ON THE GENERALIZED COMMUTING VARIETIES OF A REDUCTIVE LIE ALGEBRA
Jean-Yves Charbonnel, Mouchira Zaiter

To cite this version:
Jean-Yves Charbonnel, Mouchira Zaiter. ON THE GENERALIZED COMMUTING VARIETIES OF A REDUCTIVE LIE ALGEBRA. 2015. <hal-01186953>

HAL Id: hal-01186953
https://hal.archives-ouvertes.fr/hal-01186953
Submitted on 25 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON THE GENERALIZED COMMUTING VARIETIES OF A REDUCTIVE LIE ALGEBRA.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

ABSTRACT. The generalized commuting and isospectral commuting varieties of a reductive Lie algebra have
been introduced in a preceding article. In this note, it is proved that their normalizations are Gorenstein with
rational singularities. Moreover, their canonical modules are free of rank 1. In particular, the usual commuting
variety is Gorenstein with rational singularities and its canonical module is free of rank 1.

CONTENTS

1. Introduction 1
2. On the varieties X and G × _B b 5
3. Main varieties and tautological vector bundles 6
4. On the generalized isospectral commuting variety 7
5. Rational singularities 20
6. Normality 21
Appendix A. Notations 27
Appendix B. Some complexes 27
Appendix C. Rational Singularities 29
Appendix D. About singularities 30
References 30

1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of finite
dimension, ℓ is its rank, dim g = ℓ + 2n and G is its adjoint group. As usual, b denotes a Borel subalgebra of
g, h a Cartan subalgebra of g, contained in b, and B the normalizer of b in G.

1.1. Main results. By definition, for k ≥ 1, the generalized commuting variety C^(k) is the closure in g^k
of the set of elements whose components are in a same Cartan subalgebra. Denoting by B(k) the subset
of elements of g^k whose components are in a same Borel subalgebra and by B_n(k) its normalization, the
generalized isospectral commuting variety C_x^(k) is above C^(k) and under the inverse image of C^(k) in B_n(k).
For k = 2, C^(2) is the commuting variety of g and C_x^(2) is the isospectral commuting variety considered by
V. Ginzburg in [Gi12]. According to [CZ14, Proposition 5.6], C_x^(k) is an irreducible variety. For studying
these varieties, it is very useful to consider the closure in the grassmannian Gr_r(g) of the orbit of h under the
action of B in Gr_r(g). Denoting by X this variety, G.X is the closure of the orbit of h under G. Let E_0 and
E be the restrictions to X and G.X of the tautological vector bundle over Gr_r(g) respectively. Denoting by
\(E^{(k)}\) the fiber product over \(G.X\) of \(k\) copies of \(E\), \(E^{(k)}\) is a subbundle of \(G.X \times g^k\) and \(E^{(k)}\) is the image of \(E^{(k)}\) by the canonical projection \(G.X \times g^k \longrightarrow g^k\). Analogously, denoting by \(E^{(k)}_0\) the restriction of \(E^{(k)}\) to \(X\), the image \(\tilde{x}_{0,k}\) of \(E^{(k)}_0\) by the projection \(X \times g^k \longrightarrow g^k\) is the closure in \(b^k\) of the set of elements whose components are in a same Cartan subalgebra. The fiber bundle \(G \times_B E^{(k)}_0\) is a vector bundle of rank \(\ell\) over the fiber bundle \(G \times_B X\) over \(G/B\). As for \(E^{(k)}\), there is a surjective morphism from \(G \times_B \tilde{E}^{(k)}_0\) onto \(\tilde{E}^{(k)}\). As a matter of fact, the three morphisms:

\[
\begin{array}{ccc}
E^{(k)}_0 & \xrightarrow{\tau_{0,k}} & \tilde{x}_{0,k} \\
E^{(k)} & \xrightarrow{\tau_k} & \tilde{E}^{(k)}_0 \\
G \times_B E^{(k)}_0 & \xrightarrow{\tau_{n,k}} & \tilde{E}^{(k)}_x \\
\end{array}
\]

are projective and birational. According to [CZ14, Theorem 1.2], \(G.X\) is smooth in codimension 1 so that so is \(E^{(k)}\). By [C15, Theorem 1.1], \(X\) is normal and Gorenstein then so are \(E^{(k)}_0\) and \(G \times_B E^{(k)}_0\). Denoting by \((G.X)_n\) the normalization of \(G.X\), the pullback bundle of \(E^{(k)}\) over \((G.X)_n\) is the normalization of \(E^{(k)}\). Denoting it by \(\tilde{E}^{(k)}_n\) we have projective birational morphisms:

\[
\begin{array}{ccc}
E^{(k)}_0 & \xrightarrow{\tau_{0,k}} & \tilde{x}_{0,k} \\
E^{(k)} & \xrightarrow{\tau_k} & \tilde{E}^{(k)}_n \\
G \times_B E^{(k)}_0 & \xrightarrow{\tau_{n,k}} & \tilde{E}^{(k)}_x \\
\end{array}
\]

with \(\tilde{x}_{0,k}, \tilde{E}^{(k)}_n, \tilde{E}^{(k)}_x\) the normalizations of \(x_{0,k}, \tilde{E}^{(k)}_0, \tilde{E}^{(k)}_x\) respectively. According to [C15, Proposition 4.6], for some smooth big open subset \(O_0\) of \(x_{0,k}\), there exists a regular differential form of top degree without zero. Moreover, the restriction of \(\tau_{0,k}\) to \(\tau_{0,k}(O_0)\) is an isomorphism onto \(O_0\). By a simple argument, \(\tilde{E}^{(k)}_n\) and \(\tilde{E}^{(k)}_x\) are smooth in codimension 1. Moreover, for some smooth big open subsets \(O\) and \(O_x\) in \(E^{(k)}_n\) and \(E^{(k)}_x\) respectively, the restrictions of \(\tau_k\) and \(\tau_{n,k}\) to \(\tau_k^{-1}(O)\) and \(\tau_{n,k}^{-1}(O_x)\) are isomorphisms onto \(O\) and \(O_x\) respectively. The main observation of this note is that there are regular differential forms of top degree on \(O\) and \(O_x\) without zero. As a result, we have the following theorem:

Theorem 1.1. The varieties \(\tilde{x}_{0,k}, \tilde{E}^{(k)}_n, \tilde{E}^{(k)}_x\) are Gorenstein with rational singularities and their canonical modules are free of rank 1. Moreover, \((G.X)_n\) is Gorenstein with rational singularities.

In particular, we give a new proof of a Ginzburg’s result [Theorem 1.3.4][Gi12]. For \(k = 2\), \(\tilde{E}^{(2)}\) is the commuting variety of \(g\) by [Ri79] and it is normal by [C12, Theorem 1.1]. So the commuting variety of \(g\) is Gorenstein with rational singularities and its canonical module is free of rank 1. Since \(\tilde{x}_{0,k}\) has rational singularities, we get that some cohomological groups in positive degree are equal to 0 and we deduce that \(x_{0,k}\) is normal.

This note is organized as follows. In Section 2, the variety \(X\) is introduced and we prove that on the smooth loci of \(X\) and \(G \times_B b\), there are regular differential forms of top degree without zero. In Section 3, we recall some results about \(E, X, G.X, (G.X)_n\). In Section 4, we give some results about \(\tilde{E}^{(k)}_n\) and \(\tilde{E}^{(k)}_x\) and we prove the main result about regular differential forms of top degree on the smooth loci of these varieties. As a result, we get the main result of the note in Section 5. The goal of Section 6 is the normality of \(\tilde{x}_{0,k}\). At last, in the appendix, some results are given to prove the normality of \(\tilde{x}_{0,k}\) and Theorem 1.1.

1.2. **Notations.** • An algebraic variety is a reduced scheme over \(k\) of finite type.

 • For \(V\) a vector space, its dual is denoted by \(V^*\) and the augmentation ideal of its symmetric algebra \(S(V)\) is denoted by \(S_+(V)\). For \(A\) a graded algebra over \(\mathbb{N}\), \(A_+\) is the ideal generated by the homogeneous elements of positive degree.

 • All topological terms refer to the Zariski topology. If \(Y\) is a subset of a topological space \(X\), denote by \(\overline{Y}\) the closure of \(Y\) in \(X\). For \(Y\) an open subset of the algebraic variety \(X\), \(Y\) is called a big open subset if the codimension of \(X \setminus Y\) in \(X\) is at least 2. For \(Y\) a closed subset of an algebraic variety \(X\), its dimension
is the biggest dimension of its irreducible components and its codimension in X is the smallest codimension in X of its irreducible components. For X an algebraic variety, \mathcal{O}_X is its structural sheaf, X_{sm} is its smooth locus, $\mathbb{k}[X]$ is the algebra of regular functions on X and $\mathbb{k}(X)$ is the field of rational functions on X when X is irreducible. When X is smooth and irreducible, the sheaf of regular differential forms of top degree on X is denoted by Ω_X.

- For X an algebraic variety and for \mathcal{M} a sheaf on X, $\Gamma(V, \mathcal{M})$ is the space of local sections of \mathcal{M} over the open subset V of X. For i a nonnegative integer, $H^i(X, \mathcal{M})$ is the i-th group of cohomology of \mathcal{M}. For example, $H^0(X, \mathcal{M}) = \Gamma(X, \mathcal{M})$.

Lemma 1.2. [EGAII, Corollaire 5.4.3] Let X be an irreducible affine algebraic variety and let Y be a desingularization of X. Then $H^0(Y, \mathcal{O}_Y)$ is the integral closure of $\mathbb{k}[X]$ in its fraction field.

- For E a set and k a positive integer, E^k denotes its k-th cartesian power. If E is finite, its cardinality is denoted by $|E|$.
- For a reductive Lie algebra, its rank is denoted by $rk\ a$ and the dimension of its Borel subalgebras is denoted by b_a. In particular, $\dim a = 2b_a - rk\ a$.

- If E is a subset of a vector space V, denote by $\text{span}(E)$ the vector subspace of V generated by E. The grassmannian of all d-dimensional subspaces of V is denoted by $\text{Gr}_d(V)$. By definition, a cone of V is a subset of V invariant under the natural action of $\mathbb{k}^*: = \mathbb{k} \setminus \{0\}$ and a multicone of V^k is a subset of V^k invariant under the natural action of $(\mathbb{k}^*)^k$ on V^k.

- The dual of g is denoted by g^* and it identifies with g by a given non degenerate, invariant, symmetric bilinear form $\langle \ldots \rangle$ on $g \times g$, extending the Killing form of $[g, g]$.

- Let b be a Borel subalgebra of g and let \mathfrak{h} be a Cartan subalgebra of g contained in b. Denote by \mathcal{R} the root system of \mathfrak{h} in g and by \mathcal{R}_+ the positive root system of \mathcal{R} defined by \mathfrak{b}. The Weyl group of \mathcal{R} is denoted by $W(\mathcal{R})$ and the basis of \mathcal{R}_+ is denoted by Π. The neutral elements of G and $W(\mathcal{R})$ are denoted by $1_{\mathfrak{b}}$ and $1_{\mathfrak{h}}$ respectively. For $\alpha \in \mathcal{R}$, the corresponding root subspace is denoted by g^α and a generator x_α of g^α is chosen so that $\langle x_\alpha, x_{-\alpha} \rangle = 1$ for all $\alpha \in \mathcal{R}$. Let H_α be the coroot of α.

- The normalizers of \mathfrak{b} and \mathfrak{h} in G are denoted by B and $N_G(\mathfrak{h})$ respectively. For $x \in \mathfrak{b}$, \mathfrak{x} is the element of \mathfrak{h} such that $x - \mathfrak{x}$ is in the nilpotent radical of \mathfrak{b}.

- For X an algebraic B-variety, denote by $G \times_B X$ the quotient of $G \times X$ under the right action of B given by $(g, x) . b := (gb, b^{-1}.x)$. More generally, for k positive integer and for X an algebraic B^k-variety, denote by $G^k \times_{B^k} X$ the quotient of $G^k \times X$ under the right action of B^k given by $(g, x) . b := (gb, b^{-1}.x)$ with $g \in G$ and $b \in G^k$ and B^k respectively.

Lemma 1.3. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a Q-variety and let Y be a closed subset of X, invariant under P. Then $Q. Y$ is a closed subset of X. Moreover, the canonical map from $Q \times_P Y$ to $Q. Y$ is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a projective variety. Denote by $Q \times_P X$ and $Q \times_P Y$ the quotients of $Q \times X$ and $Q \times Y$ under the right action of P given by $(g, x) . p := (gp, p^{-1}.x)$. Let $g \mapsto \overline{g}$ be the quotient map from Q to Q/P. Since X is a Q-variety, the map $Q \times X \longrightarrow Q/P \times X \quad (g, x) \longmapsto (\overline{g}, g.x)$ defines through the quotient an isomorphism from $Q \times_P X$ to $Q/P \times X$. Since Y is a P-invariant closed subset of X, $Q \times_P Y$ is a closed subset of $Q \times_P X$ and its image by the above isomorphism equals $Q/P \times Q.Y$. Hence
$Q.Y$ is a closed subset of X since Q/P is a projective variety. From the commutative diagram:

\[
\begin{array}{ccc}
Q \times_P Y & \longrightarrow & Q/P \times Q.Y \\
\downarrow & & \downarrow \\
Q.Y & \longrightarrow & Q.Y
\end{array}
\]

we deduce that the map $Q \times_P Y \longrightarrow Q.Y$ is a projective morphism. \hfill \Box

- For $k \geq 1$ and for the diagonal action of B in b^k, b^k is a B-variety. The canonical map from $G \times b^k$ to $G \times_B b^k$ is denoted by $(g, x_1, \ldots, x_k) \mapsto (g, x_1, \ldots, x_k)$. Let $B^{(k)}$ be the image of $G \times b^k$ by the map $(g, x_1, \ldots, x_k) \mapsto (g(x_1), \ldots, g(x_k))$ so that $B^{(k)}$ is a closed subset of g^k. Let $B^{(k)}_n$ be the normalization of $B^{(k)}$ and η the normalization morphism. We have the commutative diagram:

\[
\begin{array}{ccc}
G \times_B b^k & \xrightarrow{\gamma} & B^{(k)}_n \\
\downarrow & & \downarrow \eta \\
B^{(k)} & \xrightarrow{\gamma_n} & B^{(k)}_n
\end{array}
\]

- Let i_k be the injection $(x_1, \ldots, x_k) \mapsto (1_g, x_1, \ldots, x_k)$ from b^k to $G \times_B b^k$. Then $\iota_k := \gamma \circ i_k$ and $\iota_n,k := \gamma_n \circ i_k$ are closed embeddings of b^k into $B^{(k)}$ and $B^{(k)}_n$ respectively. In particular, $B^{(k)} = G.\iota_k(b^k)$ and $B^{(k)}_n = G.\iota_n,k(b^k)$.

- Let e be the sum of the x_g’s, β in Π, and let h be the element of $\mathfrak{h} \cap [g, g]$ such that $\beta(h) = 2$ for all β in Π. Then there exists a unique f in $[g, g]$ such that (e, h, f) is a principal sl_2-triple. The one parameter subgroup of G generated by $\text{ad} h$ is denoted by $t \mapsto \exp(t h)$. The Borel subalgebra containing f is denoted by \mathfrak{b}_- and its nilpotent radical is denoted by \mathfrak{u}_-. Let B_- be the normalizer of \mathfrak{b}_- in G and let U and U_- be the unipotent radicals of B and B_- respectively.

Lemma 1.4. Let $k \geq 2$ be an integer. Let X be an affine variety and set $Y := b^k \times X$. Let Z be a closed subset of Y invariant under the action of B given by $g.(v_1, \ldots, v_k, x) = (g(v_1), \ldots, g(v_k), x)$ with (g, v_1, \ldots, v_k) in $B \times b^k$ and x in X. Then $Z \cap b^k \times X$ is the image of Z by the projection $(v_1, \ldots, v_k, x) \mapsto (\overline{v_1}, \ldots, \overline{v_k}, x)$.

Proof. For all v in \mathfrak{b},

\[
\overline{v} = \lim_{t \to 0} h(t)(v)
\]

whence the lemma since Z is closed and B-invariant. \hfill \Box

- For $x \in \mathfrak{g}$, let x_s and x_n be the semisimple and nilpotent components of x in \mathfrak{g}. Denote by g^x and G^x the centralizers of x in \mathfrak{g} and G respectively. For a subalgebra of \mathfrak{g} and for A a subgroup of G, set:

\[
a^x := a \cap g^x \quad A^x := A \cap G^x.
\]

The set of regular elements of \mathfrak{g} is

\[
\mathfrak{g}_{\text{reg}} := \{ x \in \mathfrak{g} \mid \dim g^x = \ell \}.
\]

Denote by $\mathfrak{g}_{\text{reg,ss}}$ the set of regular semisimple elements of \mathfrak{g}. Both $\mathfrak{g}_{\text{reg}}$ and $\mathfrak{g}_{\text{reg,ss}}$ are G-invariant dense open subsets of \mathfrak{g}. Setting $b_{\text{reg}} := \mathfrak{b} \cap \mathfrak{g}_{\text{reg}}$, $b_{\text{reg}} := \mathfrak{b} \cap \mathfrak{g}_{\text{reg,ss}} = G(b_{\text{reg}})$ and $\mathfrak{g}_{\text{reg}} = G(b_{\text{reg}})$.

- Let p_1, \ldots, p_ℓ be some homogeneous polynomials generating the algebra $S(\mathfrak{g})^G$ of invariant polynomials under G. For $i = 1, \ldots, \ell$ and for x in \mathfrak{g}, denote by $\epsilon_i(x)$ the element of \mathfrak{g} given by

\[
\langle \epsilon_i(x), y \rangle = \left. \frac{d}{dt} p_i(x + ty) \right|_{t=0}
\]
for all \(y \) in \(\mathfrak{g} \). Thereby, \(e_i \) is an invariant element of \(S(\mathfrak{g}) \otimes_{\mathbb{R}} \mathfrak{g} \) under the canonical action of \(G \). According to [Ko63, Theorem 9], for \(x \) in \(\mathfrak{g} \), \(x \) is in \(\mathfrak{g}_{\text{reg}} \) if and only if \(e_1(x), \ldots, e_\ell(x) \) are linearly independent. In this case, \(e_1(x), \ldots, e_\ell(x) \) is a basis of \(\mathfrak{g}^* \).

