse problems with applications to remote sensing, biomedical imaging, and genomics.

Jean-Yves Tournéret (SM’08) received the ingenieur degree in electrical engineering from ENSEEIHT, Toulouse in 1989 and the Ph.D. degree from the INP Toulouse in 1992. He is currently a Professor in the University of Toulouse (ENSEEIIHT) and a member of the IRIT laboratory (UMR 5505 of the CNRS). His research activities are centered around statistical signal and image processing with a particular interest to Bayesian and Markov chain Monte Carlo (MCMC) methods.

He has been involved in the organization of several conferences including the European conference on signal processing EUSIPCO’02 (program chair), the international conference ICASSP’06 (plenaries), the statistical signal processing workshop SSP’12 (international liaisons), the International Workshop on Computational Advances in Multi-Sensor Adaptive Processing CAMSAP 2013 (local arrangements), the statistical signal processing workshop SSP’2014 (special sessions), the workshop on machine learning for signal processing MLSP’2014 (special sessions). He has been the general chair of the CIMI workshop on optimization and statistics in image processing held in Toulouse in 2013 (with F. Malgouyres and D. Kouame) and of the International Workshop on Computational Advances in Multi-Sensor Adaptive Processing CAMSAP 2015 (with P. Djuric). He has been a member of different technical committees including the Signal Processing Theory and Methods (SPTM) committee of the IEEE Signal Processing Society (2001–2007, 2010–present). He has been serving as an associate editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING (2008–2011) and for the EURASIP journal on Signal Processing (since July 2013).