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Abstract
Boundary conditions in quasiclassical theory of superconductivity are of crucial importance for
describing proximity effects in heterostructures between differentmaterials. Although they have been
derived for the ballistic case in full generality, corresponding boundary conditions for the diffusive
limit, described byUsadel theory, have been lacking for interfaces involving strongly spin-polarized
materials, e.g. half-metallic ferromagnets. Given the current intense research in the emergingfield of
superconducting spintronics, the formulation of appropriate boundary conditions for theUsadel
theory of diffusive superconductors in contact with strongly spin-polarized ferromagnets for arbitrary
transmission probability and arbitrary spin-dependent interface scattering phases has been a burning
open question.Herewe close this gap and derive the full boundary conditions for quasiclassical Green
functions in the diffusive limit, valid for any value of spin polarization, transmission probability, and
spin-mixing angles (spin-dependent scattering phase shifts). Our formulation allows also for complex
spin textures across the interface and for channel off-diagonal scattering (a necessary ingredient when
the numbers of channels on the two sides of the interface differ). As an example we derive expressions
for the proximity effect in diffusive systems involving half-metallic ferromagnets. In a super-
conductor/half-metal/superconductor Josephson junctionwefind 0ϕ -junction behavior under

certain interface conditions.

1. Introduction

Hybrid structures containing superconducting (S) and ferromagnetic (F)materials became a focus of
nanoelectronic research because of their relevance for spintronics applications as well as their potential impact
on fundamental research [1–3]. Examples of successful developments include the discoveries of the π-junction
[4, 5] in S/F/S Josephson devices [6, 7], of odd-frequency superconductivity [8] in S/F heterostructures [9, 10],
and of the indirect Josephson effect in S/half-metal/S junctions [11, 12]. Other recent topics of interest include
the study ofMajorana fermions at interfaces between superconductors and topological insulators [13] and at
edges in superfluid He3 [14, 15], and the appearance of pure spin supercurrents in topological superconductors
[16], and in S/FI-F-FI devices as a result of geometric phases [17].

The central subject inmany of these studies is to understand how in the case of a superconductor coupled to
a ferromagneticmaterial superconducting correlations penetrate into the ferromagnet, and howmagnetic
correlations penetrate into the superconductor [18–23]. A powerfulmethod to treat such problems is the
quasiclassical theory of superconductivity developed by Larkin andOvchinnikov and by Eilenberger [24, 25].
Within this theory [26–30] the quasiparticlemotion is treated on a classical level, whereas the particle–hole and
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the spin degrees of freedomare treated quantummechanically. The transport equation, which is afirst-order
matrix differential equation for the quasiclassical propagator,must be supplemented by physical boundary
conditions in order to obtain a unique solution.

Whereas for the fullmicroscopic Green functions, i.e. theGor’kovGreen functions [31], such boundary
conditions can be readily formulated (e.g. in terms of interface scatteringmatrices or in terms of transfer
matrices), this is a considerablymore difficult task for quasiclassical Green functions. In quasiclassical theory
only the information about the envelope functions of Blochwaves is retained; information about the phases of
thewaves ismissing. Such envelope amplitudes can show jumps at interfaces, and one complex task is to
calculate these jumpswithout knowing the fullmicroscopic Green functions near the interface.
Correspondingly, there is a long history of deriving boundary conditions for quasiclassical propagators, both for
the Eilenberger equations, and their diffusive limit, theUsadel equations [32].

For ballistic transport, described by the Eilenberger equations, such boundary conditionswere first
formulated for spin-inactive interfaces in pioneering work by Shelankov and byZaitsev [34, 35], who showed
the non-trivial fact that these jumps can be calculated using only the envelope functions.More general
formulations were proposed subsequently [36–39], including a formulation in terms of interface scattering
matrices byMillis, Rainer and Sauls [39]. All these formulations were implicit in terms of non-linearmatrix
equations, and problems arose in numerical implementations due to spurious (unphysical) additional solutions
whichmust be eliminated. Progress wasmadewith the help of Shelankov’s projector formalism [40], allowing
for explicit formulations of boundary conditions in both equilibrium [41–43] and non-equilibrium [42]
situations. Further generalizations included spin-active interfaces, formulated for equilibrium [44] and for non-
equilibrium [45], and interfaces with diffusive scattering characteristics [46]. An alternative formulation in
terms of quantummechanical t-matrices [47] proved also fruitful [11, 20, 48–51]. The latest formulation, in
terms of interface scatteringmatrices, is able to include non-equilibriumphenomena, interfaces andmaterials
withweak or strong spin polarization,multi-band systems, as well as disordered systems [52].