2. On the varieties \(\mathcal{X} \) and \(G \times_B \mathfrak{b} \)

Denote by \(\pi_1 : \mathfrak{g} \to \mathfrak{g}/\mathcal{G} \) and \(\pi_2 : \mathfrak{h} \to \mathfrak{h}/W(\mathcal{R}) \) the quotient maps, i.e., the morphisms defined by the invariants. Recall \(\mathfrak{g}/\mathcal{G} = \mathfrak{h}/W(\mathcal{R}) \), and let \(\mathcal{X} \) be the following fiber product:

\[
\begin{array}{ccc}
\mathcal{X} & \longrightarrow & \mathfrak{g} \\
\pi_1 & \downarrow & \downarrow \pi_2 \\
\mathfrak{h} & \longrightarrow & \mathfrak{h}/W(\mathcal{R})
\end{array}
\]

where \(\overline{\mathcal{X}} \) and \(\overline{\mathfrak{h}} \) are the restriction maps. The actions of \(G \) and \(W(\mathcal{R}) \) on \(\mathfrak{g} \) and \(\mathfrak{h} \) respectively induce an action of \(G \times W(\mathcal{R}) \) on \(\mathcal{X} \). According to [CZ14, Lemma 2.4], \(\mathcal{X} \) is irreducible and normal. Moreover, \(\mathcal{X}_{\text{reg}} := \mathfrak{g}_{\text{reg}} \times \mathfrak{h}_{\text{reg}} \cap \mathcal{X} \) is a smooth open subset of \(\mathcal{X} \), \(\mathfrak{g}[\mathcal{X}] \) is the space of global sections \(\mathcal{O}_{G \times_B \mathfrak{b}} \) and \(\mathfrak{g}[\mathcal{X}]_G = S(\mathfrak{h}) \). According to [CZ14, Lemma 2.4], the map

\[
G \times \mathfrak{b} \longrightarrow \mathcal{X}, \quad (g, x) \mapsto (g(x), \overline{x})
\]

defines through the quotient a projective birational morphism

\[
G \times_B \mathfrak{b} \longrightarrow \mathcal{X}.
\]

Lemma 2.1.

(i) The set \(\mathfrak{b}_{\text{reg}} \) is a big open subset of \(\mathfrak{b} \).

(ii) The set \(G \times_B \mathfrak{b}_{\text{reg}} \) is a big open subset of \(G \times_B \mathfrak{b} \).

(iii) The restriction of \(\chi_n \) to \(G \times_B \mathfrak{b}_{\text{reg}} \) is an isomorphism onto \(\mathcal{X}_{\text{reg}} \).

(iv) The restriction of \(\pi_n \) to \(\mathfrak{g}_{\text{reg}} \) is a smooth morphism.

Proof.

(i) Let \(\Sigma \) be an irreducible component of \(\mathfrak{b} \setminus \mathfrak{b}_{\text{reg}} \). Then \(\Sigma \) is a closed cone invariant under \(B \) and \(\overline{\Sigma} := \Sigma \cap \mathfrak{h} \) is a closed cone of \(\mathfrak{h} \). According to Lemma 1.4, \(\Sigma \) is contained in \(\overline{\Sigma} + u \). Suppose that \(\Sigma \) has codimension 1 in \(\mathfrak{h} \). A contradiction is expected. Then \(\overline{\Sigma} = \mathfrak{h} \) or \(\overline{\Sigma} \) has codimension 1 in \(\mathfrak{h} \). The first case is impossible since \(\mathfrak{h} \cap \mathfrak{b}_{\text{reg}} \) is not empty. Hence \(\Sigma = \overline{\Sigma} + u \) since \(\Sigma \) is irreducible of codimension 1 in \(\mathfrak{h} \). As a result, \(u \) is contained in \(\Sigma \) since \(\overline{\Sigma} \) is a closed cone, whence the contradiction since \(\mathfrak{h} \cap \mathfrak{b}_{\text{reg}} \) is not empty.

(ii) The complement of \(G \times_B \mathfrak{b}_{\text{reg}} \) in \(G \times_B \mathfrak{b} \) is equal to \(G \times_B \mathfrak{b} \setminus \mathfrak{b}_{\text{reg}} \). By (i), \(\mathfrak{b} \setminus \mathfrak{b}_{\text{reg}} \) is a \(B \)-invariant closed subset of \(\mathfrak{b} \) of dimension at most \(\dim \mathfrak{b} - 2 \). Then \(G \times_B \mathfrak{b} \setminus \mathfrak{b}_{\text{reg}} \) is a closed subset of \(G \times_B \mathfrak{b} \) of codimension at least 2, whence the assertion.

(iii) By definition, \(\chi_n = \chi_n(G \times_B \mathfrak{b}_{\text{reg}}) \). Let \((g_1, x_1) \) and \((g_2, x_2) \) be in \(G \times \mathfrak{b}_{\text{reg}} \) such that \((g_1(x_1), \overline{x_1}) = (g_2(x_2), \overline{x_2}) \). For some \(b_1 \) and \(b_2 \) in \(B \),

\[
b_1(x_1) = \overline{x_1} \quad \text{and} \quad b_2(x_2) = \overline{x_2} = \overline{x_1}.
\]

Setting:

\[
y_1 := b_1(x_1) \quad \text{and} \quad y_2 := b_2(x_2),
\]

\[
y_2 = b_2g_1^{-1}g_1b_1^{-1}(y_1)
\]

is a regular element of \(\mathfrak{g}^{\mathfrak{h}} \). In particular, \(y_2 \) and \(y_1 \) are regular nilpotent elements of \(\mathfrak{g}^{\mathfrak{h}} \) and they are in the borel subalgebra \(\mathfrak{b} \cap \mathfrak{g}^{\mathfrak{h}} \) of \(\mathfrak{g}^{\mathfrak{h}} \). Hence \(b_2g_1^{-1}g_1b_1^{-1} \) is in \(B \) and so is \(g_2^{-1}g_1 \). As a result, the restriction of \(\chi_n \) to \(G \times_B \mathfrak{b}_{\text{reg}} \) is injective. So, by Zariski’s Main Theorem [Mu88, §9], the restriction of \(\chi_n \) to \(G \times_B \mathfrak{b}_{\text{reg}} \) is an isomorphism onto \(\mathcal{X}_{\text{reg}} \) since \(\mathcal{X}_{\text{reg}} \) is a smooth variety.
Proposition 2.2. (i) There exists a regular form of top degree, without zero on X_{reg}.

(ii) There exists a regular form of top degree, without zero on $G \times_B b$.

Proof. (i) Let ω be a volume form on \mathfrak{g}. According to Lemma 2.1, the restriction of ω to $\mathfrak{g}_{\text{reg}}$ is divisible by $dp_1 \wedge \cdots \wedge dp_\ell$ so that

$$\omega = \alpha \wedge dp_1 \wedge \cdots \wedge dp_\ell$$

with α a regular relative differential form of top degree with respect to $\pi_\mathfrak{g}$. Denoting by v_1, \ldots, v_ℓ a basis of \mathfrak{b},

$$\omega' := \alpha \wedge dv_1 \wedge \cdots \wedge dv_\ell$$

is a regular form of top degree on X_{reg} since $S(\mathfrak{g})^G$ identifies with a subalgebra of $S(\mathfrak{b})$. As $\pi_\mathfrak{g}$ and $\overline{\mathfrak{p}}$ have the same fibers and ω has no zero so has ω'.

(ii) By Lemma 2.1, $\chi^G_\mathfrak{a}(\omega')$ is a regular form of top degree on $G \times_B b_{\text{reg}}$ without zero. Then by Lemma C.1, there exists a regular form of top degree on $G \times_B b$, without zero.

3. Main varieties and tautological vector bundles

Denote by X the closure in $\text{Gr}_\ell(\mathfrak{g})$ of the orbit of \mathfrak{b} under B. Since G/B is a projective variety, $G.X$ is the closure in $\text{Gr}_\ell(\mathfrak{g})$ of the orbit of \mathfrak{b} under G. Set:

$$E_0 := \{(u, x) \in X \times \mathfrak{b} \mid x \in u\}, \quad E := \{(u, x) \in G.X \times \mathfrak{g} \mid x \in u\}.$$

Then E_0 and E are the restrictions to X and $G.X$ respectively of the tautological vector bundle of rank ℓ over $\text{Gr}_\ell(\mathfrak{g})$. Denote by π_0 and π the bundle projections:

$$E_0 \xrightarrow{\pi_0} X, \quad E \xrightarrow{\pi} G.X.$$

Since the map

$$\mathfrak{g}_{\text{reg}} \xrightarrow{} \text{Gr}_\ell(\mathfrak{g}), \quad x \mapsto \mathfrak{g}^x$$

is regular, for all x in $\mathfrak{g}_{\text{reg}}, \mathfrak{g}^x$ is in $G.X$ and for all x in $b_{\text{reg}}, \mathfrak{g}^x$ is in X. Denoting by X' the image of $b_{\text{reg}}, G.X'$ is the image of $\mathfrak{g}_{\text{reg}}$ and according to [CZ14, Theorem 1.2], X' and $G.X'$ are smooth big open subsets of X and $G.X$ respectively.

Let τ_0 and τ be the restrictions to E_0 and E respectively of the canonical projection $\text{Gr}_\ell(\mathfrak{g}) \times \mathfrak{g} \rightarrow \mathfrak{g}$.

Denote by π_* and τ_* the morphisms

$$G \times_B E_0 \xrightarrow{\pi_*} G \times_B X, \quad G \times_B E_0 \xrightarrow{\tau_*} X$$

defined through the quotients by the maps

$$G \times E_0 \longrightarrow G \times X, \quad (g, u, x) \mapsto (g, u),$$

$$G \times E_0 \longrightarrow X, \quad (g, u, x) \mapsto (g(x), \overline{x}).$$

Lemma 3.1. (i) The morphism τ_0 is a projective and birational morphism from E_0 onto \mathfrak{b}.

(ii) The morphism τ is a projective and birational morphism from E onto \mathfrak{g}.

(iii) The morphism τ_\ast is a projective and birational morphism from $G \times_B E_0$ onto X.
Proof. (i) and (ii) Since X and $G.X$ are projective varieties, τ_0 and τ are projective morphisms. For x in g_{reg}, $\tau^{-1}(x) = \{g^x\}$. Hence τ_0 and τ are birational and their images are b and g since g_{reg} is an open subset of g.

(iii) The morphism

$$G \times \mathcal{E}_0 \longrightarrow G \times b, \quad (g, u, x) \mapsto (g, x)$$

defines through the quotient a morphism

$$G \times_B \mathcal{E}_0 \longrightarrow G \times_B b.$$

The varieties $G \times_B \mathcal{E}_0$ and $G \times_B b$ are embedded into $G/B \times \mathcal{E}$ and $G/B \times g$ respectively as closed subsets and τ_1 is the restriction to $G \times_B \mathcal{E}_0$ of $\text{id}_{G/B} \times \tau$. Hence τ_1 is a projective morphism by (ii). As τ_* is the composition of τ_1 and χ, τ_* is a projective morphism since so is χ. The map

$$G \times b_{\text{reg}} \longrightarrow G \times \mathcal{E}_0, \quad (g, x) \mapsto (g, g^x, x)$$

defines through the quotient a morphism

$$G \times_B b_{\text{reg}} \longrightarrow G \times_B \mathcal{E}_0.$$

According to Lemma 2.1,(iii), the restriction of τ_* to $\tau_*^{-1}(\mathcal{X}_{\text{reg}})$ is an isomorphism onto \mathcal{X}_{reg} whose inverse is $\mu \circ \chi_{n}^{-1}$. In particular, τ_* is birational. \hfill \Box

Denote by $(G,X)_n$ the normalization of $G.X$. Let \mathcal{E}_n be the following fiber product:

$$\begin{array}{ccc}
\mathcal{E}_n & \overset{\nu_n}{\longrightarrow} & \mathcal{E} \\
\pi_n \downarrow & & \downarrow \pi \\
(G,X)_n & \overset{\nu}{\longrightarrow} & G.X
\end{array}$$

with ν the normalization morphism, ν_n, π_n the restriction maps.

Proposition 3.2. (i) The varieties \mathcal{E}_0 and X are Gorenstein with rational singularities.

(ii) The varieties \mathcal{E}_n and X_n are Gorenstein with rational singularities.

(iii) The varieties $G \times_B \mathcal{E}_0$ and $G \times_B X$ are Gorenstein with rational singularities.

Proof. According to [C15, Theorem 1.1], X is Gorenstein with rational singularities, then by Lemma D.1,(i) and (iv), so is \mathcal{E}_0 as a vector bundle over X. Furthermore, by Lemma D.1,(i) and (iii), $G \times_B X$ is Gorenstein with rational singularities as a fiber bundle over a smooth variety whose fibers are Gorenstein with rational singularities. As a result, by Lemma D.1,(i) and (iv), $G \times_B \mathcal{E}_0$ is Gorenstein with rational singularities as a vector bundle over $G \times_B X$.

Proposition 3.2,(ii) will be proved in Section 5 (see Corollary 5.2). \hfill \Box

4. On the Generalized Isospectral Commuting Variety

Let $k \geq 2$ be an integer. The variety $G^k \times_B b^k$ identifies with $(G \times_B b)^k$. Denote by $\chi_{n}^{(k)}$ the morphism

$$G^k \times_B b^k \longrightarrow \mathcal{X}^{(k)}, \quad (x_1, \ldots, x_k) \mapsto (\chi_n(x_1), \ldots, \chi_n(x_k)).$$

The variety G/B identifies with the diagonal Δ of $(G/B)^k$ so that $G \times_B b^k$ identifies with the restriction to Δ of the vector bundle $G^k \times_B b^{(k)}$ over G/B. Denote by γ_X the restriction of $\chi_n^{(k)}$ to $G \times_B b^k$ and by $\mathcal{E}_X^{(k)}$ its
image, whence a commutative diagram

\[
\begin{array}{ccc}
G \times_B b^k & \xrightarrow{\gamma} & B_x^{(k)} \\
\downarrow \gamma & & \downarrow \eta \\
B^{(k)} & & B^{(k)}
\end{array}
\]

with \(\eta\) the restriction to \(B_x^{(k)}\) of the canonical projection \(X^k \rightarrow g^k\). Let \(\iota_{x,k}\) be the map given by

\[
\begin{array}{c}
b^k \xrightarrow{\iota_{x,k}} X^k, \\
(x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_k, \overline{x_1}, \ldots, \overline{x_k}).
\end{array}
\]

According to [CZ14, Lemma 2.7, (i) and Corollary 2.8, (i)], \(\iota_{x,k}\) is a closed embedding of \(b^k\) into \(B_x^{(k)}\) and \(\gamma_x\) is a projective birational morphism so that \(\overline{B_x^{(k)}}\) is the normalization of \(B_x^{(k)}\). Denote by \(C^{(k)}\) the closure of \(G.b^k\) in \(g^k\) with respect to the diagonal action of \(G\) in \(g^k\) and set \(C^{(k)} := \eta^{-1}(C^{(k)})\). The varieties \(C^{(k)}\) and \(C^{(k)}_\ell\) are called generalized commuting variety and generalized isospectral commuting variety respectively. For \(k = 2\), \(C^{(k)}_\ell\) is the isospectral commuting variety considered by M. Haiman in [Ha99, §8] and [Ha02, §7.2]. According to [CZ14, Proposition 5.6], \(C^{(k)}_\ell\) is irreducible and equal to the closure of \(G \times_{\tau_{x,k}} (b^k)\) in \(B_x^{(k)}\).

4.1. We consider the diagonal action of \(B\) on \(b^k\). Let \(x_{0,k}\) be the closure of \(B.b^k\) in \(b^k\). Set:

\[
E^{(k)} := \{(u, x_1, \ldots, x_k) \in G.X \times g^k \mid x_1 \in u, \ldots, x_k \in u\} \quad \text{and} \quad E^{(k)}_{0} := E^{(k)} \cap X \times b^k.
\]

Then \(E^{(k)}_{0}\) and \(E^{(k)}\) are vector bundles over \(X\) and \(G.X\) respectively. Denote by \(\pi_{0,k}\) and \(\pi_k\) respectively their bundle projections. Let \(\tau_{0,k}\) and \(\tau_k\) be the restrictions to \(E^{(k)}_{0}\) and \(E^{(k)}\) respectively of the canonical projection \(G_\ell(g) \times g^k \rightarrow g^k\). Denote by \(\pi_{x,k}\) and \(\tau_{x,k}\) the morphisms

\[
G \times_B E^{(k)}_{0} \xrightarrow{\pi_{x,k}} G \times_B X, \quad \text{and} \quad G \times_B E^{(k)} \xrightarrow{\tau_{x,k}} X^k
\]

defined through the quotients by the maps

\[
G \times E^{(k)}_{0} \xrightarrow{\pi_{x,k}} X^k, \quad (g, u, x_1, \ldots, x_k) \mapsto (g(x_1), \ldots, g(x_k), \overline{x_1}, \ldots, \overline{x_k}),
\]

\[
G \times E^{(k)} \xrightarrow{\tau_{x,k}} X^k, \quad (g, u, x_1, \ldots, x_k) \mapsto (g(x_1), \ldots, g(x_k)).
\]

Lemma 4.1. (i) The morphism \(\tau_{0,k}\) is a projective morphism from \(E^{(k)}_{0}\) onto \(x_{0,k}\).

(ii) The morphism \(\tau_k\) is a projective morphism from \(E^{(k)}\) onto \(C^{(k)}\).

(iii) The morphism \(\tau_{x,k}\) is a projective morphism from \(G \times_B E^{(k)}_{0}\) onto \(C^{(k)}_\ell\).

Proof. (i) Since \(X\) is a projective variety, \(\tau_{0,k}\) is a projective morphism. Then its image is an irreducible closed subset of \(b^k\) since \(E^{(k)}_{0}\) is irreducible as a vector bundle over an irreducible variety. Moreover, \(B.b^k\) is contained in \(\tau_{0,k}(E^{(k)}_{0})\) since \(\tau_{0,k}(E^{(k)}_{0})\) is invariant under \(B\) and contains \(b^k\). As a vector bundle of rank \(k\ell\) over \(X\), \(E^{(k)}_{0}\) has dimension \(k\ell + \dim u\). Since the restriction to \(U \times b^k_{\text{reg}}\) of the map

\[
B \times b^k \xrightarrow{} b^k, \quad (g, x_1, \ldots, x_k) \mapsto (g(x_1), \ldots, g(x_k))
\]

is injective, \(x_{0,k}\) has dimension \(\dim u + k\ell\). Hence \(x_{0,k}\) is the image of \(E^{(k)}_{0}\) by \(\tau_{0,k}\).

