Sequential pattern mining on multimedia data

Corentin Hardy 1 Laurent Amsaleg 2 Guillaume Gravier 2 Simon Malinowski 2 René Quiniou 3
2 LinkMedia - Creating and exploiting explicit links between multimedia fragments
Inria Rennes – Bretagne Atlantique , IRISA-D6 - MEDIA ET INTERACTIONS
3 DREAM - Diagnosing, Recommending Actions and Modelling
Inria Rennes – Bretagne Atlantique , IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Abstract : Analyzing multimedia data is a challenging problem due to the quantity and complexity of such data. Mining for frequently recurring patterns is a task often ran to help discovering the underlying structure hidden in the data. In this article, we propose audio data symbolization and sequential pattern mining methods to extract patterns from audio streams. Experiments show that this task is hard and that the symbol-ization is a critical step for extracting relevant audio patterns.
Liste complète des métadonnées

Cited literature [16 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01186446
Contributor : Guillaume Gravier <>
Submitted on : Monday, August 24, 2015 - 11:11:08 PM
Last modification on : Friday, November 16, 2018 - 1:39:27 AM
Document(s) archivé(s) le : Wednesday, November 25, 2015 - 7:14:49 PM

File

hardy_amsaleg et al.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01186446, version 1

Citation

Corentin Hardy, Laurent Amsaleg, Guillaume Gravier, Simon Malinowski, René Quiniou. Sequential pattern mining on multimedia data. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database Workshop on Advanced Analytics and Learning on Temporal Data, 2015, Porto, Portugal. ⟨hal-01186446⟩

Share

Metrics

Record views

1025

Files downloads

353