For the diffusive limit a set of second-ordermatrix differential equations was derived byUsadel [32]. In
contrast to the ballistic case, where boundary conditions have been formulated for awide set of applications,
boundary conditions for the diffusive limit have been formulated so far only in certain limiting cases. Thefirst
formulation is byKupriyanov and Lukichev, appropriate for the tunneling limit [53]. This was generalized to
arbitrary transmission byNazarov [54]. Amajor advancewas done byCottet et al in formulating boundary
conditions forUsadel equations appropriate for spin-polarized interfaces [55]. These boundary conditions are
valid in the limit of small transmission, spin polarization, and spin-dependent scattering phase shifts (this term
is often used interchangeably with ‘spin-mixing angles’ [56]). Subsequent formulations allowed for arbitrary
spin polarization, although being restricted to small transmission and spin-dependent scattering [57–59]. In
[59] the authors present ‘heuristically’ deduced boundary conditions, which coincidewith the ones used
in [57, 58].

Here we not only present the full derivation of the specific boundary conditions used in [57–59], but go
further and give a full solution of the problem.With this, the long-standing problemof how to generalize
Nazarov’s formula for arbitrary transmission probability [54] to the case of spin-polarized systemswith
arbitrary spin polarization and arbitrary spin dependent scattering phases is solved.Our boundary conditions
are general enough to allow for non-equilibrium situationswithinKeldysh formalism, as well as for complex
interface spin textures.We reproduce as limiting cases all previously known formulations.

2. Transport equations

The central quantity in quasiclassical theory of superconductivity [24, 25] is the quasiclassical Green function
(‘propagator’) g E tp Rˇ ( , , , )F . It describes quasiparticles with energy E (measured from the Fermi level) and

momentum pF moving along classical trajectories with direction given by the Fermi velocity v p( )F F in external
potentials and self-consistentfields that aremodulated by the slow spatial (R) and time (t) coordinates [26–28].

The quasiclassical Green function is a functional of self-energies E tp Rˇ ( , , , )FΣ , which in general include

molecular fields, the superconducting order parameter tp R( , , )FΔ , impurity scattering, and the external
potentials. The quantummechanical degrees of freedomof the quasiparticles showup in thematrix structure of
the quasiclassical propagator and the self-energies. It is convenient to formulate the theory using 2× 2matrices
inKeldysh space [60] (denoted by a ‘check’ accent), the elements of which in turn are 2 × 2Nambu–Gor’kov
matrices [31, 61] in particle–hole (denoted by a ‘hat’ accent) space. The structure of the propagators and self-
energies in Keldysh-space is

2
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where the superscriptsR,A andK refer to retarded, advanced andKeldysh components, respectively, andwith
the particle–hole space structure5
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for self-energies. For spin-degenerate trajectories (i.e. in systemswithweak or no spin-polarization) the
elements of the 2 × 2Nambu-Gor’kovmatrices are 2 × 2matrices in spin space, e.g. g gR

ab
R= with

a b, { , }∈ ↑ ↓ , and similarly for others. In strongly spin-polarized ferromagnets the elements of the 2× 2
Nambu-Gor’kovmatrices are spin-scalar (due to very fast spin-dephasing in a strong exchange field), and the
systemmust be describedwithin the preferred quantization direction given by the internal exchange field. The
terms ‘weak’ and ‘strong’ refer to the spin-splitting of the energy bands being comparable to the superconducting
gap or to the bandwidth, respectively. Inwriting equations (1a)–(1c) we used general symmetries, which are
accounted for by the ‘tilde’ operation,

( ) ( )X E t X E tp R p R˜ , , , , , , * . (2)F F= − −

Retarded (advanced) functions can be analytically continued into the upper (lower) complex energy half plane,

inwhich case the relation ismodified to X E t X E tp R p R˜( , , , ) ( , , *, )*F F= − − with complex E.
The quasiclassical Green functions satisfy the Eilenberger–Larkin–Ovchinnikov transport equation and

normalization condition

E g g g gvˇ ˇ , ˇ i · ˇ 0̌, ˇ ˇ 1̌. (3)F3
2⎡⎣ ⎤⎦ τ Σ π− + = ◦ = −

◦


The non-commutative product ◦ combinesmatrixmultiplicationwith a convolution over the internal energy-
time variables inWigner coordinate representation,

( ) ( )A B E t A E t B E tˇ ˇ ( , ) e ˇ ( , ) ˇ ( , ), (4)E
A

t
B

t
A

E
Bi

2◦ ≡ ∂ ∂ −∂ ∂

and ˇ ˆ 1̌3 3τ τ= , where 3̂τ is a Paulimatrix in particle–hole space. Here and below, A B A B B A[ , ] ≡ ◦ − ◦◦ .
The operation acts on the variable R.

The functional dependence of the quasiclassical propagator on the self-energies is given in the formof self-
consistency conditions. For instance, for aweak-coupling, s-wave order parameter, the condition reads

( )t V
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whereVs is the s-wave part of the singlet pairing interaction,NF is the density of states per spin at the Fermi level,

f̂s

K
is spin-singlet part of the theKeldysh component f̂

K
, and pF

〈〉 denotes averaging over the Fermi surface. The

cut-off energyEc is to be eliminated in favor of the superconducting transition temperature in the usualmanner.
When the quasiclassical Green function has been determined, physical quantities of interest can be

calculated. For example, the current density at position R and time t reads (with e 0< the electron charge)

( )t e
E

N g E tj R p v p p R( , )
d

8 i
Tr ( ) ( ) ˆ ˆ , , , . (6)F F F F

K
F p3 F∫ 〈 〉

π
τ=

−∞

∞

The symbol Tr denotes a trace over the 2× 2 particle–hole space aswell as over 2 × 2 spin space in the case of
spin-degenerate trajectories.

