Learning to Hash Faces Using Large Feature Vectors

Abstract : Face recognition has been largely studied in past years. However, most of the related work focus on increasing accuracy and/or speed to test a single pair probe-subject. In this work, we present a novel method inspired by the success of locality sensing hashing (LSH) applied to large general purpose datasets and by the robustness provided by partial least squares (PLS) analysis when applied to large sets of feature vectors for face recognition. The result is a robust hashing method compatible with feature combination for fast computation of a short list of candidates in a large gallery of subjects. We provide theoretical support and practical principles for the proposed method that may be reused in further development of hash functions applied to face galleries. The proposed method is evaluated on the FERET and FRGCv1 datasets and compared to other methods in the literature. Experimental results show that the proposed approach is able to speedup 16 times compared to scanning all subjects in the face gallery.
Type de document :
Communication dans un congrès
International Workshop on Content-based Multimedia Indexing, 2015, Prague, Czech Republic
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01186444
Contributeur : Guillaume Gravier <>
Soumis le : vendredi 28 août 2015 - 14:39:35
Dernière modification le : vendredi 16 novembre 2018 - 01:39:28
Document(s) archivé(s) le : dimanche 29 novembre 2015 - 10:13:54

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01186444, version 1

Citation

Cassio Dos Santos Jr., Ewa Kijak, Guillaume Gravier, William Robson Schwartz. Learning to Hash Faces Using Large Feature Vectors. International Workshop on Content-based Multimedia Indexing, 2015, Prague, Czech Republic. 〈hal-01186444〉

Partager

Métriques

Consultations de la notice

1293

Téléchargements de fichiers

460