(ii) Since \(G.X\) is a projective variety, \(\tau_k\) is a projective morphism. Then its image is an irreducible closed subset of \(g^k\) since \(E^{(k)}\) is irreducible as a vector bundle over an irreducible variety. Moreover, \(G.b^k\) is
contained in $\tau_k(\mathcal{E}^{(k)})$ since $\tau_k(\mathcal{E}^{(k)})$ is invariant under G and contains \mathfrak{b}^k. As a vector bundle of rank $k\ell$ over $G \times X$, $\mathcal{E}^{(k)}$ has dimension $k\ell + 2\dim u$. Since the fibers of the restriction to $G \times b_{\text{reg}}^k$ of the map

$$G \times b_{\text{reg}}^k \to g^k, \quad (g, x_1, \ldots, x_k) \mapsto (g(x_1), \ldots, g(x_k))$$

have dimension ℓ, $\mathcal{C}^{(k)}$ has dimension $2\dim u + k\ell$. Hence $\mathcal{C}^{(k)}$ is the image of $\mathcal{E}^{(k)}$ by τ_k.

(iii) The morphism

$$G \times \mathcal{E}_0^{(k)} \to G \times b^k, \quad (g, u, x) \mapsto (g, x)$$

defines through the quotient a morphism

$$G \times_B \mathcal{E}_0^{(k)} \to G \times_B b^k.$$

The varieties $G \times_B \mathcal{E}_0^{(k)}$ and $G \times_B b^k$ are embedded into $G/B \times \mathcal{E}^{(k)}$ and $G/B \times g^k$ respectively as closed subsets and $\tau_{1,k}$ is the restriction to $G \times_B \mathcal{E}_0^{(k)}$ of $\text{id}_{G/B} \times \tau_k$. Hence $\tau_{1,k}$ is a projective morphism by (ii). As $\tau_{s,k}$ is the composition of $\tau_{1,k}$ and γ_x, $\tau_{s,k}$ is a projective morphism since so is γ_x. Moreover, by (ii), the image of $\eta \circ \tau_{s,k}$ is equal to $\mathcal{C}^{(k)}$. Hence $\mathcal{C}_x^{(k)}$ is the image of $\tau_{s,k}$ since it is irreducible and equal to $\mathcal{E}^{(k)}$. \square

4.2. For $j = 1, \ldots, k$, denote by $V^{(k)}_{0,j}$ the subset of elements of $X_{0,k}$ whose j-th component is in b_{reg} and by $V^{(k)}_j$ the subset of elements of $\mathcal{C}^{(k)}$ whose j-th component is in $\mathfrak{g}_{\text{reg}}$. Let $W^{(k)}_j$ be the inverse image of $V^{(k)}_j$ by η.

Let σ_j be the automorphism of g^k permuting the first and the j-th components of its elements. Then σ_j is equivariant under the diagonal action of G in g^k and b^k and \mathfrak{h}^k are invariant under σ_j. As a result, $X_{0,k}$ is invariant under σ_j and $\sigma_j(V^{(k)}_{0,i}) = V^{(k)}_{0,j}$. In the same way, $\mathcal{C}^{(k)}$ is invariant under σ_j and $\sigma_j(V^{(k)}_1) = V^{(k)}_j$. The map

$$G \times \mathfrak{b}^k \to G \times \mathfrak{b}^k, \quad (g, x) \mapsto (g, \sigma_j(x))$$

defines through the quotient an automorphism of $G \times_B b^k$. Denote again by σ_j this automorphism and the restriction to \mathcal{X}^k of the automorphism $(x, y) \mapsto (\sigma_j(x), \sigma_j(y))$ of $g^k \times \mathfrak{b}^k$. Since $\mathcal{B}^{(k)}$ is contained in \mathcal{X}^k and γ_x is a morphism from $G \times_B b^k$ to \mathcal{X}^k such that $\gamma_x \circ \sigma_j = \sigma_j \circ \gamma_x$, $\mathcal{B}^{(k)}$ is invariant under σ_j. In the same way, $\sigma_j \circ \gamma_x = \gamma_x \circ \sigma_j$ and $\mathcal{B}^{(k)}$ is invariant under σ_j. As a result $\eta \circ \sigma_j = \eta \circ \sigma_j$, $\mathcal{C}_x^{(k)}$ is invariant under σ_j and $\sigma_j(W^{(k)}_j) = W^{(k)}_j$.

Lemma 4.2. Let $j = 1, \ldots, k$.

(i) The set $V^{(k)}_{0,j}$ is a smooth open subset of $X_{0,k}$. Moreover there exists a regular differential form of top degree on $V^{(k)}_{0,j}$ without zero.

(ii) The set $V^{(k)}_j$ is a smooth open subset of $\mathcal{C}^{(k)}$. Moreover there exists a regular differential form of top degree on $V^{(k)}_j$, without zero.

(iii) The set $W^{(k)}_j$ is a smooth open subset of $\mathcal{C}_x^{(k)}$. Moreover there exists a regular differential form of top degree on $W^{(k)}_j$, without zero.

Proof. According to the above remarks, we can suppose $j = 1$.

(i) By definition, $V^{(k)}_{0,1}$ is the intersection of $X_{0,k}$ and the open subset $b_{\text{reg}} \times b^{k-1}$ of b^k. Hence $V^{(k)}_{0,1}$ is an open subset of $X_{0,k}$. For x_1 in b_{reg}, (x_1, \ldots, x_k) is in $V^{(k)}_{0,1}$ if and only if x_2, \ldots, x_k are in g^{k-1} by Lemma 4.1(i).
since \(g^{x_1} \) is in \(X \). According to [Ko63, Theorem 9], for \(x \) in \(b_{\text{reg}} \), \(e_1(x), \ldots, e_\ell(x) \) is a basis of \(g^x \) and \(g^x \) is contained in \(b \). Hence the map

\[
\begin{array}{c}
b_{\text{reg}} \times M_{k-1,\ell}(k) \\
\downarrow \theta_0 \end{array} \longrightarrow \begin{array}{c}V_{0,1}^{(k)} \\
\end{array}
\]

\[
(x, (a_{i,j}, 1 \leq i \leq k - 1, 1 \leq j \leq \ell)) \longmapsto (x, \sum_{j=1}^{\ell} a_{1,j} e_j(x), \ldots, \sum_{j=1}^{\ell} a_{k-1,j} e_j(x))
\]

is a bijective morphism. The open subset \(b_{\text{reg}} \) has a cover by open subsets \(V \) such that for some \(e_1, \ldots, e_n \) in \(b \), \(e_1(x), \ldots, e_\ell(x), e_1, \ldots, e_n \) is a basis of \(b \) for all \(x \) in \(V \). Then there exist regular functions \(\varphi_1, \ldots, \varphi_\ell \) on \(V \times b \) such that

\[
v - \sum_{j=1}^{\ell} \varphi_j(x,v)e_j(x) \in \text{span}(e_1, \ldots, e_n)
\]

for all \((x,v) \) in \(V \times b \), so that the restriction of \(\theta_0 \) to \(V \times M_{k-1,\ell}(k) \) is an isomorphism onto \(X_{0,k} \cap V \times b^{k-1} \) whose inverse is

\[
(x_1, \ldots, x_k) \longmapsto (x_1, ((\varphi_1(x_1, x_i), \ldots, \varphi_\ell(x_1, x_i)), i = 2, \ldots, k)).
\]

As a result, \(\theta_0 \) is an isomorphism and \(V_{0,1}^{(k)} \) is a smooth variety. Since \(b_{\text{reg}} \) is a smooth open subset of the vector space \(b \), there exists a regular differential form \(\omega \) of top degree on \(b_{\text{reg}} \times M_{k-1,\ell}(k) \), without zero. Then \(\theta_0(\omega) \) is a regular differential form of top degree on \(V_{0,1}^{(k)} \), without zero.

(ii) By definition, \(V_1^{(k)} \) is the intersection of \(C^{(k)} \) and the open subset \(g_{\text{reg}} \times g^{k-1} \) of \(g^k \). Hence \(V_1^{(k)} \) is an open subset of \(C^{(k)} \). For \(x_1 \) in \(g_{\text{reg}} \), \((x_1, \ldots, x_k) \) is in \(V_1^{(k)} \) if and only if \(x_2, \ldots, x_k \) are in \(g^{x_1} \) by Lemma 4.1(ii) since \(g^{x_1} \) is in \(G \times X \). According to [Ko63, Theorem 9], for \(x \) in \(g_{\text{reg}} \), \(e_1(x), \ldots, e_\ell(x) \) is a basis of \(g^x \). Hence the map

\[
\begin{array}{c}
g_{\text{reg}} \times M_{k-1,\ell}(k) \\
\downarrow \theta \end{array} \longrightarrow \begin{array}{c}V_1^{(k)} \\
\end{array}
\]

\[
(x, (a_{i,j}, 1 \leq i \leq k - 1, 1 \leq j \leq \ell)) \longmapsto (x, \sum_{j=1}^{\ell} a_{1,j} e_j(x), \ldots, \sum_{j=1}^{\ell} a_{k-1,j} e_j(x))
\]

is a bijective morphism. The open subset \(g_{\text{reg}} \) has a cover by open subsets \(V \) such that for some \(e_1, \ldots, e_{2n} \) in \(g \), \(e_1(x), \ldots, e_\ell(x), e_1, \ldots, e_{2n} \) is a basis of \(g \) for all \(x \) in \(V \). Then there exist regular functions \(\varphi_1, \ldots, \varphi_\ell \) on \(V \times g \) such that

\[
v - \sum_{j=1}^{\ell} \varphi_j(x,v)e_j(x) \in \text{span}(e_1, \ldots, e_{2n})
\]

for all \((x,v) \) in \(V \times g \), so that the restriction of \(\theta \) to \(V \times M_{k-1,\ell}(k) \) is an isomorphism onto \(C^{(k)} \cap V \times b^{k-1} \) whose inverse is

\[
(x_1, \ldots, x_k) \longmapsto (x_1, ((\varphi_1(x_1, x_i), \ldots, \varphi_\ell(x_1, x_i)), i = 2, \ldots, k)).
\]

As a result, \(\theta \) is an isomorphism and \(V_1^{(k)} \) is a smooth variety. Since \(g_{\text{reg}} \) is a smooth open subset of the vector space \(g \), there exists a regular differential form \(\omega \) of top degree on \(g_{\text{reg}} \times M_{k-1,\ell}(k) \), without zero. Then \(\theta_*(\omega) \) is a regular differential form of top degree on \(V_1^{(k)} \), without zero.

(iii) Since \(X_{\text{reg}} \) is the inverse image of \(g_{\text{reg}} \) by the canonical projection \(X \longrightarrow g \), \(W_1^{(k)} \) is the intersection of \(C_x^{(k)} \) and \(X_{\text{reg}} \times X^{k-1} \). Hence \(W_1^{(k)} \) is an open subset of \(C_x^{(k)} \). Moreover, \(W_1^{(k)} \) is the image of \(G \times b \ V_{0,1}^{(k)} \) by \(\gamma_x \). Since the maps \(e_1, \ldots, e_\ell \) are \(G \)-equivariant, the map

\[
\begin{array}{c}
G \times b_{\text{reg}} \times M_{k-1,\ell}(k) \\
\downarrow \theta_0 \end{array} \longrightarrow \begin{array}{c}W_1^{(k)} \\
\end{array}
\]

\[
(g, x, a_{i,j}, 1 \leq i \leq k - 1, 1 \leq j \leq \ell) \longmapsto \gamma_x(g, \theta_0(x, a_{i,j}, 1 \leq i \leq k - 1, 1 \leq j \leq \ell))
\]
defines through the quotient a surjective morphism
\[G \times_B b_{\reg} \times M_{k-1,\ell}(k) \to W^{(k)}_1. \]

Let \(\varpi_2 \) be the canonical projection
\[g_{\reg} \times M_{k-1,\ell}(k) \to M_{k-1,\ell}(k). \]

According to Lemma 2.1.(iii), the restriction of \(\chi_n \) to \(G \times_B b_{\reg} \) is an isomorphism onto \(X_{\reg} \). So denote by \(\varpi_1 \) the morphism
\[W^{(k)}_1 \to G \times_B b_{\reg}, \quad (x_1, \ldots, x_k, y_1, \ldots, y_k) \mapsto \chi_n^{-1}(x_1, y_1). \]

Then \(\theta \) is an isomorphism whose inverse is given by
\[x \mapsto (\varpi_1(x), \varpi_2 \circ g^{-1} \circ \eta(x)) \]

since \(\eta(W^{(k)}_1) = V^{(k)}_1 \). In particular, \(W^{(k)}_1 \) is a smooth open subset of \(V^{(k)}_1 \). According to Proposition 2.2.(ii), there exists a regular differential form \(\omega \) of top degree on \(G \times_B b_{\reg} \times M_{k-1,\ell}(k) \), without zero. Then \(\theta_\ast(\omega) \) is a regular differential form of top degree on \(W^{(k)}_1 \), without zero. \(\square \)

Corollary 4.3. Let \(j = 1, \ldots, k \).

(i) The morphism \(\tau_{0,k} \) is birational. More precisely, the restriction of \(\tau_{0,k} \) to \(\tau_{0,k}^{-1}(V^{(k)}_{0,j}) \) is an isomorphism onto \(V^{(k)}_{0,j} \).

(ii) The morphism \(\tau_k \) is birational. More precisely, the restriction of \(\tau_k \) to \(\tau_k^{-1}(V^{(k)}_j) \) is an isomorphism onto \(V^{(k)}_j \).

(iii) The morphism \(\tau_{s,k} \) is birational. More precisely, the restriction of \(\tau_{s,k} \) to \(\tau_{s,k}^{-1}(W^{(k)}_j) \) is an isomorphism onto \(W^{(k)}_j \).

Proof. According to the above remarks, we can suppose \(j = 1 \).

(i) For \((x_1, \ldots, x_k) \) in \(V^{(k)}_1 \) and for \(u \) in \(X \) containing \(x_1, \ldots, x_k \), \(u = g^{x_i} \) since \(x_1 \) is regular. Hence the restriction of \(\tau_{0,k} \) to \(\tau_{0,k}^{-1}(V^{(k)}_{0,1}) \) is injective. According to Lemma 4.1.(i), \(V^{(k)}_{0,1} \) is the image of \(\tau_{0,k}^{-1}(V^{(k)}_{0,1}) \) by \(\tau_{0,k} \). So, by Lemma 4.2.(i) and Zariski’s Main Theorem [Mu88, §9], the restriction of \(\tau_{0,k} \) to \(\tau_{0,k}^{-1}(V^{(k)}_{0,1}) \) is an isomorphism onto \(V^{(k)}_{0,1} \).

(ii) For \((x_1, \ldots, x_k) \) in \(V^{(k)}_1 \) and for \(u \) in \(G.X \) containing \(x_1, \ldots, x_k \), \(u = g^{x_1} \) since \(x_1 \) is regular. Hence the restriction of \(\tau_k \) to \(\tau_k^{-1}(V^{(k)}_1) \) is injective. According to Lemma 4.1.(ii), \(V^{(k)}_1 \) is the image of \(\tau_k^{-1}(V^{(k)}_1) \) by \(\tau_k \). So, by Lemma 4.2.(ii) and Zariski’s Main Theorem [Mu88, §9], the restriction of \(\tau_k \) to \(\tau_k^{-1}(V^{(k)}_1) \) is an isomorphism onto \(V^{(k)}_1 \).

(iii) The variety \(G \times_B E^{(k)}_0 \) identifies to a closed subvariety of \(G/B \times E^{(k)} \). For \((x_1, \ldots, x_k, y_1, \ldots, y_k) \) in \(W^{(k)}_1 \) and \((u, v) \) in \(G/B \times G.X \) such that \((u, v, x_1, \ldots, x_k) \) is in \(G \times_B E^{(k)}_0 \), \((x_1, y_1) \) is in \(X_{\reg} \), \(\chi_n(u, x_1) = (x_1, y_1) \) and \(v = g^{x_1} \) since \(x_1 \) is regular. Moreover, \(u \) is unique by Lemma 2.1.(iii). Hence the restriction of \(\tau_{s,k} \) to \(\tau_{s,k}^{-1}(W^{(k)}_1) \) is injective. According to Lemma 4.1.(iii), \(W^{(k)}_1 \) is the image of \(\tau_{s,k}^{-1}(W^{(k)}_1) \) by \(\tau_{s,k} \). So, by Lemma 4.2.(iii) and Zariski’s Main Theorem [Mu88, §9], the restriction of \(\tau_{s,k} \) to \(\tau_{s,k}^{-1}(W^{(k)}_1) \) is an isomorphism onto \(W^{(k)}_1 \). \(\square \)

Set:
\[V^{(k)}_0 := V^{(k)}_{0,1} \cup V^{(k)}_{0,2}, \quad V^{(k)} := V^{(k)}_{1,1} \cup V^{(k)}_{2,1}, \quad W^{(k)} := W^{(k)}_1 \cup W^{(k)}_2. \]
Lemma 4.4. (i) The set $\tau_{0,k}^{-1}(V_{0}^{(k)})$ is a big open subset of $E_{0}^{(k)}$.
(ii) The set $\tau_{k}^{-1}(V^{(k)})$ is a big open subset of $E^{(k)}$.
(iii) The set $\tau_{r,k}^{-1}(W^{(k)})$ is a big open subset of $G \times B E_{0}^{(k)}$.

Proof. (i) Let Σ be an irreducible component of $E_{0}^{(k)} \setminus \tau_{0,k}^{-1}(V_{0}^{(k)})$. Since $V_{0}^{(k)}$ is a B-invariant open cone, Σ is a B-invariant closed subset of $E_{0}^{(k)}$ such that $\Sigma \cap \tau_{0,k}^{-1}(u)$ is a closed cone of $\tau_{0,k}^{-1}(u)$ for all u in $\pi_{0,k}(\Sigma)$. As a result, $\pi_{0,k}(\Sigma)$ is a closed subset of X. Indeed, $\pi_{0,k}(\Sigma) \times \{0\} = \Sigma \cap X \times \{0\}$. For u in $\pi_{0,k}(\Sigma)$, denote by Σ_u the closed subvariety of u^k such that $\tau_{0,k}^{-1}(u) \cap \Sigma = \{u\} \times \Sigma_u$.