In the dirty (diffusive) limit, strong scattering by non-magnetic impurities effectively averages the
quasiclassical propagator overmomentumdirections. TheGreen functionmay then be expanded in the small
parameter k TcB τ  (τ is themomentum relaxation time) following the standard procedure [32, 33]

5
For the definitions of all Green functions in this paper we use a basis of fermion field operators inNambu ⊗ spin-space as

t t t t tr r r r r( , ) [ ( , ), ( , ), ( , ) , ( , ) ]T† †Ψ ψ ψ ψ ψ= ↑ ↓ ↑ ↓ .
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where themagnitude of ǧ(1) is small compared to that of Ǧ. The impurity self-energy is related to an (in general
anisotropic) lifetime function p p( , )F Fτ ′ [33]. Substitutings (7) into equation (3),multiplyingwith

N p p p p( )v ( ) ( , )F F F j F F F, τ′ ′ ′ , averaging overmomentumdirections, considering that Σ̌ τ′  is small, where Σ̌′ is
the self-energy reduced by the contribution due to non-magnetic impurity scattering, and using
G Gˇ ˇ 1̌2π◦ = − and G g g Gˇ ˇ ˇ ˇ 0̌(1) (1)◦ + ◦ = , one obtains (we suppress here the arguments E tR, , )
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where N N p( )F F F pF
= 〈 〉 is the local density of states per spin at the Fermi level, Rk k = ∂ ∂ , the

summation is over k x y z{ , , }∈ , and
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is the diffusion constant tensor. For isotropic systems, D Djk jkδ= . TheUsadel Green function Ǧ obeys the
following transport equation and normalization condition, [32]
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D
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where N Np pˇ ( ) ˇ ( )F F F Fp0 F
Σ Σ= 〈 ′ 〉 . TheUsadel propagator Ǧ is a functional of ˇ

0Σ .

The structures of Ǧ and ˇ
0Σ are the same as in equations (1a)–(1c) (with Ǧ replacing ǧ and ˇ

0Σ replacing ˇ
0Σ ).

Equation (2) is replaced by

X E t X E tR R˜( , , ) ( , , )*. (11)= −

The current density for diffusive systems is obtained from equations (8) and (6), and is given by
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Avector potential tA R( , ) enters in a gauge invariantmanner by replacing the spatial derivative operators in all
expressions by (see e.g. [33, 62])

X X X
e

A Xˆ ˆ ˆ ˆ i ˆ , ˆ . (13)i i i i3
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Finally, the case of a strongly spin-polarized itinerant ferromagnet with superconducting correlations (e.g.
due to the proximity effect when in contact with a superconductor) can be treated by quasiclassical theory aswell
[11, 20, 50]. In this case, when the spin-splitting of the energy bands is comparable to the bandwidth of the two
spin bands, there exist twowell-separated fully spin-polarized Fermi surfaces in the system, and the length scale
associatedwith p pF F∣ − ∣↑ ↓ ismuch shorter than the coherence length scale in the ferromagnet. Equal-spin

correlations stay still coherent over long distance in such a system; ↑↓ and ↓↑ correlations are, however,
incoherent and thus negligible within quasiclassical approximation. Fermi velocity, density of states, diffusion
constant tensor, and coherence length all become spin-dependent. The quasiclassical propagator is then spin-
scalar for each trajectory, with either all elements ↑↑ or all elements ↓↓ depending on the spin Fermi surface the
trajectory corresponds to. Eilenberger equation andUsadel equation have the same form as before for each
separate spin band. The spin-resolved current densities are given in the ballistic case by

e
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and in the diffusive case by
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and analogously for spin down.
For heterostructures, the above equationsmust be supplementedwith boundary conditions at the interfaces.

A practical formulation of boundary conditions for diffusive systems valid for arbitrary transmission and spin
polarization is the goal of this paper.
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3. Boundary conditions

3.1. Interface scatteringmatrix
We formulate boundary conditions at an interface in terms of the normal-state interface scatteringmatrix Ŝ
[63–65], connecting incomingwith outgoing Blochwaves on either side of the interface with each other.We use
the notation

S
S S

S S
ˆ

ˆ ˆ

ˆ ˆ
, (16)

11 12

21 22

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−
⤧

where 1 and 2 refer to the two sides of the interface, and the subscript label ⤧ indicates that the 2× 2matrix
structure refers to reflection and transmission amplitudes at an interface. The components Ŝij arematrices in
particle–hole space as well as in scattering channel space (i.e. scattering channels for ballistic transport would be
parameterized by the Fermimomenta of incoming and outgoing Blochwaves). Each element in 2 × 2 particle–
hole space is in turn amatrix in combined spin and channel space, i.e. the number of incoming directions
(assumed to be equal to the number of outgoing directions due to particle conservation) gives the dimension in
channel space. The dimension in spin space is for spin-degenerate channels 2 and for spin-scalar channels 1.

