Ectopic lignification in the flax lignified bast fiber mutant

Brigitte Chabbert, Maxime Chantreau Maxime, Shingo Kiyoto, Arata Yoshinaga, Wout Boerjan, François Mesnard, Simon Hawkins

To cite this version:
Brigitte Chabbert, Maxime Chantreau Maxime, Shingo Kiyoto, Arata Yoshinaga, Wout Boerjan, et al.. Ectopic lignification in the flax lignified bast fiber mutant. COST ACTION FP1105, May 2015, San Sebastian, Spain. hal-01187037
ECTOPIC LIGNIFICATION IN THE FLAX LIGNIFIED BAST FIBER MUTANT

Chabbert Ba, Chantreau Mb, Kiyoto Sc, Yoshinaga Ac, Boerjan Wd, Mesnard Fe, Hawkins Sb
aINRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
bUniversité de Lille 1, UMR 8576 CNRS Glycobiologie Structurale et Fonctionnelle, F-59650 Villeneuve d’Ascq, France
cDivision of Forest and Biomaterials Science, Kyoto Univ., Kyoto, Japan
dDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
eUniversité de Picardie Jules Verne, EA 3900, BIOPI Phytotechnologie, F-80037 Amiens, France

chabbert@reims.inra.fr

ABSTRACT

Flax is a fiber crop producing highly contrasted secondary cell wall structures in the stem. Cells from the inner xylem core have heavily lignified secondary cell walls containing almost 30 % lignin whereas the thick secondary cell walls of the long bast fibers present in outer stem tissues are hypolignified and contain less than 4 % lignin (Day et al., 2005). Despite the existence of these highly contrasted secondary cell wall structures, hardly anything is known about the underlying molecular mechanisms regulating lignin biosynthesis and deposition in flax. In order to increase our knowledge about this process we have created a flax EMS mutant population (Chantreau et al., 2013)

Histochemical screening led to the identification of 93 independent M2 mutant families showing pronounced ectopic lignification in the secondary cell wall of stem bast fibers (Figure 1). We named this core collection the \textit{Linum usitatissimum} (flax) lbf mutants for lignified bast fibers. We characterized the \textit{lbf1} mutant and showed that the lignin content increased from 3-5% up to 17% DM in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of some monolignol biosynthesis genes, lignin-associated peroxidase genes, and genes involved in \(\text{H}_2\text{O}_2 \) supply. 2D NMR and immunolabelling with KM1 (Figure 2) indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. The \textit{lbf1} mutants also showed changes to other cell wall polymers as indicated by polysaccharide analysis (Figure 3), immunocytochemistry and confocal microscopy approaches. Preliminary study of the physicochemical properties showed that ectopic lignified fibers isolated from the \textit{lbf1} mutant could sorb as much water as the non-lignified fibers from WT, indicating that fiber properties hold on complex architecture of the cell walls relying on not only polymer content but also on polymer interactions (Muraille et al., 2015).

Figure 1: Phloroglucinol staining of lignin in stem tissues of wild-type and \textit{lbf1} mutants
Figure 2: Immunogold silver staining of bast fibers from WT (A) and lbf1 mutant (B) with lignin antibody KM1. CCML, cell corner middle lamella; SW, secondary wall; L, lumen. Smaller photos (i and ii) show a zoom of the regions indicated on main photo. Bars = 1 mm (main) and 0.15 mm (small).

Figure 3: Relative content of different sugars in outer tissues of wild-type and lbf1 mutants

REFERENCES

This work was carried in the context of and financed by the French national project PT-Flax (ANR-09-GENM-020) and get financial support of the Kyoto University Foundation. Authors acknowledge the technical support of the PICT IBISA biological imaging center (transmission electron microscopy) and the PLANET analytical platform (NMR) at the University of Reims Champagne-Ardenne.