Suppose that Σ has codimension 1 in $E_{0}^{(k)}$. A contradiction is expected. Then $\pi_{0,k}(\Sigma)$ has codimension at most 1 in X. Since X' is a big open subset of X, for all u in a dense open subset of $\pi_{0,k}(\Sigma)$, $u \cap b_{\text{reg}}$ is not empty. If $\pi_{0,k}(\Sigma)$ has codimension 1 in X, then $\Sigma_u = u^k$ for all u in $\pi_{0,k}(\Sigma)$. Hence $\pi_{0,k}(\Sigma) = X$ and for all u in a dense open subset of X', Σ_u has dimension $k\ell - 1$. For such u, the image of Σ_u by the first projection onto u is not dense in u since $u \cap b_{\text{reg}}$ is not empty. Hence the image of Σ_u by the second projection is equal to u since Σ_u has codimension 1 in u^k. It is impossible since this image is contained in $u \setminus b_{\text{reg}}$.

(ii) Let Σ be an irreducible component of $E^{(k)} \setminus \tau_{k}^{-1}(V^{(k)})$. Since $V^{(k)}$ is a G-invariant open cone, Σ is a G-invariant closed subset of $E^{(k)}$ such that $\Sigma \cap \tau_k^{-1}(u)$ is a closed cone of $\tau_k^{-1}(u)$ for all u in $\pi_k(\Sigma)$. As a result, $\pi_k(\Sigma)$ is a closed subset of $G \times B E_{0}^{(k)}$. Indeed, $\pi_k(\Sigma) \times \{0\} = \Sigma \cap G \times B E_{0}^{(k)}$. For u in $\pi_k(\Sigma)$, denote by Σ_u the closed subvariety of u^k such that $\tau_k^{-1}(u) \cap \Sigma = \{u\} \times \Sigma_u$.

Suppose that Σ has codimension 1 in $E^{(k)}$. A contradiction is expected. Then $\pi_k(\Sigma)$ has codimension at most 1 in X. Since $G \times B E_{0}^{(k)}$ is a big open subset of $G \times B E_{0}^{(k)}$, for all u in a dense open subset of $\pi_k(\Sigma)$, $u \cap b_{\text{reg}}$ is not empty. If $\pi_k(\Sigma)$ has codimension 1 in $G \times B E_{0}^{(k)}$, then $\Sigma_u = u^k$ for all u in $\pi_k(\Sigma)$. Hence $\pi_k(\Sigma) = G \times B E_{0}^{(k)}$ and for all u in a dense open subset of $G \times B E_{0}^{(k)}$, Σ_u has dimension $k\ell - 1$. For such u, the image of Σ_u by the first projection onto u is not dense in u since $u \cap b_{\text{reg}}$ is not empty. Hence the image of Σ_u by the second projection is equal to u since Σ_u has codimension 1 in u^k. It is impossible since this image is contained in $u \setminus b_{\text{reg}}$.

(iii) Let Σ be an irreducible component of $G \times B E_{0}^{(k)} \setminus \tau_{r,k}^{-1}(W^{(k)})$. Since $W^{(k)}$ is a G-invariant open cone, Σ is a G-invariant closed subset of $G \times B E_{0}^{(k)}$. So, for some B-invariant closed subset Σ_0 of $E_{0}^{(k)}$, $\Sigma = G \times B E_{0}^{(k)}$. Moreover, Σ_0 is contained in $E_{0,k}(k)$ $TV_{0,k}^{-1}(V_{0}^{(k)})$. According to (i), Σ_0 has codimension at least 2 in $E_{0}^{(k)}$. Hence Σ has codimension at least 2 in $G \times B E_{0}^{(k)}$. \hfill \Box

4.3. For $2 \leq k \leq k'$, the projection
\[g^k \to g^{k'}, \quad (x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_{k'}) \]
induces the projections
\[x_{0,k} \to x_{0,k'}, \quad V_{0,j} \to V_{0,j}^{(k')} \]
Set:
\[V_{0,1,2}^{(k)} := V_{0,1}^{(k)} \cap V_{0,2}^{(k)}. \]

Lemma 4.5. Let ω be a regular differential form of top degree on $V_{0,1}^{(k)}$, without zero. Denote by ω' its restriction to $V_{0,1,2}^{(k)}$.

(i) For φ in $\mathbb{F}[V_{0,1}^{(k)}]$, if φ has no zero then φ is in \mathbb{F}^*.
(ii) For some invertible element ψ of $\mathbb{F}[V_{0,1,2}^{(k)}]$, $\omega' = \psi \sigma_2(\omega')$.
(iii) The function $\psi(\sigma_2(\omega'))$ on $V_{0,1,2}^{(k)}$ is equal to 1.
Proof. The existence of \(\omega \) results from Lemma 4.2,(i).

(i) According to Lemma 4.2,(i), there is an isomorphism \(\theta_0 \) from \(b_{\text{reg}} \times M_{k-1,1}(\mathbb{k}) \) onto \(V^{(k)}_{0,1} \). Since \(\varphi \) is invertible, \(\varphi \circ \theta_0 \) is an invertible element of \(\mathbb{k}[b_{\text{reg}}] \). According to Lemma 2.1,(i), \(\mathbb{k}[b_{\text{reg}}] = \mathbb{k}[b] \). Hence \(\varphi \) is in \(\mathbb{k}^* \).

(ii) The open subset \(V^{(k)}_{0,1,2} \) is invariant under \(\sigma_2 \) so that \(\omega' \) and \(\sigma_2 \cdot (\omega') \) are regular differential forms of top degree on \(V^{(k)}_{0,1,2} \), without zero. Then for some invertible element \(\psi \) of \(\mathbb{k}[V^{(k)}_{0,1,2}] \), \(\omega' = \psi \sigma_2 \cdot (\omega') \). Let \(O_2 \) be the set of elements \(\langle x, a_i,j, 1 \leq i \leq k-1, 1 \leq j \leq \ell \rangle \) of \(b_{\text{reg}} \times M_{k-1,1}(\mathbb{k}) \) such that

\[
a_{1,1} \epsilon_1(x) + \cdots + a_{1,\ell} \epsilon_\ell(x) \in b_{\text{reg}}.
\]

Then \(O_2 \) is the inverse image of \(V^{(k)}_{0,1,2} \) by \(\theta_0 \). As a result, \(\mathbb{k}[V^{(k)}_{0,1,2}] \) is a polynomial algebra over \(\mathbb{k}[V^{(2)}_{0,1,2}] \) since for \(k = 2 \), \(O_2 \) is the inverse image by \(\theta_0 \) of \(V^{(2)}_{0,1,2} \). Hence \(\psi \) is in \(\mathbb{k}[V^{(2)}_{0,1,2}] \) since \(\psi \) is invertible.

(iii) Since the restriction of \(\sigma_2 \) to \(V^{(k)}_{0,1,2} \) is an involution,

\[
\sigma_2 \cdot (\omega') = (\psi \circ \sigma_2) \omega' = (\psi \circ \sigma_2) \psi \sigma_2 \cdot (\omega')
\]

whence \((\psi \circ \sigma_2) \psi = 1 \).

\[\square\]

Corollary 4.6. The function \(\psi \) is invariant under the action of \(B \) in \(V^{(k)}_{0,1,2} \) and for some sequence \(m_\alpha, \alpha \in \mathcal{R}_+ \),

\[
\psi(x_1, \ldots, x_k) = \pm \prod_{\alpha \in \mathcal{R}_+} (\alpha(x_1)\alpha(x_2)^{-1})^{m_\alpha},
\]

for all \((x_1, \ldots, x_k) \) in \(b^2_{\text{reg}} \times b^{k-2} \).

Proof. First of all, since \(V^{(k)}_{0,1} \) and \(V^{(k)}_{0,2} \) are invariant under the action of \(B \) in \(x_{0,k} \), so is \(V^{(k)}_{0,1,2} \). Let \(g \) be in \(B \). Since \(\omega \) has no zero, \(g \cdot \omega = p_g \omega \) for some invertible element \(p_g \) of \(\mathbb{k}[V^{(k)}_{0,1}] \). By Lemma 4.5,(i), \(p_g \) is in \(\mathbb{k}^* \). Since \(\sigma_2 \) is a \(B \)-equivariant isomorphism from \(V^{(k)}_{0,1} \) onto \(V^{(k)}_{0,2} \),

\[
g \cdot \sigma_2 \cdot (\omega) = p_g \sigma_2 \cdot (\omega) \quad \text{and} \quad p_g \omega' = g \cdot \omega' = (g \cdot \psi) g \cdot \sigma_2 \cdot (\omega') = p_g (g \cdot \psi) \sigma_2 \cdot (\omega'),
\]

whence \(g \cdot \psi = \psi \).

The open subset \(b^2_{\text{reg}} \) of \(b^2 \) is the complement of the nullvairty of the function

\[
(x, y) \mapsto \prod_{\alpha \in \mathcal{R}_+} \alpha(x)\alpha(y).
\]

Then, by Lemma 4.5,(ii), for some \(\alpha \) in \(\mathbb{k}^* \) and for some sequences \(m_\alpha, \alpha \in \mathcal{R}_+ \) and \(n_\alpha, \alpha \in \mathcal{R}_+ \) in \(\mathbb{Z} \),

\[
\psi(x_1, \ldots, x_k) = \alpha \prod_{\alpha \in \mathcal{R}_+} \alpha(x_1)^{m_\alpha} \alpha(x_2)^{n_\alpha},
\]

for all \((x_1, \ldots, x_k) \) in \(b^2_{\text{reg}} \times b^{k-2} \). Then, by Lemma 4.5,(iii),

\[
a^2 \prod_{\alpha \in \mathcal{R}_+} \alpha(x)^{m_\alpha+n_\alpha} \alpha(y)^{m_\alpha+n_\alpha} = 1,
\]

for all \((x, y) \) in \(b^2_{\text{reg}} \). Hence \(a^2 = 1 \) and \(m_\alpha + n_\alpha = 0 \) for all \(\alpha \) in \(\mathcal{R}_+ \).

\[\square\]

For \(\alpha \) a positive root, denote by \(b_\alpha \) the kernel of \(\alpha \) and set:

\[V_\alpha := b_\alpha \oplus g^\alpha \).

Denote by \(\theta_\alpha \) the map

\[
\mathbb{k} \xrightarrow{\theta_\alpha} X, \quad t \mapsto \exp(tad.x_\alpha) \cdot b.
\]
According to [Sh94, Ch. VI, Theorem 1], θ_α has a regular extension to $\mathbb{P}^1(\mathbb{k})$. Set $Z_\alpha := \theta_\alpha(\mathbb{P}^1(\mathbb{k}))$. Denote again by α the element of \mathfrak{b}* extending α and equal to 0 on \mathfrak{u}.

Lemma 4.7. Let α be in \mathcal{R}_+ and let x_0 and y_0 be subregular in \mathfrak{h}_α. Set:

$$E := \mathbb{k}x_0 \oplus \mathbb{k}H_\alpha \oplus \mathfrak{g}^\alpha, \quad E_1 := x_0 \oplus \mathbb{k}H_\alpha \oplus \mathfrak{g}^\alpha \setminus \{0\}, \quad E_{s,2} = y_0 \oplus \mathbb{k}H_\alpha \oplus \mathfrak{g}^\alpha \setminus \{0\}.$$

(i) For x in E_s, the centralizer of x in \mathfrak{b} is contained in $\mathfrak{h}_\alpha + E$.

(ii) For V subspace of dimension ℓ of $\mathfrak{b}_\alpha + E$, V is in X if and only if it is in Z_α.

(iii) The intersection of $E_{s,1} \times E_{s,2}$ and $\mathfrak{h}_{0,2}$ is the nullvariety of the function

$$(x, y) \mapsto \langle x_\alpha, y \rangle \alpha(x) - \langle x_\alpha, x \rangle \alpha(y)$$

on $E_{s,1} \times E_{s,2}$.

Proof. (i) If x is regular semisimple, its component on H_α is different from 0 so that $\mathfrak{g}^\alpha = \theta_\alpha(t)$ for some t in \mathbb{k}. Suppose that x is not regular semisimple. Then x is in $x_0 + \mathfrak{g}^\alpha$. Hence $\mathfrak{g}^\alpha \cap \mathfrak{b}$ is contained in $\mathfrak{h}_\alpha + E$ since so is $\mathfrak{g}^{\alpha_0} \cap \mathfrak{b}$.

(ii) All element of Z_α is contained in $\mathfrak{h}_\alpha + E$. Let V be an element of X, contained in $\mathfrak{h}_\alpha + E$. According to [CZ14, Corollary 4.3], V is an algebraic commutative subalgebra of dimension ℓ of \mathfrak{b}. By (i), $V = \theta_\alpha(t)$ for some t in \mathbb{k} if V is a Cartan subalgebra. Otherwise, x_α is in V. Then $V = \theta_\alpha(\infty)$ since $\theta_\alpha(\infty)$ is the centralizer of x_α in $\mathfrak{h}_\alpha + E$.

(iii) Let (x, y) be in $E_{s,1} \times E_{s,2} \cap \mathfrak{h}_{0,2}$. According to Lemma 4.1,(i), for some V in X, x and y are in V. By (i) and (ii), $V = \theta_\alpha(t)$ for some t in $\mathbb{P}^1(\mathbb{k})$. For t in \mathbb{k},

$$x = x_0 + s(H_\alpha - 2tx_\alpha) \quad \text{and} \quad y = y_0 + s'(H_\alpha - 2tx_\alpha)$$

for some s, s' in \mathbb{k}, whence the equality of the assertion. For $t = \infty$,

$$x = x_0 + sx_\alpha \quad \text{and} \quad y = y_0 + s'x_\alpha$$

for some s, s' in \mathbb{k} so that $\alpha(x) = \alpha(y) = 0$. Conversely, let (x, y) be in $E_{s,1} \times E_{s,2}$ such that

$$\langle x_\alpha, y \rangle \alpha(x) - \langle x_\alpha, x \rangle \alpha(y) = 0.$$

If $\alpha(x) = 0$ then $\alpha(y) = 0$ and x and y are in $V_{\alpha} = \theta_\alpha(\infty)$. If $\alpha(x) \neq 0$, then $\alpha(y) \neq 0$ and

$$x \in \theta_\alpha(-\frac{\langle x_\alpha, x \rangle}{\alpha(x)}) \quad \text{and} \quad y \in \theta_\alpha(-\frac{\langle x_\alpha, x \rangle}{\alpha(x)}),$$

whence the assertion. \qed

Proposition 4.8. There exists on $V^{(k)}_{0,1,2}$ a regular differential form of top degree without zero.

Proof. According to Corollary 4.6, it suffices to prove $m_\alpha = 0$ for all α in \mathcal{R}_+. Indeed, if so, by Corollary 4.6, $\psi = \pm 1$ on the open subset $B(\mathfrak{h}_\alpha^2 \times \mathfrak{b}^{k-2})$ of $V^{(k)}_{0,1,2}$ so that $\psi = \pm 1$ on $V^{(k)}_{0,1,2}$. Then, by Lemma 4.5,(ii), ω and $\pm \sigma_2(\omega)$ have the same restriction to $V^{(k)}_{0,1,2}$ so that there exists a regular differential form of top degree $\tilde{\omega}$ on $V^{(k)}_{0,1,2}$ whose restrictions to $V^{(k)}_{0,1}$ and $V^{(k)}_{0,2}$ are ω and $\pm \sigma_2(\omega)$ respectively. Moreover, $\tilde{\omega}$ has no zero since ω.