If time-reversal symmetry is preserved, Kramers degeneracy requires that each element of the scattering
matrix has a 2× 2 spin (ormore general: pseudo-spin) structure (as it connects doubly degenerate scattering
channels on either side of the interface). For spin-polarized interfaces (e.g. ferromagnetic orwith Rashba spin–
orbit coupling) the scatteringmatrix is not spin-degenerate. However if the splitting of the spin-degeneracy is on
the energy scale of the superconducting gap, it can be neglectedwithin the precision of quasiclassical theory of
superconductivity. On the other hand, if the lifting of the spin-degeneracy of energy bands is comparable to the
Fermi energy, the degeneracy of the scattering channelsmust be lifted as well in order to achieve consistency
within quasiclassical theory. For definiteness, we denote the dependence on the scattering channels by indices
n n, ′:

Ŝ , (17)
nn

⎡⎣ ⎤⎦αβ ′

even for the ballistic case for which S S p k[ˆ ] ˆ ( , )nn F n F n, ,≡αβ αβ′ ′ .

As shown in appendices A andB, the scatteringmatrix for an interface can bewritten in polar decomposition
in full generality as

CC C

C C C
Ŝ

1

1

0

0 ˘ (18)
†

† †

⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
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
= −

− − ⤧ ⤧

with unitarymatrices  and ̆ , and a transmissionmatrixC. All arematrices in particle–hole space, scattering
channel space, and possibly (pseudo-)spin space. The above decomposition divides the scatteringmatrix into a
Hermitian part and a unitary part. From this decomposition, we can define the auxiliary scatteringmatrix

Ŝ
0

0 ˘ , (19)0
⎛
⎝⎜

⎞
⎠⎟


=

⤧

which retains all the phase information during reflection on both sides of the interface, and has zero transmission
components. The decomposition is uniquely definedwhen there are no zero-reflection singular values (wewill
assume here that a small non-zero reflection always takes place for each transmission channel; perfectly
transmitting channels can always be treated separately as the corresponding boundary conditions are trivial).
For thematrixCwe introduce the parameterization

( )C tt t1 2 , (20)† 1
= +

−

(see appendix C)which is uniquely definedwhen all singular values of t are in the interval [0, 1](which is
required in order to ensure non-negative reflection singular values).We define for notational simplification
‘hopping amplitude’matrices

t t˘ , , (21)12 21
† πτ πτ= =

aswell as unitarymatrices

S S, ˘ . (22)1 2 = =
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In terms of those, obviously the relation

S S( ) (23)¯ ¯
†

¯τ τ=αα α αα α

holds, where ( , ¯) {(1, 2), (2, 1)}α α ∈ , and the labels 1 and 2 refer to the respective sides of the interface. Here,
and below, theHermitian conjugate operation involves a transposition in channel indices. The particle–hole
structures of the surface scatteringmatrix and the hopping amplitude are given by,
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where n̄ and n̄′denotemutually conjugated channels, e.g. defined by p kF n F n, ¯ ,≡ −′ ′ and k pF n F n, ¯ ,≡ − . Finally,
the Keldysh structure of these quantities is
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⎠

⎟⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= ≡α

α

α

α

α

( )
ˇ

ˆ 0

0 ˆ

ˆ 0

0 ˆ
(27)

R

A¯

¯

¯
†

kel

¯

¯ kel

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟τ

τ

τ

τ
τ

= ≡αα
αα

αα

αα

αα

(the additionalHermitian conjugate in these equations is due to the fact that advancedGreen functions have the
roles of ‘incoming’ and ‘outgoing’momentumdirections interchanged compared to retardedGreen functions;
this is similar to the additionalHermitian conjugate appearing for hole components in particle–hole space).
Thus, the Keldyshmatrix structure for Šα and ˇ ¯ταα is trivial (proportional to the unitmatrix). The full normal-
state scatteringmatrix is diagonal in particle–hole and inKeldysh space, with reflection components

( ) ( ) SŠ 1 ˇ ˇ 1 ˇ ˇ ˇ , (28)2
¯ ¯

† 1 2
¯ ¯

†π τ τ π τ τ= + −αα αα αα αα αα α
−

andwith transmission components

( )Š 1 ˇ ˇ 2 ˇ . (29)¯
2

¯ ¯
† 1

¯π τ τ πτ= +αα αα αα αα
−

Note that ˇ ¯ταα connects incomingwith outgoing Blochwaves per definition (as the scatteringmatrix does).
Wewill formulate the theory such that all equations are valid on either side of the interface. This allows us to

drop the indices , ¯α α for simplicity of notation by randomly choosing one side of the interface, and denoting
quantities on the other side of the interface by underline. In particular, wewill use

S S S Sˇ ˇ , ˇ ˇ , ˇ ˇ, ˇ ˇ¯ ¯ ¯τ τ τ τ≡ ≡ ≡ ≡α α αα αα

g g g g G G G Gˇ ˇ , ˇ ˇ , ˇ ˇ , ˇ ˇ , (30)¯ ¯≡ ≡ ≡ ≡α α α α

and so forth (see figure 1(a)). Also, from equation (23) we have S Sˇ ˇ ˇ ˇ†τ τ= .

3.2. General boundary conditions for diffusive systems
Onemain problemwith boundary conditions for quasiclassical propagators is illustrated in figures 1(b) and (c).
In previous treatments [39, 54, 55] the starting point was a transfermatrix description, see figure 1(b), which
required the elimination of so-called ‘drone amplitudes’, which are propagators thatmix incomingwith
outgoing directions. Here, wewill employ a scatteringmatrix description, see figure 1(c), which, on the other
hand, requires a similar elimination ofDrone amplitudes, this time being propagatorsmixing the two sides of
the interface. However, for an impenetrable interface this latter problemdoes not arise, a fact wewill exploit.

The strategy to derive the needed boundary conditions is to apply a three-step procedure. In the first step, the
problemof an impenetrable interface with the auxiliary scatteringmatrix defined in equation (19) is solved on
each side of the interface [11]. For this step, the ballistic solutions for the envelope functions for theGor’kov
propagators close to the interfaces should be expressed by the solutions Ǧ of theUsadel equation. In a second
step, these ballistic solutions (auxiliary propagators) are used in order tofind the full ballistic solutions forfinite
transmission by utilizing a t-matrix technique [11, 20, 48, 50]. In the third and final step thematrix current will
be derived from the ballistic solutions, which then enters the boundary conditions for theUsadel equations.We
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will present explicit solutions for all three steps, such that the procedure describes effectively boundary
conditions for the solutions ofUsadel equations on either side of the interface.

We use for the auxiliary propagators the notation ǧ o
0
, ǧ i

0
, ǧ o

0
and ǧ i

0
, where the upper index denotes the

direction of the Fermi velocity. Incomingmomenta (index i) are thosewith a Fermi velocity pointing towards the
interface, and outgoingmomenta (index o) are thosewith a Fermi velocity pointing away from the interface.

3.2.1. Solution for impenetrable interface
We solve first for the auxiliary ballistic propagators fulfilling the impenetrable boundary conditions

g S g S g S g Sˇ ˇ ˇ ˇ , ˇ ˇ ˇ ˇ , (31)o i o i
0 0

†

0 0

†= =

implyingmatrixmultiplication in the combined (Keldysh) × (particle–hole) × (combined scattering-channel
and spin) space. For diffusive banks, it is necessary to connect the ballistic propagators ǧ i o

0
, with the isotropic

solutions of theUsadel equation, Ǧ. The ballistic propagators ǧ i o
0

, and ǧ i o
0

, , which characterize electronic

correlations next to the scattering barrier, depend on the electronicmomentum.However, in the diffusive case,
impurity scattering leads tomomentum isotropization away from the scattering barrier. This process occurs in
isotropization zones with a thickness corresponding to a few times the inelasticmean-free path of thematerials;
see figure 1(a). This scale is itselfmuch smaller than the scale onwhich the isotropic diffusiveGreen functions
evolve in the bulk of thematerials, in the framework of theUsadel equations. Indeed, theUsadel equations
involve a superconducting coherence length, which is typicallymuch larger than the elasticmean-free path.
Therefore, in order to describe disordered hybrid structures withUsadel equations, suitable boundary
conditions should be expressed in terms of the values of the isotropicGreen functions Ǧ and Ǧ right at the
beginning of the isotropization zones. To obtain such boundary conditions from equation (31), it is necessary to
express the propagators ǧ i o

0
, and ǧ i o

0
, in terms of Ǧ and Ǧ. This can be done by studying the spatial dependence

of theGor’kovGreen functions (or full Green functionswithout the quasiclassical approximation) in the
isotropization zones (see [54, 55] for details). Using the fact that the dynamics of electrons is dominated by

Figure 1. (a) Illustration of notation used in this paper. (b) and (c) Structure of boundary conditionwith transfermatrices M in (b),
andwith scatteringmatrices S in (c) (yellow). ‘Drone’ amplitudes in the propagators (orange fields) connect in (b) incoming (i) and
outgoing (o)momentumdirections, and in (c) the two sides,α and α , of the interface. To obtain quasiclassical boundary conditions,
Drone amplitudes in (b) and (c)must be eliminated. In this paper we use formulation (c). To connect to the notation in themain text,
g gii i≡αα , g gii i

¯ ¯
≡αα , g goo o≡αα , and g goo o

¯ ¯
≡αα .
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impurity scattering in these zones, one can express theGor’kovGreen functions in terms of ǧ i o
0

, , ǧ i o
0

, , Ǧ and Ǧ.
Then, an elimination of unphysical solutions imposes the conditions [54]

( ) ( ) ( ) ( )G g g G aˇ i 1̌ ˇ i 1̌ 0̌, ˇ i 1̌ ˇ i 1̌ 0̌ (32 )i i
0 0π π π π− ◦ + = − ◦ + =