Since $\psi = 1$ in $[V^{(2)}_{0,1,2}]$ by Lemma 4.5,(ii), we can suppose $k = 2$. Let α be in \mathcal{R}_+, $E, E_{s,1}, E_{s,2}$ as in Lemma 4.7. Suppose $m_\alpha \neq 0$. A contradiction is expected. According to Lemma 4.7,(iii), the restriction of ψ to $E_{s,1} \times E_{s,2} \cap V^{(2)}_{0,1,2}$ is given by

$$\psi(x, y) = \alpha(x_\alpha, x)^m(x_\alpha, y)^n,$$
with \(a \) in \(\mathbb{k}^* \) and \((m,n)\) in \(\mathbb{Z}^2 \) since \(\psi \) is an invertible element of \(\mathbb{k}[y^{(2)}_{0,1,2}] \). According to Lemma 4.5,(iii), \(n = -m \) and \(a = \pm 1 \). Interchanging the role of \(x \) and \(y \), we can suppose \(m \) in \(\mathbb{N} \). For \((x,y)\) in \(E_{+1} \times E_{+2} \cap V^{(2)}_{0,1,2} \) such that \(\alpha(x) \neq 0, \alpha(y) \neq 0 \) and

\[
\psi(x,y) = \pm (x_{-a}, x)^m (\frac{x_{-a}, x \alpha(y)}{\alpha(x)})^{-m} = \pm \alpha(x)^m \alpha(y)^{-m}.
\]

As a result, by Corollary 4.6, for \(x \) in \(x_0 + \mathbb{k}^* H_a \) and \(y \) in \(y_0 + \mathbb{k}^* H_a \),

\[
\pm \alpha(x)^m \alpha(y)^{-m} = \pm \prod_{y \in \mathbb{R}_+} \gamma(x)^{m_y} \gamma(y)^{-m_y}.
\]

For \(\gamma \) in \(\mathbb{R}_+ \),

\[
\gamma(x) = \gamma(x_0) + \frac{1}{2} \alpha(x) \gamma(H_a) \quad \text{and} \quad \gamma(y) = \gamma(y_0) + \frac{1}{2} \alpha(y) \gamma(H_a).
\]

Since \(m \) is in \(\mathbb{N} \),

\[
\pm \alpha(x)^m \prod_{y \in \mathbb{R}_+} (\gamma(x_0) + \frac{1}{2} \alpha(x) \gamma(H_a))^{m_y} \prod_{y \in \mathbb{R}_+} (\gamma(y_0) + \frac{1}{2} \alpha(y) \gamma(H_a))^{-m_y} = \pm \alpha(y)^m \prod_{x \in \mathbb{R}_+} (\gamma(x_0) + \frac{1}{2} \alpha(x) \gamma(H_a))^{m_y} \prod_{x \in \mathbb{R}_+} (\gamma(y_0) + \frac{1}{2} \alpha(y) \gamma(H_a))^{-m_y}.
\]

For \(m_\alpha \) positive, the terms of lowest degree in \((\alpha(x), \alpha(y))\) of left and right sides are

\[
\pm \alpha(x)^{m_\alpha} \prod_{y \in \mathbb{R}_+} \gamma(y_0)^{m_y} \prod_{x \in \mathbb{R}_+} \gamma(x_0)^{-m_y} \quad \text{and} \quad \pm \alpha(y)^{m_\alpha} \prod_{x \in \mathbb{R}_+} \gamma(x_0)^{m_y} \prod_{y \in \mathbb{R}_+} \gamma(y_0)^{-m_y}
\]

respectively and for \(m_\alpha \) negative, the terms of lowest degree in \((\alpha(x), \alpha(y))\) of left and right sides are

\[
\pm \alpha(x)^{m_\alpha} \prod_{y \in \mathbb{R}_+} \gamma(y_0)^{m_y} \prod_{x \in \mathbb{R}_+} \gamma(x_0)^{-m_y} \quad \text{and} \quad \pm \alpha(y)^{m_\alpha} \prod_{x \in \mathbb{R}_+} \gamma(x_0)^{m_y} \prod_{y \in \mathbb{R}_+} \gamma(y_0)^{-m_y}
\]

respectively. From the equality of these terms, we deduce \(m = \pm m_\alpha \) and

\[
\prod_{x \in \mathbb{R}_+} \gamma(x_0)^{m_y} \prod_{y \in \mathbb{R}_+} \gamma(y_0)^{-m_y} = \pm \prod_{x \in \mathbb{R}_+} \gamma(x_0)^{m_y} \prod_{y \in \mathbb{R}_+} \gamma(y_0)^{-m_y}.
\]

Since the last equality does not depend on the choice of subregular elements \(x_0 \) and \(y_0 \) in \(h_a \), this equality remains true for all \((x_0, y_0)\) in \(h_a \times h_a \). As a result, as the degrees in \(\alpha(x) \) of the left and right sides of Equality (2) are the same,

\[
m = \sum_{y \in \mathbb{R}_+} m_y = \sum_{y \in \mathbb{R}_+} m_y.
\]

Suppose \(m = m_\alpha \). By Equality (1),

\[
\prod_{y \in \mathbb{R}_+} \gamma(x)^{m_y} \gamma(y)^{-m_y} = \pm 1.
\]

Since this equality does not depend on the choice of the subregular elements \(x_0 \) and \(y_0 \) in \(h_{\text{reg}} \times h_{\text{reg}} \). Hence \(m_\gamma = 0 \) for all \(\gamma \) in \(\mathbb{R}_+ \setminus \{\alpha\} \) and \(m = 0 \) by Equality (3). It is impossible since \(m_\alpha \neq 0 \). Hence \(m = -m_\alpha \). Then, by Equality (1)

\[
\prod_{y \in \mathbb{R}_+ \setminus \{\alpha\}} \gamma(x)^{m_y} \gamma(y)^{-m_y} = \pm \alpha(x)^{2m} \alpha(y)^{-2m}.
\]
Since this equality does not depend on the choice of the subregular elements x_0 and y_0 in h_{reg}, it holds for all (x, y) in $h_{\text{reg}} \times h_{\text{reg}}$. Then $m = 0$, whence the contradiction. \[\square\]

4.4. For $2 \leq k' \leq k$, the projection

\[
g^k \longrightarrow g^{k'}, \quad (x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_{k'})
\]
induces the projections

\[
C^{(k)} \longrightarrow C^{(k')}, \quad V_j^{(k)} \longrightarrow V_j^{(k')}.
\]
Set:

\[
V_{1,2}^{(k)} := V_1^{(k)} \cap V_2^{(k)}.
\]

Lemma 4.9. Let ω be a regular differential form of top degree on $V_1^{(k)}$, without zero. Denote by ω' its restriction to $V_{1,2}^{(k)}$.

(i) For φ in $\mathbb{k}[V_1^{(k)}]$, if φ has no zero then φ is in \mathbb{k}^*.

(ii) For some invertible element ψ of $\mathbb{k}[V_{1,2}^{(k)}]$, $\omega' = \psi \sigma_{2*}(\omega')$.

(iii) The function $\psi(\psi \sigma_{2*})$ on $V_{1,2}^{(k)}$ is equal to 1.

Proof. Following the arguments of the proof of Lemma 4.5, the lemma results from Lemma 4.2.(ii). \[\square\]

Corollary 4.10. The function ψ is invariant under the action of G in $V_{1,2}^{(k)}$ and for any sequence $m_{\alpha}, \alpha \in \mathcal{R}_+$ in \mathbb{Z},

\[
\psi(x_1, \ldots, x_k) = \pm \prod_{\alpha \in \mathcal{R}_+} (\alpha(x_1)\alpha(x_2)^{-1})^{m_{\alpha}},
\]
for all (x_1, \ldots, x_k) in $h_{\text{reg}}^2 \times h^k$.

Proof. The corollary results from Lemma 4.9 by the arguments of the proof of Corollary 4.6. \[\square\]

Proposition 4.11. There exists on $V^{(k)}$ a regular differential form of top degree without zero.

Proof. As in the proof of Proposition 4.8, it suffices to prove that $m_{\alpha} = 0$ for all α in \mathcal{R}_+ since $G.(h_{\text{reg}}^2 \times h^{k-2})$ is a dense open subset of $V^{(k)}$. As $V_{0,1,2}^{(k)}$ is contained in $V_{1,2}^{(k)}$, $m_{\alpha} = 0$ by the proof of Proposition 4.8. \[\square\]

4.5. For $2 \leq k' \leq k$, the projection

\[
X^k \longrightarrow X^{k'}, \quad (x_1, \ldots, x_k, y_1, \ldots, y_k) \mapsto (x_1, \ldots, x_{k'}, y_1, \ldots, y_{k'})
\]
induces the projections

\[
C_x^{(k)} \longrightarrow C_x^{(k')}, \quad W_j^{(k)} \longrightarrow W_j^{(k')}.
\]
Set:

\[
W_{1,2}^{(k)} := W_1^{(k)} \cap W_2^{(k)}.
\]
According to Corollary 4.3.(iii), $W_{1,2}^{(k)}$ is equal to $G.(s_x \circ (V_{0,1,2}^{(k)}))$.

Lemma 4.12. Let ω be a regular differential form of top degree on $W_1^{(k)}$, without zero. Denote by ω' its restriction to $W_{1,2}^{(k)}$.

(i) For φ in $\mathbb{k}[W_1^{(k)}]$, if φ has no zero then φ is in \mathbb{k}^*.

(ii) For some invertible element ψ of $\mathbb{k}[W_{1,2}^{(k)}]$, $\omega' = \psi \sigma_{2*}(\omega')$.

(iii) The function $\psi(\psi \sigma_{2*})$ on $W_{1,2}^{(k)}$ is equal to 1.
Proof. Following the arguments of the proof of Lemma 4.5, the lemma results from Lemma 4.2.(iii). □

Corollary 4.13. The function ψ is invariant under the action of G in $W_{1,2}^{(k)}$ and for some sequence $m_{\alpha}, \alpha \in \mathbb{R}_+$ in \mathbb{Z}, $\psi \circ \iota_{x,k}(x_1, \ldots, x_k) = \pm \prod_{\alpha \in \mathbb{R}_+} (\alpha(x_1)\alpha(x_2)^{-1})^{m_{\alpha}}$, for all (x_1, \ldots, x_k) in $b_{\text{reg}}^{\mathbb{Z}} \times \mathfrak{h}^k$.

Proof. Since $W_{1,2}^{(k)} = G \cdot x_{k}(V_{0,1,2}^{(k)})$, the corollary results from Lemma 4.12 by the arguments of the proof of Corollary 4.6. □

Proposition 4.14. There exists on $W^{(k)}$ a regular differential form of top degree without zero.

Proof. As in the proof of Proposition 4.8, it suffices to prove that $m_{\alpha} = 0$ for all α in \mathbb{R}_+ since $G \cdot x_{k}(b_{\text{reg}}^{\mathbb{Z}} \times \mathfrak{h}^{k-2})$ is a dense open subset of $W^{(k)}$. As $W_{1,2}^{(k)} = G \cdot x_{k}(V_{0,1,2}^{(k)}), m_{\alpha} = 0$ by the proof of Proposition 4.8. □

4.6. Recall that $(G.X)_n$ is the normalization of $G.X$. Denote by $\mathcal{E}_n^{(k)}$ the following fiber products:

$$
\begin{array}{ccc}
\mathcal{E}_n^{(k)} & \xrightarrow{\nu_{n,k}} & \mathcal{E}^{(k)} \\
\pi_{n,k} \downarrow & & \downarrow \pi \\
(G.X)_n & \xrightarrow{\nu} & G.X
\end{array}
$$

with ν the normalization morphism, $\pi_{n,k}, \nu_{n,k}$ the restriction maps.

Lemma 4.15. The variety $\mathcal{E}_n^{(k)}$ is the normalization of $\mathcal{E}^{(k)}$ and $\nu_{n,k}$ is the normalization morphism.

Proof. Since $\mathcal{E}^{(k)}$ is a vector bundle over $G.X$, $\mathcal{E}_n^{(k)}$ is a vector bundle over $(G.X)_n$. Then $\mathcal{E}_n^{(k)}$ is normal since so is $(G.X)_n$. Moreover, the fields of rational functions on $\mathcal{E}_n^{(k)}$ and $\mathcal{E}^{(k)}$ are equal and the composition of $\nu_{n,k}$ induces the morphism identity of this field so that $\nu_{n,k}$ is the normalization morphism. □

Denote by $\widetilde{X}_{0,k}, \widetilde{C}_{0,k}, \widetilde{C}_{x}$ the normalizations of $X_{0,k}, C_{0,k}, C_{x}$ respectively. Let $\lambda_{0,k}, \lambda_k, \lambda_{x,k}$ be the respective normalization morphisms.

Lemma 4.16. (i) There exists a projective birational morphism $\tau_{n,0,k}$ from $\mathcal{E}_n^{(k)}$ onto $\widetilde{X}_{0,k}$ such that $\tau_{0,k} = \lambda_{0,k} \circ \tau_{n,0,k}$. Moreover, $\tau_{n,0,k}^{-1}(\lambda_{k}^{-1}(V_0^{(k)}))$ is a smooth big open subset of $\mathcal{E}_n^{(k)}$ and the restriction of $\tau_{n,0,k}$ to this subset is an isomorphism onto $\lambda_{0,0,k}^{-1}(V_0^{(k)})$.

(ii) There exists a projective birational morphism $\tau_{n,k}$ from $\mathcal{E}_n^{(k)}$ onto $\widetilde{C}_{0,k}$ such that $\tau_{k} \circ \nu_{n,k} = \lambda_{k} \circ \tau_{n,k}$. Moreover, $\tau_{n,k}^{-1}(\lambda_{k}^{-1}(V^{(k)}))$ is a smooth big open subset of $\mathcal{E}_n^{(k)}$ and the restriction of $\tau_{n,k}$ to this subset is an isomorphism onto $\lambda_{k}^{-1}(V^{(k)})$.

(iii) There exists a projective birational morphism $\tau_{n,x,k}$ from $G \times X \mathcal{E}_0^{(k)}$ onto $\widetilde{C}_{x}^{(k)}$ such that $\tau_{x,k} = \lambda_{x,k} \circ \tau_{n,x,k}$. Moreover, $\tau_{n,x,k}^{-1}(\lambda_{x,k}^{-1}(W^{(k)}))$ is a smooth big open subset of $G \times X \mathcal{E}_0^{(k)}$ and the restriction of $\tau_{n,x,k}$ to this subset is an isomorphism onto $\lambda_{x,k}^{-1}(W^{(k)})$.

Proof. (i) According to Corollary 4.3,(i), $\tau_{0,k}$ is a birational morphism from $\mathcal{E}_0^{(k)}$ onto $X_{0,k}$ and $\mathcal{E}_0^{(k)}$ is a normal variety since so is X by [C15, Theorem 1.1]. Hence it factorizes through $\lambda_{0,k}$ so that for some
birational morphism $\tau_{n,0,k}$ from $E_{0}^{(k)}$ to $\widetilde{x}_{0,k}$, $\tau_{0,k} = \lambda_{0,k} \circ \tau_{n,0,k}$, whence the commutative diagram:

$$
\begin{array}{ccc}
E_{0}^{(k)} & \xrightarrow{\tau_{0,k}} & E_{0}^{(k)} \\
\tau_{n,0,k} \downarrow & & \downarrow \tau_{0,k} \\
\widetilde{x}_{0,k} & \rightarrow & \widetilde{x}_{0,k}
\end{array}
$$

According to Lemma 4.1,(i), $\tau_{0,k}$ is a projective morphism. Hence so is $\tau_{n,0,k}$ since it deduces from $\tau_{0,k}$ by base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(i), $\tau_{0,k}^{-1}(V_{0}^{(k)})$ is a big open subset of $E_{0}^{(k)}$. Moreover, we have the commutative diagram

$$
\begin{array}{ccc}
\tau_{0,k}^{-1}(V_{0}^{(k)}) & \xrightarrow{\tau_{0,k}} & V_{0}^{(k)} \\
\tau_{n,0,k} \downarrow & & \downarrow \tau_{0,k} \\
\lambda_{0,k}^{-1}(V_{0}^{(k)}) & \rightarrow & V_{0}^{(k)}
\end{array}
$$

By Lemma 4.2,(i), $V_{0}^{(k)}$ is a smooth open subset of $\widetilde{x}_{0,k}$ so that $\lambda_{0,k}$ is an isomorphism from $\lambda_{0,k}^{-1}(V_{0}^{(k)})$ onto $V_{0}^{(k)}$. By Corollary 4.3,(i), $\tau_{0,k}$ is an isomorphism from $\tau_{0,k}^{-1}(V_{0}^{(k)})$ onto $V_{0}^{(k)}$ so that $\tau_{0,k}^{-1}(V_{0}^{(k)})$ is a smooth open subset of $E_{0}^{(k)}$. As a result, $\tau_{0,k}^{-1}(V_{0}^{(k)})$ is an isomorphism from $\tau_{0,k}^{-1}(V_{0}^{(k)})$ onto $\lambda_{0,k}^{-1}(V_{0}^{(k)})$.

(ii) According to Corollary 4.3,(ii), $\tau_{k} \circ \nu_{n,k}$ is a birational morphism from $E_{n}^{(k)}$ onto $C^{(k)}$ and $E_{n}^{(k)}$ is a normal variety by Lemma 4.15,(i). Hence it factorizes through λ_{k} so that for some birational morphism $\tau_{n,k}$ from $E_{n}^{(k)}$ to $C^{(k)}$, $\tau_{k} \circ \nu_{n,k} = \lambda_{k} \circ \tau_{n,k}$, whence the commutative diagram:

$$
\begin{array}{ccc}
E_{n}^{(k)} & \xrightarrow{\nu_{n,k}} & E_{n}^{(k)} \\
\tau_{n,k} \downarrow & & \downarrow \tau_{k} \\
C^{(k)} & \rightarrow & C^{(k)}
\end{array}
$$

According to Lemma 4.1,(i), τ_{k} is a projective morphism. Hence so is $\tau_{n,k}$ since it deduces from τ_{k} by base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4,(ii), $\tau_{n,k}^{-1}(\lambda_{k}^{-1}(V_{(k)}))$ is a big open subset of $E_{n}^{(k)}$ since $\nu_{n,k}$ is a finite morphism. Moreover, we have the commutative diagram

$$
\begin{array}{ccc}
\tau_{n,k}^{-1}(\lambda_{k}^{-1}(V_{(k)})) & \xrightarrow{\nu_{n,k}} & \tau_{k}^{-1}(V_{(k)}). \\
\tau_{n,k} \downarrow & & \downarrow \tau_{k} \\
\lambda_{k}^{-1}(V_{(k)}) & \rightarrow & \lambda_{k}^{-1}(V_{(k)})
\end{array}
$$

By Lemma 4.2,(ii), $V_{(k)}$ is a smooth open subset of $C^{(k)}$ so that λ_{k} is an isomorphism from $\lambda_{k}^{-1}(V_{(k)})$ onto $V_{(k)}$. By Corollary 4.3,(iii), τ_{k} is an isomorphism from $\tau_{k}^{-1}(V_{(k)})$ onto $V_{(k)}$ so that $\tau_{k}^{-1}(V_{(k)})$ is a smooth open subset of $E_{n}^{(k)}$ and $\nu_{n,k}$ is an isomorphism from $\tau_{k}^{-1}(\lambda_{k}^{-1}(V_{(k)}))$ onto $\tau_{k}^{-1}(V_{(k)})$. As a result, $\tau_{n,k}$ is an isomorphism from $\tau_{n,k}^{-1}(\lambda_{k}^{-1}(V_{(k)}))$ onto $\lambda_{k}^{-1}(V_{(k)})$ and $\tau_{n,k}^{-1}(\lambda_{k}^{-1}(V_{(k)}))$ is a smooth open subset of $E_{n}^{(k)}$.

(iii) According to Corollary 4.3,(iii), $\tau_{n,k}$ is a birational morphism from $G \times_{B} E_{0}^{(k)}$ onto $E_{n}^{(k)}$ and $G \times_{B} E_{0}^{(k)}$ is a normal variety as a vector bundle over $G \times_{B} X$ which is normal by Proposition 3.2. Hence it factorizes...
through $\lambda_{s,k}$ so that for some birational morphism $\tau_{n,*k}$ from $G \times_B E^{(k)}_0$ to $E^{(k)}_x$, $\tau_{s,k} = \lambda_{s,k} \circ \tau_{n,*k}$, hence the commutative diagram:

$$
\begin{array}{ccc}
G \times_B E^{(k)}_0 & \xrightarrow{\tau_{n,*k}} & E^{(k)}_x \\
\tau_{s,k} \downarrow & & \downarrow \lambda_{s,k} \\
E^{(k)}_x & \xrightarrow{\tau_{s,k}} & E^{(k)}_x
\end{array}
$$

According to Lemma 4.1(i), $\tau_{s,k}$ is a projective morphism. Hence so is $\tau_{n,*k}$ since it deduces from $\tau_{s,k}$ by base extension [H77, Ch. II, Exercise 4.9].