( ) ( ) ( ) ( )G g g G bˇ i 1̌ ˇ i 1̌ 0̌, ˇ i 1̌ ˇ i 1̌ 0̌ (32 )o o
0 0π π π π+ ◦ − = + ◦ − =

and similarly for Ǧ and ǧ i o
0

, . From this one obtains the identity { }g Gˇ , ˇ 1̌i o1

2 0
, 2π= −

◦
for the anticommutator

{ }… . This allows to solve after some straightforward algebra for ǧ i o
0

, , using equation (31), and using the
abbreviations

( ) ( )G S GS G G SGS Gˇ 1

2
ˇ ˇ ˇ ˇ , ˇ 1

2
ˇ ˇ ˇ ˇ , (33)

2

†

2

†

π π
′ = − ″ = −

(both arematrices depending via Š on the scattering channel index) leading to [55]

( ) ( )g G G G aˇ i 1̌ 1 ˇ ˇ ˇ i 1̌ , (34 )i
0

1
π π− = − ◦ ′ ◦ −

−

( ) ( )g G G G bˇ i 1̌ 1 ˇ ˇ ˇ i 1̌ (34 )o
0

1
π π+ = − ◦ ″ ◦ +

−

(here and below the inverse is definedwith respect to the ◦ -product), which, using identities like
G G G Gˇ ˇ { ˇ , ˇ}1

2 2′ ◦ ′ = − ′
π ◦ (with A B A B B A{ , } ≡ ◦ + ◦◦ ), alternatively can bewritten also as

( ) ( )g G G G cˇ i 1̌ ˇ i 1̌ 1 ˇ ˇ , (34 )i
0

1
π π+ = + ◦ − ′ ◦

−

( ) ( )g G G G dˇ i 1̌ ˇ i 1̌ 1 ˇ ˇ . (34 )o
0

1
π π− = − ◦ − ″ ◦

−

Similar equations hold for Ǧ and ǧ i o
0

, in terms of the scatteringmatrix Š. Introducing these solutions into
equations (32a) and (32b) shows readily that the latter are fulfilled.We note that the relation

g gˇ ˇ 1̌i o i o
0

,
0

, 2π◦ = − follows from G Gˇ ˇ 1̌2π◦ = − and SS S Sˇ ˇ ˇ ˇ 1̌
† †= = . It is also important to note that

whereas Ǧ is proportional to the unitmatrix in channel space due to their isotropic nature [55], Š, and
consequently Ǧ′, Ǧ″, and ǧ i o

0
, , are in general non-trivialmatrices in channel space. Equations (34a) and (34b), or

alternatively (34c) and (34d), togetherwith equation (33) determine uniquely ǧ i o
0

, in terms of the diffusiveGreen

function Ǧ.We can rewrite the difference g gˇ ˇo i
0 0− in amore explicitmanner, using the abbreviations

G Gˇ ˇ ˇδ′ ≡ ◦ ′ and G Gˇ ˇ ˇδ″ ≡ ″ ◦ , leading to

( ) ( )( ) ( )g g G Gˇ ˇ 1̌ ˇ ˇ i 1̌ ˇ ˇ ˇ i 1̌ 1̌ ˇ . (35)o i
0 0

1 1⎡⎣ ⎤⎦δ π δ δ π δ− = − ′ ◦ − ◦ ″ − ′ ◦ − ◦ − ″− −

3.2.2. Solution for finite transmission
The second step follows [11, 20]. Once the auxiliary propagators are obtained, the full propagators can be
obtained directly, without further solving the transport equation, in the followingway.We solve t-matrix
equations resulting from the transmission parameters τ̌ , for incoming and outgoing directions, which according
to a procedure analogous to the one discussed in [47, 48] take the form,

( ) ( )t g g t t g g tˇ ˇ ˇ ˇ 1̌ ˇ ˇ , ˇ ˇ ˇ ˇ 1̌ ˇ ˇ . (36)i o i i o i o o†
0 0 0

†
0τ τ τ τ= ◦ + ◦ = ◦ + ◦

Using the symmetry equation (23), the t-matrices for incoming and outgoing directions can be related through

t S t Sˇ ˆ ˇ ˆ . (37)o i †=

Using the short notation

g g g gˇ ˇ ˇ ˇ , ˇ ˇ ˇ ˇ, (38)o i i o
1 0

†
1

†
0

τ τ τ τ≡ ≡

we solve formally equations (36) for ť i o, :

( )t g g gˇ 1 ˇ ˇ ˇ . (39)i o i o i o i o,
1

,
0

, 1

1
,= − ◦ ◦

−

The full propagators, fulfilling the desired boundary conditions at the interface, can nowbe easily calculated.
For incoming and outgoing directions they are obtained from [11, 50]

( ) ( )g g g t g aˇ ˇ ˇ i 1̌ ˇ ˇ i 1̌ , (40 )i i i i i
0 0 0π π= + + ◦ ◦ −
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( ) ( )g g g t g bˇ ˇ ˇ i 1̌ ˇ ˇ i 1̌ . (40 )o o o o o
0 0 0π π= + − ◦ ◦ +