According to Lemma 4.4(iii), $\tau_{s,k}^{-1}(W^{(k)})$ is a big open subset of $G \times_B E^{(k)}_0$. Moreover, we have the commutative diagram

$$
\begin{array}{ccc}
\tau_{s,k}^{-1}(W^{(k)}) & \xrightarrow{\tau_{n,*k}} & W^{(k)} \\
\tau_{s,k} \downarrow & & \downarrow \lambda_{s,k} \\
\tau_{s,k}^{-1}(W^{(k)}) & \xrightarrow{\tau_{s,k}} & W^{(k)}
\end{array}
$$

By Lemma 4.2(iii), $W^{(k)}$ is a smooth open subset of $E^{(k)}_x$ so that $\lambda_{s,k}$ is an isomorphism from $\lambda_{s,k}^{-1}(W^{(k)})$ onto $W^{(k)}$. By Corollary 4.3(i), $\tau_{s,k}$ is an isomorphism from $\tau_{s,k}^{-1}(W^{(k)})$ onto $W^{(k)}$ so that $\tau_{s,k}^{-1}(W^{(k)})$ is a smooth open subset of $G \times_B E^{(k)}_0$. As a result, $\tau_{n,*k}$ is an isomorphism from $\tau_{s,k}^{-1}(W^{(k)})$ onto $\lambda_{s,k}^{-1}(W^{(k)})$.

Let \mathcal{Y} be one of the three varieties $\mathcal{X}_{0,k}$, $\mathcal{E}^{(k)}_n$, $\mathcal{E}^{(k)}_x$ and set:

$$
\mathcal{Z} := \begin{cases}
E^{(k)}_0 & \text{if } \mathcal{Y} = \mathcal{X}_{0,k} \\
E^{(k)}_n & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_n \\
G \times_B E^{(k)}_0 & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_x
\end{cases}
\quad \tau := \begin{cases}
\tau_{n,0,k} & \text{if } \mathcal{Y} = \mathcal{X}_{0,k} \\
\tau_{n,k} & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_n \\
\tau_{n,*k} & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_x
\end{cases}
$$

\[
\mathcal{Z} := \begin{cases}
X & \text{if } \mathcal{Y} = \mathcal{X}_{0,k} \\
G.X_n & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_n \\
G \times_B X & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_x
\end{cases}
\quad \pi := \begin{cases}
E^{(k)}_0 \xrightarrow{\pi} X & \text{if } \mathcal{Y} = \mathcal{X}_{0,k} \\
E^{(k)}_n \xrightarrow{\pi} (G.X)_n & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_n \\
G \times_B E^{(k)}_0 \xrightarrow{\pi} G \times_B X & \text{if } \mathcal{Y} = \mathcal{E}^{(k)}_x
\end{cases}
\]

where the arrow is the bundle projection in the last three equalities.

Proposition 4.17. (i) The morphism τ is a projective birational morphism.

(ii) The set \mathcal{Z}_{sm} is the inverse image of \mathcal{Z}_{sm} by π.

(iii) For some smooth big open subset \mathcal{D} of \mathcal{Z}_{sm}, the restriction of τ to \mathcal{D} is an isomorphism onto a smooth big open subset of \mathcal{Y}.

(iv) The sheaves $\Omega_{\mathcal{Y}_{\text{sm}}}$ and $\Omega_{\mathcal{Z}_{\text{sm}}}$ have a global section without 0.

Proof. (i) The assertion results from Lemma 4.16.

(ii) As a polynomial algebra over an algebra A is regular if and only if so is A, $\mathcal{Z}_{\text{sm}} = \pi^{-1}(\mathcal{Z}_{\text{sm}})$ since \mathcal{Z} is a vector bundle over \mathcal{Z}.

(iii) The assertion results from Lemma 4.16 and Lemma 4.4.

(iv) For $\mathcal{Y} = \mathcal{X}_{0,k}$, the assertion results from Lemma C.1, Proposition 4.8, Lemma 4.2(i) and Lemma 4.4(i). For $\mathcal{Y} = \mathcal{E}^{(k)}_n$, the assertion results from Lemma C.1, Proposition 4.11, Lemma 4.2(ii) and Lemma 4.4(ii).
For $\mathcal{Y} = \overline{c}_x^{(k)}$, the assertion results from Lemma C.1, Proposition 4.14, Lemma 4.2.(iii) and Lemma 4.4.(iii).

5. Rational singularities

Let $k \geq 2$ be an integer and let \mathcal{Y}, \mathcal{Z}, τ, π be as in Proposition 4.17. Denote by ι the canonical embeddings $\mathcal{Y}_{\text{sm}} \to \mathcal{Y}$ and $\mathcal{Z}_{\text{sm}} \to \mathcal{Z}$. According to [Hir64], there exists a desingularization Γ of \mathcal{X} with morphism θ such that the restriction of θ to $\theta^{-1}(\mathcal{X}_{\text{sm}})$ is an isomorphism onto \mathcal{X}_{sm}. Let $\overline{\mathcal{Z}}$ be the following fiber product

$$
\begin{array}{ccc}
\overline{\mathcal{Z}} & \xrightarrow{\theta} & \mathcal{Z} \\
\downarrow{\pi} & & \downarrow{\pi} \\
\Gamma & \xrightarrow{0} & \mathcal{X}
\end{array}
$$

with θ and π the restriction maps so that $\overline{\mathcal{Z}}$ is a vector bundle of rank $k \ell$ over Γ and π is the bundle projection. Moreover, θ is projective and birational so that $\overline{\mathcal{Z}}$ is a desingularization of \mathcal{Z} and \mathcal{Y} by Proposition 4.17.(i).

Proposition 5.1. Suppose $\mathcal{Y} = \overline{x}_{0,k}$ or $\overline{c}_x^{(k)}$.

(i) The variety $\overline{\mathcal{Z}}$ is Gorenstein with rational singularities. Moreover, its canonical bundle is free of rank one.

(ii) The variety \mathcal{Y} is Gorenstein with rational singularities. Moreover, its canonical bundle is free of rank one.

Proof. (i) According to [C15, Theorem 1.1], X has rational singularities. Then, by Lemma D.1.(iii), so has $G \times_B X$ as a fiber bundle over a smooth variety with fibers having rational singularities. As a result, by Lemma D.1.(iv), \mathcal{Z} has rational singularities as a vector bundle over a variety having rational singularities. Moreover, \mathcal{X} is Gorenstein by Proposition 3.2.(i) and (iii). Then so is \mathcal{Z} as a vector bundle over \mathcal{X} by Lemma D.1.(i). By Proposition 4.17, $\Omega_{\mathcal{Z}_{\text{sm}}}$ has a global section without zero. Then, by Lemma C.2, $\iota^* (\Omega_{\mathcal{Z}_{\text{sm}}})$ is a free module of rank one. Since \mathcal{Z} has rational singularities, the canonical module of \mathcal{Z} is equal to $\iota^* (\Omega_{\mathcal{X}_{\text{sm}}})$ by [KK73, p.50], whence the assertion.

(ii) By Proposition 4.17, $\Omega_{\mathcal{Y}_{\text{sm}}}$ has a global section without zero. Denote it by ω. By Proposition 4.17.(iii), $\tau^* (\omega)$ is a local section of $\Omega_{\mathcal{Z}_{\text{sm}}}$ above a big open subset of \mathcal{Z}. So by (i) and [KK73, p.50], $\tau^* (\omega)$ has a regular extension to $\overline{\mathcal{Z}}$. Denote it by $\overline{\omega}$ and by μ the morphism

$$
\begin{array}{ccc}
\mathcal{Z} & \xrightarrow{\mu} & \Omega_{\overline{\mathcal{Z}}} \\
\varphi \mapsto \varphi \overline{\omega}.
\end{array}
$$

Since ω has no zero, by Lemma C.2, $\tau^* \phi_{\mathcal{Y}} \mu$ is an isomorphism from \mathcal{Y} onto $\Omega_{\mathcal{Y}_{\text{sm}}}$ and $\iota^* (\Omega_{\mathcal{Y}_{\text{sm}}})$ is a free module of rank one. As a result, by [Hi91, Lemma 2.3], \mathcal{Y} is Gorenstein with rational singularities. Then, by [KK73, p.50], the canonical module of \mathcal{Y} is equal to $\iota^* (\Omega_{\mathcal{Y}_{\text{sm}}})$, whence the assertion.

Corollary 5.2. (i) The variety $\overline{c}_x^{(k)}$ is Gorenstein with rational singularities. Moreover its canonical module is free of rank one.

(ii) The variety $\mathcal{E}_n^{(k)}$ is Gorenstein with rational singularities. Moreover its canonical module is free of rank one.

(iii) The varieties \mathcal{E}_n and $(G.X)_n$ are Gorenstein with rational singularities.
Proof. In the proof, we suppose \(\mathfrak{g} = \widehat{C}^{(k)}. \)

(i) According to [CZ14, Proposition 5.8.(ii)], \(\widehat{C}^{(k)} \) is the categorical quotient of \(\widehat{C}^{(k)}_x \) by the action of \(W(\mathbb{R}). \) Hence, by [Boutot87, Théorème] and Proposition 5.1.(ii), \(\mathfrak{g} = \widehat{C}^{(k)} \) has rational singularities. By Proposition 4.17.(iv), \(\Omega_{\mathfrak{g}_{\mathbb{R}}} \) has a global section without zero. Then, by Lemma C.2, \(\iota_\ast(\Omega_{\mathfrak{g}_{\mathbb{R}}}) \) is a free module of rank one. Since \(\mathfrak{g} \) has rational singularities, the canonical module of \(\mathfrak{g} \) is equal to \(\iota_\ast(\Omega_{\mathfrak{g}_{\mathbb{R}}}) \) by [KK73, p.50]. Moreover, \(\mathfrak{g} \) is Cohen-Macaulay. So, by Lemma C.3, \(\iota_\ast(\Omega_{\mathfrak{g}_{\mathbb{R}}}) \) has finite injective dimension, whence \(\mathfrak{g} \) is Gorenstein.

(ii) Denote by \(\omega \) a global section of \(\Omega_{\mathfrak{g}_{\mathbb{R}}} \) without zero. By Proposition 4.17,(iii) and Lemma C.2, \(\Omega_{\mathfrak{g}_{\mathbb{R}}} \) has a global section without zero whose restriction to a big open subset of \(\mathfrak{g}_{\mathbb{R}} \) is equal to the restriction of \(\tau^\ast(\omega). \) Denote it by \(\omega'. \) Since \(\mathfrak{g} \) has rational singularities, \(\tau^\ast(\omega) \) has a regular extension to \(\mathfrak{g}_{\mathbb{R}} \) by [KK73, p.50]. Denote it by \(\overline{\omega}. \) Then the restriction of \(\overline{\omega} \) to \(\overline{\Omega}_{\mathfrak{g}_{\mathbb{R}}} \) is equal to \(\overline{\omega}(\omega'). \) Let \(\mu \) be the morphism

\[\overline{\Omega}_{\mathfrak{g}_{\mathbb{R}}} \xrightarrow{\mu} \Omega_{\mathfrak{g}_{\mathbb{R}}}, \quad \varphi \mapsto \varphi \overline{\omega}. \]

Since \(\omega' \) has no zero, by Lemma C.2, \(\overline{\mu} \) is an isomorphism from \(\overline{\Omega}_{\mathfrak{g}_{\mathbb{R}}} \) onto \(\Omega_{\mathfrak{g}_{\mathbb{R}}} \) and \(\iota_\ast(\Omega_{\mathfrak{g}_{\mathbb{R}}}) \) is free of rank one. As a result, by [Hi91, Lemma 2.3], \(\mathfrak{g} \) is Gorenstein with rational singularities. Then, by [KK73, p.50], the canonical module of \(\mathfrak{g} \) is equal to \(\iota_\ast(\Omega_{\mathfrak{g}_{\mathbb{R}}}) \), whence the assertion.

(iii) Since \(\mathfrak{g} \) is a vector bundle over \(\mathfrak{g} = (G.X)_n \), \((G.X)_n \) is Gorenstein with rational singularities by (ii) and Lemma D.1,(ii) and (iv). Then so is \(\mathfrak{g} \) as a vector bundle over \((G.X)_n \) by Lemma D.1,(i) and (iv). \(\square \)

Summarizing the results, Theorem 1.1 results from Proposition 5.1,(ii), and Corollary 5.2,(i) and (iii). According to [Ri79], \(\widehat{C}^{(2)} \) is the commuting variety of \(\mathfrak{g} \) and according to [C12, Theorem 1.1], \(\widehat{C}^{(2)} \) is normal, whence:

Corollary 5.3. The commuting variety of \(\mathfrak{g} \) is Gorenstein with rational singularities. Moreover, its canonical module is free of rank 1.

6. Normality

Let \(k \) be a positive integer. The goal of this section is to prove that \(X_{0,k} \) is a normal variety. Consider the desingularization \((\Gamma, \theta) \) of \(X \) as in Section 5. For simplicity of the notations, for \(k \) positive integer, we denote by \(\pi_k \) the bundle projection \(\mathcal{E}^{(k)}_0 \rightarrow X \) and by \(F^{(k)} \) the fiber product

\[
\begin{array}{ccc}
F^{(k)} & \xrightarrow{\theta_k} & \mathcal{E}^{(k)}_0 \\
\pi_k \downarrow & & \downarrow \pi_k \\
\Gamma & \rightarrow & X
\end{array}
\]

with \(\theta_k \) and \(\pi_k \) the restriction morphisms.

6.1. Let \(F^\ast \) be the dual of the vector bundle \(F^{(1)} \) over \(\Gamma \).

Lemma 6.1. Let \(F^\ast \) be the sheaf of local sections of \(F^\ast \). For \(i > 0 \) and for \(j \geq 0 \), \(H^i(\Gamma, S^j(F^\ast)) = 0 \).

Proof. Since \(\pi_{\Gamma}^* \) is the bundle projection of the vector bundle \(F^{(1)} \) over \(\Gamma \), \(O_{F^{(1)}}(0) \) is equal to \(\pi_{\Gamma}^* (S(F^\ast)) \) so that

\[\pi_{\Gamma}^* (O_F) = S(F^\ast) \]
As a result, for \(i \geq 0 \),
\[
H^i(F^{(1)}, \mathcal{O}_{F^{(1)}}) = H^i(\Gamma, S(F^*)) = \bigoplus_{j \in \mathbb{N}} H^i(\Gamma, S^{j}(F^*))
\]
According to Lemma 3.1(i), \(F^{(1)} \) is a desingularization of the smooth variety \(b \). Hence by [El78],
\[
H^i(F^{(1)}, \mathcal{O}_{F^{(1)}}) = 0
\]
for \(i > 0 \), whence
\[
H^i(\Gamma, S^{j}(F^*)) = 0
\]
for \(i > 0 \) and \(j \geq 0 \).

According to the identification of \(g \) and \(g^* \) by the bilinear form \(\langle ., . \rangle \), \(b_- \) identifies with \(b^* \). Denote by \(F_- \) the orthogonal complement to \(F^{(1)} \) in \(\Gamma \times b_- \) so that \(F_- \) is a vector bundle of rank \(n \) over \(\Gamma \). Let \(\mathcal{F}_- \) be the sheaf of local sections of \(F_- \).

Corollary 6.2. Let \(\mathcal{J}_0 \) be the ideal of \(\mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-) \) generated by \(\mathcal{F}_- \). Then, for \(i \geq 0 \), \(H^i(\Gamma, \mathcal{J}_0) = 0 \) and \(H^i(\Gamma, \mathcal{F}_-) = 0 \).

Proof. Since \(F_- \) is the orthogonal complement to \(F^{(1)} \) in \(\Gamma \times b_- \), \(\mathcal{J}_0 \) is the ideal of definition of \(F^{(1)} \) in \(\mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-) \) whence a short exact sequence
\[
0 \rightarrow \mathcal{J}_0 \rightarrow \mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-) \rightarrow S(F^*) \rightarrow 0
\]
and whence a cohomology long exact sequence
\[
\cdots \rightarrow H^i(\Gamma, S(F^*)) \rightarrow H^{i+1}(\Gamma, \mathcal{J}_0) \rightarrow H^{i+1}(\Gamma, \mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-)) \rightarrow \cdots .
\]
Then, by Lemma 6.1, from the equality
\[
H^i(\Gamma, \mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-)) = S(b_-) \otimes_{\mathbb{k}} H^i(\Gamma, \mathcal{O}_\Gamma)
\]
for all \(i \), we deduce \(H^i(\Gamma, \mathcal{J}_0) = 0 \) for \(i \geq 2 \). Moreover, since \(\Gamma^* \) is an irreducible projective variety, \(H^0(\Gamma, \mathcal{O}_\Gamma) = \mathbb{k} \) and since \(F^{(1)} \) is a desingularization of \(b \), \(H^0(\Gamma, S(F^*)) = S(b_-) \) so that the map
\[
H^0(\Gamma, \mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-)) \rightarrow H^0(\Gamma, S(F^*))
\]
is an isomorphism. Hence \(H^i(\Gamma, \mathcal{J}_0) = 0 \) for \(i = 0, 1 \). The gradation on \(S(b_-) \) induces a gradation on \(\mathcal{O}_\Gamma \otimes_{\mathbb{k}} S(b_-) \) so that \(\mathcal{J}_0 \) is a graded ideal. Since \(\mathcal{F}_- \) is the subsheaf of local sections of degree 1 of \(\mathcal{J}_0 \), it is a direct factor of \(\mathcal{J}_0 \), whence the corollary.

Proposition 6.3. Let \(k, l \) be nonnegative integers.

(i) For all positive integer \(i \), \(H^i(\Gamma, (F^*)^{\otimes k}) = 0 \).