Noticing that ( ) ( )g gˇ i 1̌ ˇ i 1̌ 0̌i o i o
0

,
0

,π π+ ◦ − = , and ( ) ( )g gˇ i 1̌ ˇ i 1̌ 0̌i o i o
0

,
0

,π π− ◦ + = , as well as identities

like g g gˇ ( ˇ i 1̌) i 1̌ ( ˇ i 1̌)i o i o i o
0

,
0

,
0

,π π π◦ + = ◦ + etc, it is obvious that the normalization g gˇ ˇ 1̌i o i o, , 2π◦ = −
holds. Using the same identities, we obtain the alternative to equations (40a) and (40b) expressions

( ) ( )g g g t g g t g g cˇ ˇ ˇ i 1̌ ˇ , ˇ ˇ ˇ , ˇ ˇ i 1̌ , (40 )i i i i i i i i i
0 0 0 0 0 0

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦π π= + + ◦ = − ◦ −
◦ ◦

( ) ( )g g g t g g t g g dˇ ˇ ˇ i 1̌ ˇ , ˇ ˇ ˇ , ˇ ˇ i 1̌ . (40 )o o o o o o o o o
0 0 0 0 0 0

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦π π= + − ◦ = − ◦ +
◦ ◦

Equations (40a) and (40b), or alternatively, (40c) and (40d), in conjunctionwith equations (38) and (39), solve
the problemoffinding the ballistic solutions forfinite transmission.We are now ready for the last step, to relate
these solutions to thematrix current which enters in the expression for boundary conditions for Ǧ and Ǧ.

3.2.3.Matrix current and boundary conditions for diffusive propagators
Wenow turn to the third, final, step. As shown in [54, 55], the boundary conditions for quasiclassical isotropic
Green functions can be obtained from the conservation of thematrix current  in the isotropization zones
surrounding the scattering barrier. This quantity contains physical information on theflows of charge, spin and
electron–hole coherence in a structure.We refer the reader to [54, 55] for the general definition of  in terms of
theGor’kovGreen functions. Using this definition, one can verify that  is spatially conserved along the entire
isotropization zones. Then, one can express  next to the scattering barrier in terms of the propagators ǧ i o, and

ǧ i o, , and at the beginning of the isotropization zones in terms of Ǧ and Ǧ, see figure 1(a). The conservation of

thematrix current provides an equality between the two expressions. Since ǧ i o, can be expressed in terms of ǧ i o
0

,

and ǧ i o
0

, , and these in terms of the Ǧ and Ǧ, this gives the desired boundary conditions. Following [50], after

some straightforward algebrawe obtain

( ) ( )t g g g g g g gˇ , ˇ 1 ˇ ˇ ˇ , ˇ 1 ˇ ˇ . (41)o o o o o o o o
0 1 0

1

1 0 0 1

1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − ◦ − ◦
◦

−

◦

−

Using relations (31) and (37) above, we find

( ) ( )g S g g t g Sˇ ˇ ˇ ˇ i 1̌ ˇ ˇ i 1̌ ˇ, (42)i o o o o†

0 0 0
⎡⎣ ⎤⎦π π= + + ◦ ◦ −

which allows to derive the following relation

g Sg S t gˇ ˇ ˇ ˇ ˇ 2 i ˇ , ˇ . (43)o i o o†

0
⎡⎣ ⎤⎦ π′ ≡ − = −

◦

For calculating the charge current density in a given structure, it is sufficient to know ̌′, because thematrices Š

and Š
†
drop out of the trace as they commutewith the 3̂τ matrix in particle–hole space.

Finally we relate the obtained propagators ǧ i o, to thematrix current  ,
g gˇ ˇ ˇ ˇ ˇ (44)o i  ≡ − ≡ ′ + ″

with

Sg S gˇ ˇ ˇ ˇ ˇ . (45)i i†″ ≡ −

We remind the reader here that ̌ has amatrix structure in Keldysh space, in particle–hole space, and in
combined scattering-channel and spin space. In terms of ̌ the boundary condition results then from
equation (8) and from thematrix current conservation in the isotropization regions [54]

G
z

G
ˇ

i
ˇ d

d
ˇ , (46)q

n

nn

1
2

  
∑

π
σ
π

= − ◦
=

where z is the coordinate along the interface normal (away from the interface), n is a scattering channel index (
channels, spin-degenerate channels count as one), e N D2

Fσ = refers to the conductivity per spin,  is the
surface area of the contact, and q is the quantumof conductance, e hq

2 = . The number of scattering
channels is expressed in terms of the projection of the Fermi surfaces on the contact plane, AF z, , by

A (2 )F z,
2  π= . For isotropic Fermi surfaces A kF z F,

2π= . In general,

k1 d

(2 )
, (47)

n
A

1

2

2
F z,


∫∑

π
… = …

=

∣∣

where kħ ∣∣is themomentum component parallel to the interface.
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4. Special cases

4.1. Spin-scalar and channel-diagonal case
The transition to the diffusiveGreen functions is trivial for the case of Ŝ 1̂= , as then g g Gˇ ˇ ˇi o