(ii) For all positive integer \(i \),
\[
H^{i+l}(\Gamma, \mathcal{F}_-^{\otimes l} \otimes \mathcal{O}_\Gamma \otimes (F^*)^{\otimes k}) = 0.
\]

Proof. (i) According to Lemma 6.1, we can suppose \(k > 1 \). Denote by \(F^*_k \) the restriction to the diagonal of \(\Gamma^k \) of the vector bundle \(F^{\otimes k} \) over \(\Gamma^k \). Identifying \(\Gamma \) with the diagonal of \(\Gamma^k \), \(F^*_k \) is a vector bundle over \(\Gamma \). Since \(F^* \) is the dual of the vector bundle \(F^{(1)} \) over \(\Gamma \), \(F^*_k \) is the dual of the vector bundle \(F^{(k)} \) over \(\Gamma \). Let \(\psi_k \) be the bundle projection of \(F^*_k \) and let \(\mathcal{J}_k^* \) be the sheaf of local sections of \(F^*_k \). Then \(\mathcal{O}_{F^{(k)}} \) is equal to \(\psi_k^*(S(F^*_k)) \) and since \(F^{(k)} \) is a vector bundle over \(\Gamma \), for all nonnegative integer \(i \),
\[
H^i(F^{(k)}, \mathcal{O}_{F^{(k)}}) = H^i(\Gamma, S(F^*_k)) = \bigoplus_{q \in \mathbb{N}} H^q(\Gamma, S^q(F^*_k)).
\]
According to Proposition 5.1, (ii), for $i > 0$, the left hand side is equal to 0 since $F^{(k)}$ is a desingularization of $\mathbb{X}_{0,k}$ by Proposition 4.17, (i). As a result, for $i > 0$,

$$H^i(\Gamma, S^k(F^{(k)})) = 0.$$

The decomposition of F^* as a direct sum of k copies isomorphic to \mathcal{F}^* induces a multigradation of $S(\mathcal{F}^*)$. Denoting by S_{j_1, \ldots, j_k} the subsheaf of multidegree (j_1, \ldots, j_k), we have

$$S^k(\mathcal{F}^*_k) = \bigoplus_{(j_1, \ldots, j_k) \in \mathbb{Z}^k} S_{j_1, \ldots, j_k} \quad \text{and} \quad S_{1, \ldots, 1} = (\mathcal{F}^*)^\otimes k.$$

Hence for $i > 0$,

$$0 = H^i(\Gamma, S^k(S^*_k)) = \bigoplus_{(j_1, \ldots, j_k) \in \mathbb{Z}^k} H^i(\Gamma, S_{j_1, \ldots, j_k})$$

whence the assertion.

(ii) Let k be a nonnegative integer. Prove by induction on j that for $i > 0$ and for $l \geq j$,

$$H^{i+j}(\Gamma, \mathcal{F}_-^\otimes j \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j)) = 0.$$

By (i) it is true for $j = 0$. Suppose $j > 0$ and (4) true for $j - 1$ and for all $l \geq j - 1$. From the short exact sequence of \mathcal{O}_Γ-modules

$$0 \to \mathcal{F}_- \to \mathcal{O}_\Gamma \otimes_k b_- \to \mathcal{F}^* \to 0$$

we deduce the short exact sequence of \mathcal{O}_Γ-modules

$$0 \to \mathcal{F}_-^\otimes j \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j) \to b_- \otimes_k \mathcal{F}_-^\otimes (j-1) \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j) \to \mathcal{F}_-^\otimes (j-1) \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j+1) \to 0.$$

From the cohomology long exact sequence deduced from this short exact sequence, we have the exact sequence

$$H^{i+j-1}(\Gamma, \mathcal{F}_-^\otimes (j-1) \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j+1)) \to \mathcal{H}^{i+j}(\Gamma, \mathcal{F}_-^\otimes j \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j)) \to H^{i+j}(\Gamma, \mathcal{F}_-^\otimes (j-1) \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j))$$

for all positive integer i. By induction hypothesis, the first term equals 0 for all $i > 0$. Since

$$H^{i+j}(\Gamma, b_- \otimes_k \mathcal{F}_-^\otimes (j-1) \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j+1)) = b_- \otimes_k H^{i+j}(\Gamma, \mathcal{F}_-^\otimes (j-1) \otimes \mathcal{O}_\Gamma (\mathcal{F}^*)^\otimes (k+l-j)),$$

the last term of the last exact sequence equals 0 by induction hypothesis again, whence Equality (4) and whence the assertion for $j = l$. \hfill \square

The following corollary results from Proposition 6.3, (ii) and Proposition B.1.

Corollary 6.4. For k positive integer and for $l = (l_1, \ldots, l_k)$ in \mathbb{N}^k,

$$H^{i+l}(\Gamma, \bigwedge_{i=1}^{l_1} \mathcal{F}_- \otimes \mathcal{O}_\Gamma \cdots \otimes \mathcal{O}_\Gamma \bigwedge_{i=1}^{l_k} \mathcal{F}_-) = 0$$

for all positive integer i.

23
6.2. By definition, $F^{(k)}$ is a closed subvariety of $\Gamma \times b^k$. Denote by π the canonical projection from $\Gamma \times b^k$ to Γ, whence the diagram

$$
\begin{array}{c}
F^{(k)} \rightarrow \Gamma \times b^k \\
\pi \downarrow \\
\Gamma
\end{array}
$$

For $j = 1, \ldots, k$, denote by $\mathfrak{S}_{j,k}$ the set of injections from $\{1, \ldots, j\}$ to $\{1, \ldots, k\}$ and for σ in $\mathfrak{S}_{j,k}$, set:

$$
\mathcal{K}_\sigma := M_1 \otimes_{O_1} \cdots \otimes_{O_r} M_k \\
\text{with } M_i := \begin{cases}
O_\Gamma \otimes_k S(b_-) & \text{if } i \notin \sigma((1, \ldots, j)) \\
\mathcal{J}_0 & \text{if } i \in \sigma((1, \ldots, j))
\end{cases}
$$

For j in $\{1, \ldots, k\}$, the direct sum of the \mathcal{K}_σ’s is denoted by $\mathcal{J}_{j,k}$ and for σ in $\mathfrak{S}_{1,k}$, \mathcal{K}_σ is also denoted by $\mathcal{K}_{\sigma(1),k}$.

Lemma 6.5. Let \mathcal{J} be the ideal of definition of $F^{(k)}$ in $O_\Gamma \times b^k$.

(i) The ideal $O_\Gamma \otimes_k S(b_-)$ is the sum of $\mathcal{K}_{1,k}, \ldots, \mathcal{K}_{k,k}$.

(ii) There is an exact sequence of O_Γ-modules

$$0 \rightarrow \mathcal{J}_{k,k} \rightarrow \mathcal{J}_{k-1,k} \rightarrow \cdots \rightarrow \mathcal{J}_{1,k} \rightarrow O_\Gamma \rightarrow 0$$

(iii) For $i > 0$, $H^i(\Gamma \times b^k, \mathcal{J}) = 0$ if $H^{i+j}(\Gamma, \mathcal{J}_0^\otimes) = 0$ for $j = 1, \ldots, k$.

Proof. (i) Let \mathcal{J}_k be the sum of $\mathcal{K}_{1,k}, \ldots, \mathcal{K}_{k,k}$. Since \mathcal{J}_0 is the ideal of $O_\Gamma \otimes_k S(b_-)$ generated by \mathcal{J}_-, \mathcal{J}_k is a prime ideal of $O_\Gamma \otimes_k S(b_-)$. Moreover, \mathcal{J}_- is the sheaf of local sections of the orthogonal complement to F in $\Gamma \times b_-$. Hence \mathcal{J}_k is the ideal of definition of $F^{(k)}$ in $O_\Gamma \otimes_k S(b_-)$, whence the assertion.

(ii) For a a local section of $\mathcal{J}_{j,k}$ and for σ in $\mathfrak{S}_{j,k}$, denote by $a_{\sigma(1),\ldots,\sigma(j)}$ the component of a on \mathcal{K}_σ. Let d be the map $\mathcal{J}_{j,k} \rightarrow \mathcal{J}_{j-1,k}$ such that

$$
da_{i_1,\ldots,i_j} = \sum_{l=1}^j (-1)^{j-l+1} a_{i_1,\ldots,i_{i-1},l,i_{i+1},\ldots,i_j}
$$

Then by (i), we have an augmented complex

$$0 \rightarrow \mathcal{J}_{i,k} \rightarrow \mathcal{J}_{k-1,k} \rightarrow \cdots \rightarrow \mathcal{J}_{1,k} \rightarrow O_\Gamma \rightarrow 0.$$

Let J be the subbundle of the trivial bundle $\Gamma \times S(b_-)$ such that the fiber at x is the ideal of $S(b_-)$ generated by the fiber F_{-x} of F_- at x. Then \mathcal{J}_0 is the sheaf of local sections of J and the above augmented complex is the sheaf of local sections of the augmented complex of vector bundles over Γ,

$$0 \rightarrow C^{(k)}_k(\Gamma \times S(b_-), J) \rightarrow \cdots \rightarrow C^{(k)}_1(\Gamma \times S(b_-), J) \rightarrow J \rightarrow 0$$

defined as in Subsection B.2. According to Lemma B.2 and Remark B.3, this complex is acyclic, whence the assertion by Nakayama Lemma since $J, S(b_-)$ and the complex are graded.

(iii) Let i be a positive integer such that $H^{i+j}(\Gamma, \mathcal{J}_0^\otimes) = 0$ for $j = 1, \ldots, k$. Then for $j = 1, \ldots, k$ and for σ in $\mathfrak{S}_{j,k}$, $H^{i+j}(\Gamma, \mathcal{K}_\sigma) = 0$ since \mathcal{K}_σ is isomorphic to a sum of copies of \mathcal{J}_0^\otimes. Moreover, $H^i(\Gamma, \mathcal{K}_{i,k}) = 0$ for $l = 1, \ldots, k$ since $H^i(\Gamma, \mathcal{J}_0) = 0$ by Corollary 6.2. Hence by (ii), since H^* is an exact δ-functor, $H^i(\Gamma, O_\Gamma) = 0$, whence the assertion since \mathcal{O} is an affine morphism. □
6.3. For \(k \) positive integer, for \(j \) nonnegative integer and for \(l = (l_1, \ldots, l_k) \) in \(\mathbb{N}^k \), set:

\[
\mathcal{M}_{jl} := \mathcal{O}_0^j \otimes_{\mathcal{O}_T} \bigwedge^{l_1} \mathcal{F}_- \otimes_{\mathcal{O}_T} \cdots \otimes_{\mathcal{O}_T} \bigwedge^{l_k} \mathcal{F}_-
\]

Lemma 6.6. Let \(k \) be a positive integer and let \((j, l) \) be in \(\mathbb{N} \times \mathbb{N}^k \).

(i) The \(\mathcal{O}_T \)-module \(\mathcal{O}_0 \) is locally free.

(ii) For \(j > 0 \), there is an exact sequence

\[
0 \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{M}_{-1,(n,l)} \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{M}_{j-1,(n-1,l)} \longrightarrow \cdots
\]

\[
\cdots \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{M}_{j-1,(1,l)} \longrightarrow \mathcal{M}_{j,l} \longrightarrow 0
\]

(iii) For \(i > 0 \), \(H^{i+j+p}[\mathcal{O}_T, \mathcal{M}_{j,l}] = 0 \).

Proof. (i) Let \(x \) be in \(\Gamma \) and let \(F_{-x} \) be the fiber at \(x \) of the vector bundle \(F_- \) over \(\Gamma \). Then \(F_{-x} \) is a subspace of dimension \(n \) of \(b_- \). Let \(M \) be a complement to \(F_{-x} \) in \(b_- \). Since the map \(y \mapsto F_{-y} \) is a regular map from \(\Gamma \) to \(\text{Gr}_n(b_-) \), for all \(y \) in an open neighborhood \(V \) of \(x \) in \(\Gamma \),

\[
b_- = F_{-x} \oplus M
\]

Denoting by \(\mathcal{F}_{-V} \) the restriction of \(\mathcal{F}_- \) to \(V \), we have

\[
\mathcal{O}_V \otimes_{\mathcal{O}_T} b_- = \mathcal{F}_{-V} \oplus \mathcal{O}_V \otimes_{\mathcal{O}_T} M
\]

so that

\[
\mathcal{O}_V \otimes_{\mathcal{O}_T} S(b_-) = S(\mathcal{F}_{-V}) \otimes_{\mathcal{O}_T} S(M)
\]

whence

\[
\mathcal{O}_0 |_V = S(\mathcal{F}_{-V}) \otimes_{\mathcal{O}_T} S(M).
\]

As a result, \(\mathcal{O}_0 \) is locally free since so is \(\mathcal{F}_- \).

(ii) Since \(\mathcal{O}_0 \) is the ideal of \(\mathcal{O}_T \otimes_{\mathcal{O}_T} S(b_-) \) generated by the locally free module \(\mathcal{F}_- \) of rank \(n \) and since \(\mathcal{F}_- \) is locally generated by a regular sequence of the algebra \(\mathcal{O}_T \otimes_{\mathcal{O}_T} S(b_-) \), having \(n \) elements, we have an exact Koszul complex

\[
0 \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \bigwedge^n \mathcal{F}_- \longrightarrow \cdots \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{F}_- \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{F}_- \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{F}_- \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{F}_- \longrightarrow 0
\]

whence a complex

\[
0 \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \bigwedge^n \mathcal{F}_- \otimes_{\mathcal{O}_T} \mathcal{M}_{j-1,l} \longrightarrow \cdots \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{F}_- \otimes_{\mathcal{O}_T} \mathcal{M}_{j-1,l} \longrightarrow \mathcal{O}_V \otimes_{\mathcal{O}_T} \mathcal{M}_{j-1,l} \longrightarrow 0
\]

According to (i), \(\mathcal{M}_{j-1,l} \) is a locally free module. Hence this complex is acyclic.

(iii) Prove the assertion by induction on \(j \). According to Corollary 6.4, it is true for \(j = 0 \). Suppose that it is true for \(j - 1 \). According to the induction hypothesis, for all positive integer \(i \) and for \(p = 1, \ldots, n \),

\[
H^{i+j+1+p}[\mathcal{O}_T, \mathcal{M}_{j-1,(p,l)}] = S(b_-) \otimes_{\mathcal{O}_T} H^{i+j+p}[\mathcal{O}_T, \mathcal{M}_{j-1,(p,l)}] = 0.
\]

Then, according to (ii), \(H^{i+j+p}[\mathcal{O}_T, \mathcal{M}_{j,l}] = 0 \) for all positive integer \(i \) since \(H^* \) is an exact \(\delta \)-functor. \(\square \)

Proposition 6.7. The variety \(\mathfrak{X}_{0,k} \) is Gorenstein with rational singularities and its canonical module is free of rank 1. Moreover the ideal of definition of \(\mathfrak{X}_{0,k} \) in \(S(b_-)^{\otimes k} \) is the space of global sections of \(\mathcal{J} \).
Proof. From the short exact sequence,

$$0 \rightarrow \mathcal{J} \rightarrow \mathcal{O}_{\Gamma \times b^k} \rightarrow \mathcal{O}_{F^{(i)}} \rightarrow 0$$

we deduce the long exact sequence

$$\cdots \rightarrow H^i(\Gamma \times b^k, \mathcal{J}) \rightarrow S(b_\ast)^{\otimes k} \otimes \mathbb{Z} H^i(\Gamma, \mathcal{O}_\Gamma) \rightarrow H^i(F^{(k)}, \mathcal{O}_{F^{(i)}}) \rightarrow H^{i+1}(\Gamma \times b^k, \mathcal{J}) \rightarrow \cdots$$

According to Proposition 2.2,(i), $H^i(\Gamma, \mathcal{O}_\Gamma) = 0$ for $i > 0$ and according to Lemma 6.5,(iii) and Lemma 6.6,(iii), $H^i(\Gamma \times b^k, \mathcal{J}) = 0$ for $i > 0$. Hence, $H^i(F^{(k)}, \mathcal{O}_{F^{(i)}}) = 0$ for $i > 0$, whence the short exact sequence

$$0 \rightarrow H^0(\Gamma \times b^k, \mathcal{J}) \rightarrow S(b_\ast)^{\otimes k} \rightarrow H^0(F^{(k)}, \mathcal{O}_{F^{(i)}}) \rightarrow 0$$

As $F^{(k)}$ is a desingularization of $X_{0,k}$, $k[\overline{X}_{0,k}]$ is the space of global sections of $\mathcal{O}_{F^{(i)}}$ by Lemma 1.2. Then $k[\overline{X}_{0,k}] = k[\overline{X}_{0,k}]$ since the image of $S(b_\ast)^{\otimes k}$ is contained in $k[\overline{X}_{0,k}]$, whence the proposition by Proposition 5.1,(ii). \hfill \Box

Corollary 6.8. (i) The normalization morphism of $C^{(k)}_x$ is a homeomorphism.

(ii) The normalization morphism of $C^{(k)}$ is a homeomorphism.

Proof. (i) As $\overline{x}_{0,k}$ is contained in b^k, we deduce the commutative diagram

$$G \times_B \overline{x}_{0,k} \xrightarrow{\gamma_{x}} G \times_B b^k \xrightarrow{C^{(k)}} \mathcal{B}^{(k)}$$

According to [CZ14, Proposition 3.4], the normalization morphism of $\mathcal{B}^{(k)}_x$ is a homeomorphism. Then since $G \times_B b^k$ is a desingularization of $\mathcal{B}^{(k)}_x$, the fibers of γ_x are connected by Zariski Main Theorem [Mu88, §9]. Then so are the fibers of the restriction of γ_x to $G \times_B \overline{x}_{0,k}$ since $G \times_B \overline{x}_{0,k}$ is the inverse image of $C^{(k)}_x$.

According to Proposition 6.7, $G \times_B \overline{x}_{0,k}$ is a normal variety. Moreover, the restriction of γ_x to $G \times_B \overline{x}_{0,k}$ is projective and birational, whence the commutative diagram

$$G \times_B \overline{x}_{0,k} \xrightarrow{\bar{\gamma}_x} \overline{C}^{(k)}_x \xrightarrow{\lambda_{x,k}} C^{(k)}_x$$

with $\lambda_{x,k}$ the normalization morphism. For x in $C^{(k)}_x$, $\lambda_{x,k}^{-1}(x) = \bar{\gamma}_x(\gamma_x^{-1}(x))$. Hence $\lambda_{x,k}$ is injective since the fibers of γ_x are connected, whence the assertion since $\lambda_{x,k}$ is closed as a finite morphism.

(ii) Denote again by η the restriction of η to $C^{(k)}_x$. We have a commutative diagram

$$\overline{C}^{(k)}_x \xrightarrow{\lambda_{x,k}} C^{(k)}_x \xrightarrow{\eta} \overline{C}^{(k)}_x$$

with λ_k the normalization morphism. According to [CZ14, Proposition 5.8], all fiber of η or $\overline{\eta}$ is one single $W(\mathcal{X})$-orbit and by (i), $\lambda_{x,k}$ is bijective. Hence λ_k is bijective, whence the assertion since λ_k is closed as a finite morphism. \hfill \Box
APPENDIX A. Notations

In this appendix, V is a finite dimensional vector space. Denote by $S(V)$ and $\wedge V$ respectively the symmetric and exterior algebras of V. For all integer i, $S^i(V)$ and $\wedge^i V$ are the subspaces of degree i for the usual gradation of $S(V)$ and $\wedge V$ respectively. In particular, $S^i(V)$ and $\wedge^i V$ are equal to zero for i negative.

- For l positive integer, denote by Ξ_l the group of permutations of l elements.
- For m positive integer and for $l = (l_1, \ldots, l_m)$ in \mathbb{N}^m, set:
 $$|l| := l_1 + \cdots + l_m$$
 $$S^l(V) := S^{l_1}(V) \otimes \cdots \otimes S^{l_m}(V)$$
 $$\wedge^l V := \wedge^{l_1} V \otimes \cdots \otimes \wedge^{l_m} V.$$

- For k positive integer and for $l = (l_1, \ldots, l_m)$ in \mathbb{N}^m such that $1 \leq |l| \leq k$, denote by $V^{\otimes k}$ the k-th tensor power of V and by Ξ_l the direct product $\Xi_{l_1} \times \cdots \times \Xi_{l_m}$. The group Ξ_l has a natural action on $V^{\otimes k}$ given by
 $$(\sigma_1, \ldots, \sigma_m) \cdot (v_1 \otimes \cdots \otimes v_k) = v_{\sigma_1(1)} \otimes \cdots \otimes v_{\sigma_1(l_1)} \otimes v_{\sigma_2(1)} \otimes \cdots \otimes v_{\sigma_2(l_2)} \otimes \cdots \otimes v_{\sigma_m(l_m)} \otimes v_{1} \otimes \cdots \otimes v_{k}.$$

The map
 $$a \mapsto \pi_{k,l}(a) := \frac{1}{|l|} \sum_{\sigma \in \Xi_l} \sigma \cdot a$$

is a projection from $V^{\otimes k}$ onto $(V^{\otimes k})^{\Xi_l}$. Moreover, the restriction to $(V^{\otimes k})^{\Xi_l}$ of the canonical map from $V^{\otimes k}$ to $S^l(V) \otimes_{\mathbb{K}} V^{\otimes(k-|l|)}$ is an isomorphism of vector spaces.

APPENDIX B. Some complexes

Let X be a smooth algebraic variety. For M a coherent \mathcal{O}_X-module and for k positive integer, denote by $\mathcal{M}^{\otimes k}$ the k-th tensor power of M. According to Notations A, for all l in \mathbb{N}^m such that $|l| \leq k$, there is an action of Ξ_l on $\mathcal{M}^{\otimes k}_l$. Moreover, $S^l(M)$ and $\wedge^l M$ are coherent modules defined by the same formulas as in Notations A.

B.1. Let E and M be locally free \mathcal{O}_X-modules.

Proposition B.1. Let i be a positive integer and suppose that

$$H^{i+j}(X, E^{\otimes k} \otimes_{\mathcal{O}_X} M) = 0$$

for all nonnegative integers j, k.

(i) For all positive integers m and k and for all l in \mathbb{N}^m such that $|l| \leq k$,

$$H^i(X, S^l(E) \otimes_{\mathcal{O}_X} E^{\otimes(k-|l|)} \otimes_{\mathcal{O}_X} M) = 0.$$

(ii) For all positive integers n_1, n_2, k and for all (l, m) in $\mathbb{N}^{n_1} \times \mathbb{N}^{n_2}$ such that $|l| + |m| \leq k$,

$$H^i(X, S^l(E) \otimes_{\mathcal{O}_X} \bigwedge^m \mathcal{E} \otimes_{\mathcal{O}_X} E^{\otimes(k-|l|)} \otimes_{\mathcal{O}_X} M) = 0.$$

Proof. (i) Since $\pi_{k,l}(E^{\otimes k})$ is isomorphic to $S^l(E) \otimes_{\mathcal{O}_X} E^{\otimes(k-|l|)}$ and since $\pi_{k,l}$ is a projector of $E^{\otimes k}$, $S^l(E) \otimes_{\mathcal{O}_X} E^{\otimes(k-|l|)}$ is isomorphic to a direct factor of $E^{\otimes k}$ and $S^l(E) \otimes_{\mathcal{O}_X} E^{\otimes(k-|l|)} \otimes_{\mathcal{O}_X} M$ is isomorphic to a direct factor of $E^{\otimes k} \otimes_{\mathcal{O}_X} M$, whence the assertion.

27
(ii) Denoting by $\varepsilon(\sigma)$ the signature of the element σ of the symmetric group Ξ_m, the map

$$\mathcal{E}^{\otimes m} \longrightarrow \mathcal{E}^{\otimes m} \quad a \mapsto \frac{1}{m} \sum_{\sigma \in \Xi_m} \varepsilon(\sigma) a$$

is a projection from $\mathcal{E}^{\otimes m}$ onto a submodule of $\mathcal{E}^{\otimes m}$ isomorphic to $\bigwedge^m \mathcal{E}$. So, $\bigwedge^m \mathcal{E}$ is isomorphic to a direct factor of $\mathcal{E}^{\otimes m}$. Then, by induction on m, for l in \mathbb{N}^m, $\bigwedge^l \mathcal{E}$ is isomorphic to a direct factor of $\mathcal{E}^{\otimes l}$. As a result, according to (i), for all positive integers n_1, n_2, k and for all (i, m) in $\mathbb{N}^{n_1} \times \mathbb{N}^{n_2}$ such that $|l| + |m| \leq k$, $S^l(\mathcal{E}) \otimes_{\mathcal{O}_X} \bigwedge^m \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{E}^{\otimes(k-|l|-|m|)} \otimes_{\mathcal{O}_X} \mathcal{M}$ is isomorphic to a direct factor of $\mathcal{E}^{\otimes k} \otimes_{\mathcal{O}_X} \mathcal{M}$, whence the assertion. □

B.2. Let W be a subspace of V and set $E := V/W$. Let $C^{(n)}_{\bullet}(V, W), n = 1, 2, \ldots$ be the sequence of graded spaces over \mathbb{N} defined by the induction relations:

$$C^{(n)}_{0}(V, W) := V \quad C^{(n)}_{1}(V, W) := W \quad C^{(n)}_{j}(V, W) := 0$$

for $i \geq 2$ and $j \geq 1$.

Lemma B.2. Let n be a positive integer. There exists a graded differential of degree -1 on $C^{(n)}_{\bullet}(V, W)$ such that the complex so defined has no homology in positive degree.

Proof. Prove the lemma by induction on n. For $n = 1$, d is given by the inclusion map $W \longrightarrow V$. Suppose that $C^{(n-1)}_{\bullet}(V, W)$ has a differential d verifying the conditions of the lemma. For $j > 0$, denote by δ the linear map

$$C^{(n-1)}_{j}(V, W) \longrightarrow C^{(n-1)}_{j-1}(V, W), \quad (a \otimes v, b \otimes w) \longmapsto (\delta(a \otimes v) + (-1)^j b \otimes w, d b \otimes w)$$

with a, b, v, w in $C^{(n-1)}_{j}(V, W)$, $C^{(n-1)}_{j-1}(V, W)$, V, W respectively. Then δ is a graded differential of degree -1. Let c be a cycle of positive degree j of $C^{(n)}_{\bullet}(V, W)$. Then c has an expansion

$$c = \sum_{i=1}^{d} a_i \otimes v_i + \sum_{i=1}^{d'} b_i \otimes v_i$$

with v_1, \ldots, v_d a basis of V such that $v_1, \ldots, v_{d'}$ is a basis of W and with a_1, \ldots, a_d and $b_1, \ldots, b_{d'}$ in $C^{(n-1)}_{j}(V, W)$ and $C^{(n-1)}_{j-1}(V, W)$ respectively. Since c is a cycle,

$$\sum_{i=1}^{d} \delta(a_i \otimes v_i) + (-1)^j \sum_{i=1}^{d'} b_i \otimes v_i = 0$$

Hence $b_i = (-1)^{i+1} a_i$ for $i = 1, \ldots, d'$ so that

$$c + \delta(0, \sum_{i=1}^{d'} (-1)^i a_i \otimes v_i) = (\sum_{i=1}^{d} a_i \otimes v_i + \sum_{i=1}^{d'} a_i \otimes v_i, \sum_{i=1}^{d'} (b_i \otimes v_i + (-1)^i (\delta(a_i \otimes v_i))) = (\sum_{i=1}^{d} a_i \otimes v_i + \sum_{i=1}^{d'} a_i \otimes v_i, 0).$$

So we can suppose $b_1 = \cdots = b_{d'} = 0$. Then a_1, \ldots, a_d are cycles of degree j of $C^{(n-1)}_{\bullet}(V, W)$. By induction hypothesis, they are boundaries of $C^{(n-1)}_{\bullet}(V, W)$ so that c is a boundary of $C^{(n)}_{\bullet}(V, W)$, whence the lemma. □

Remark B.3. The results of this subsection remain true for V or W of infinite dimension since a vector space is an inductive limit of finite dimensional vector spaces.
Appendix C. Rational Singularities

Let X be an affine irreducible normal variety.

Lemma C.1. Let Y be a smooth big open subset of X.

(i) All regular differential form of top degree on Y has a unique regular extension to X_{sm}.

(ii) Suppose that ω is a regular differential form of top degree on Y, without zero. Then the regular extension of ω to X_{sm} has no zero.

Proof. (i) Since $\Omega^i_{X_{\text{sm}}}$ is a locally free module of rank one, there is an affine open cover O_1, \ldots, O_k of X_{sm} such that the restriction of $\Omega^i_{X_{\text{sm}}}$ to O_i is a free O_{O_i}-module generated by some section ω_i. For $i = 1, \ldots, k$, set $O_i' := O_i \cap Y$. Let ω be a regular differential form of top degree on Y. For $i = 1, \ldots, k$, for some regular function a_i on O_i', $a_i \omega_i$ is the restriction of ω to O_i'. As Y is a big open subset of X, O_i' is a big open subset of O_i. Hence a_i has a regular extension to O_i since O_i is normal. Denoting again by a_i this extension, for $1 \leq i, j \leq k$, $a_i \omega_i$ and $a_j \omega_j$ have the same restriction to $O_i' \cap O_j'$. If Y is a big open subset of X, $O_i' \cap O_j'$ since $\Omega^i_{X_{\text{sm}}}$ is torsion free as a locally free module. Let ω' be the global section of $\Omega^i_{X_{\text{sm}}}$ extending the $a_i \omega_i$'s. Then ω' is a regular extension of ω to X_{sm} and this extension is unique since Y is dense in X_{sm} and $\Omega^i_{X_{\text{sm}}}$ is torsion free.

(ii) Suppose that ω has no zero. Let Σ be the nullvariety of ω' in X_{sm}. If it is not empty, Σ has codimension 1 in X_{sm}. As Y is a big open subset of X, $\Sigma \cap X_{\text{sm}}$ is not empty if so is Σ. As a result, Σ is empty. \hfill \Box

Denote by ι the inclusion morphism $X_{\text{sm}} \to X$.

Lemma C.2. Suppose that $\Omega^i_{X_{\text{sm}}}$ has a global section ω without zero. Then the \mathcal{O}_X-module $\iota_*(\Omega^i_{X_{\text{sm}}})$ is free of rank 1. More precisely, the morphism θ:

$$
\begin{array}{ccc}
\mathcal{O}_X & \longrightarrow & \iota_*(\Omega^i_{X_{\text{sm}}}) \\
\psi & \longmapsto & \psi \omega
\end{array}
$$

is an isomorphism.

Proof. For φ a local section of $\iota_*(\Omega^i_{X_{\text{sm}}})$ above the open subset U of X, for some regular function ψ on $U \cap X_{\text{sm}},$

$$
\psi(\omega) \big|_{U \cap X_{\text{sm}}} = \varphi.
$$

Since X is normal, so is U and $U \cap X_{\text{sm}}$ is a big open subset of U. Hence ψ has a regular extension to U. As a result, there exists a well defined morphism from $\iota_*(\Omega^i_{X_{\text{sm}}})$ to \mathcal{O}_X whose inverse is θ. \hfill \Box

According to [Hir64], X has a desingularization Z with morphism τ such that the restriction of τ to $\tau^{-1}(X_{\text{sm}})$ is an isomorphism onto X_{sm}. Since Z and X are varieties over k, we have the commutative diagram

$$
\begin{array}{ccc}
Z & \longrightarrow & X \\
\tau & \downarrow & \downarrow \psi \\
\Spec(k) & \longrightarrow & \ Spec(k)
\end{array}
$$

According to [H66, V, §10.2], $p'(k)$ and $q'(k)$ are dualizing complexes over Z and X respectively. Furthermore, by [H66, VII, 3.4] or [Hi91, 4.3(ii)], $p'(k)[-\dim Z]$ equals Ω_Z. Set $\mathcal{D} := q'(k)[-\dim Z]$ so that $\tau^*(\mathcal{D}) = \Omega_Z$ by [H66, VII, 3.4] or [Hi91, 4.3(iv)]. In particular, \mathcal{D} is dualizing over X.

Lemma C.3. Suppose that X has rational singularities. Let \mathcal{M} be the cohomology in degree 0 of \mathcal{D}. Then the \mathcal{O}_X-modules $\tau_*(\Omega_Z)$ and \mathcal{M} are isomorphic. In particular, $\tau_*(\Omega_Z)$ has finite injective dimension.
Proof. Since τ is a projective morphism, we have the isomorphism

\begin{equation}
\tau_*(\mathcal{H}om_Z(\Omega_Z, \Omega_Z)) \cong \mathcal{H}om_X(\tau_*(\Omega_Z), \mathcal{D})
\end{equation}

by \cite[VII, 3.4]{H66} or \cite[4.3.(iii)]{Hi91}. Since $H^i(\mathcal{H}om_Z(\Omega_Z, \Omega_Z)) = \mathcal{O}_Z$ for $i = 0$ and 0 for $i > 0$, the left hand side of (5) can be identified with $\mathcal{R}\tau_*(\mathcal{O}_Z)$. Since X has rational singularities, $\mathcal{R}\tau_*(\mathcal{O}_Z) = \mathcal{O}_X$ and \mathcal{D} has only cohomology in degree 0. Moreover, by Grauert-Riemenschneider Theorem \cite{GR70}, $\mathcal{R}\tau_*(\Omega_Z)$ has only cohomology in degree 0, whence $\mathcal{R}\tau_*(\Omega_Z) = \tau_*(\Omega_Z)$. Then, by (5), we have the isomorphism

$$\mathcal{O}_X \cong \mathcal{H}om_X((\tau_*(\Omega_Z), \mathcal{M}).$$

As \mathcal{D} is dualizing, we have the isomorphism

$$\tau_*(\Omega_Z) \cong \mathcal{H}om_X(\mathcal{R}\tau_*(\Omega_Z), \mathcal{D}),$$

whence the isomorphism $\tau_*(\Omega_Z) \cong \mathcal{M}$. As a result, $\tau_*(\Omega_Z)$ has finite injective dimension since so has \mathcal{M}.

\section*{Appendix D. About singularities}

In this section we recall a well known result. Let X be a variety and Y a fiber bundle over X. Denote by τ the bundle projection.

\begin{lemma}
(i) If X is Gorenstein and the fibers of τ are Gorenstein, then so is Y.
(ii) If Y is a Gorenstein vector bundle over X, then X is Gorenstein.
(iii) Suppose that X and the fibers of τ have rational singularities. Then so has Y.
(iv) If Y is a vector bundle over X, X has rational singularities if and only if so has Y.
\end{lemma}

\begin{proof}
Let y be in Y, $x := \tau(y)$ and F_x, the fiber of Y at x. Denote by $\hat{\mathcal{O}}_{X,x}$ and $\hat{\mathcal{O}}_{Y,y}$ the completions of the local rings $\mathcal{O}_{X,x}$ and $\mathcal{O}_{Y,y}$ respectively.

(i) By hypothesis, $\mathcal{O}_{X,x}$ and $\mathcal{O}_{F_x,y}$ are Gorenstein. Then so is $\mathcal{O}_{X,x} \otimes \mathcal{O}_{F_x,y}$. So by \cite[Proposition 3.1.19.(a)]{Bru}, $\hat{\mathcal{O}}_{Y,y}$ is Gorenstein, whence the assertion.

(ii) Since Y is a vector bundle over X, $\hat{\mathcal{O}}_{Y,y}$ is a ring of formal series over $\hat{\mathcal{O}}_{X,x}$. By \cite[Proposition 3.1.19.(c)]{Bru}, $\hat{\mathcal{O}}_{Y,y}$ is Gorenstein. So, by \cite[Proposition 3.1.19.(b)]{Bru}, $\hat{\mathcal{O}}_{X,x}$ is Gorenstein. Then by \cite[Proposition 3.1.19.(c)]{Bru}, $\hat{\mathcal{O}}_{X,x}$ is Gorenstein, whence the assertion.

(iii) There exists a cover of X by open subsets O such that $\tau^{-1}(O)$ is isomorphic to $O \times F$. According to the hypothesis, O and F have rational singularities. Then so has $\tau^{-1}(O)$, whence the assertion since a variety has rational singularities if and only if it has a cover by open subsets having rational singularities.

(iv) If Y is a vector bundle over X, then there exists a cover of X by open subsets O, such that $\tau^{-1}(O)$ is isomorphic to $O \times \mathbb{A}^m$ with $m = \dim Y - \dim X$. According to \cite[p.50]{KK73}, $O \times \mathbb{A}^m$ has rational singularities if and only if O has, whence the assertion since a variety has rational singularities if and only if it has a cover by open subsets having rational singularities.
\end{proof}

\section*{References}

\begin{thebibliography}{99}
\end{thebibliography}

Jean-Yves Charbonnel, Université Paris Diderot - CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR 7586, Groupes, représentations et géométrie, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France
E-mail address: jean-yves.charbonnel@imj-prg.fr

Mouchira Zaiter, Université Libanaise Al-Hadath, Faculté des sciences, branche I, Beyrouth Liban
E-mail address: zaiter.mouchira@hotmail.fr