0 0= = . If we
start from equation (41) in conjunctionwith equation (38), we obtain in the case of a spin-scalar and channel-
diagonalmatrix n̂nτ with the notation G Gˇ i ˇπ= −

( ){ } z
a

G G

G G
G G

2 ˇ

i

4 ˇ , ˇ

4 ˇ , ˇ 2

2 ˇ d

d
ˇ (48 )n nn

n

n

n q

⎡⎣ ⎤⎦ 





∑
∑

π
σ=

+ −
= ◦

with e N DF
2σ = and

( )
b

4

1
. (48 )n

nn

nn

2 2

2 2 2
 π τ

π τ
=

∣ ∣

+ ∣ ∣

This reproducesNazarov’s boundary condition [50, 54].

4.2. Case for interface between superconductor and ferromagnetic insulator
For the case of zero transmission, ˇ 0̌τ ≡ , we can find a closed solution if we assume that we can find a spin-

diagonal basis for all reflection channels. For a channel-diagonal scatteringmatrix wewrite Š e enn
i i ˇn

n
2= φ κϑ

with { }m mˇ diag , *κ σ σ= ⃗ ⃗ ⃗ ⃗ , where m 12⃗ = (leading to ˇ 12κ = ). In this casewe have g gˇ ˇi o i o,
0

,= .We use

equation (35), which straightforwardly leads to

( ) ( )

( ) ( )

G G G G

G G G

G G G G

2 ˇ

i
1̌

i sin

2
ˇ ˇ ˇ ˇ

sin
2

2
ˇ ˇ ˇ ˇ 1̌

i sin ˇ , ˇ sin
2

ˇ ˇ ˇ , ˇ

1̌
i sin

2
ˇ ˇ ˇ ˇ

sin
2

2
ˇ ˇ ˇ ˇ 1̌ (49)

n nn

n

n

n

n
n

n

n

2
1

2

2
1

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎧⎨⎩

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦⎫⎬⎭
⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

∑
∑

π
ϑ

κ κ

ϑ

κ κ

ϑ κ
ϑ

κ κ

ϑ
κ κ

ϑ

κ κ

= − − + −

× − +

× − − + −

−

−

(wherewe recall that Ǧ 1̌
2 = ).Note that nφ drops out, andonly the spinmixing angle nϑ matters. Equation (49)

generalizes the results of [55] to arbitrary spin-dependent reflection phases. Further belowwewill give a physical
interpretation of the leading order terms arising in an expansion for small nϑ .

4.3. Exact series expansions
Wenowprovide explicit series expansions for all quantities whichwill be useful for deriving formulas for various

limiting cases.We start withwriting the scatteringmatrix as Š e Ki ˇ= with hermitian Ǩ due to unitarity of Š,

i.e. K Kˇ ˇ †= . Thenwe use an expansion formula for Lie brackets in order to obtain the series expansion

S GS G
m

K Gˇ ˇ ˇ e ˇ e
( i)

!
ˇ , ˇ (50)K K

m

m
m† i ˇ i ˇ

0

⎡⎣ ⎤⎦∑= = −−

=

∞

with the definitions K G K K Gˇ , ˇ ˇ , ˇ , ˇm m 1⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦= − and K G Gˇ , ˇ ˇ0⎡⎣ ⎤⎦ = .With this we obtain from

equation (33)

G
m

K G G
m

K Gˇ 1

2

( i)

!
ˇ , ˇ , ˇ 1

2

i

!
ˇ , ˇ , (51)

m

m
m

m

m
m

2
1

2
1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ ∑
π π

′ = − ″ =
=

∞

=

∞

which are very useful if Ǩ has a small pre-factor. Note also the identity G K G G K Gˇ ˇ , ˇ ˇ ˇ , ˇ2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦π◦ ◦ = .

Furthermore, from equations (34c) and (34d) wefind

( )g G G G G aˇ ˇ ˇ i 1̌ ( ˇ )ˇ (52 )i

l

l

0
1

∑π= + + ◦ ′ ◦
=

∞
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( )g G G G G bˇ ˇ ˇ i 1̌ ( ˇ )ˇ . (52 )o

l

l

0
1

∑π= + − ◦ ″ ◦
=

∞

From equation (41), and using equations (31), (37), we derive

( ) ( )t g g g g g g g aˇ , ˇ ˇ ˇ ˇ , ˇ ˇ ˇ , (53 )o o

k n

o o k o o o o n

0
, 0

1 0 1 0 0 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑= ◦ ◦ ◦ ◦

◦
=

∞

◦

( ) ( )t g g g g g g g bˇ , ˇ ˇ ˇ ˇ , ˇ ˇ ˇ , (53 )i i

k n

i i k i i i i n

0
, 0

1 0 1 0 0 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑= ◦ ◦ ◦ ◦

◦
=

∞

◦

which is useful if the transmission amplitudes τ̌ entering into ǧ i o
1

, are small. Finally, we obtain from
equations (43) and (45)

t g
m

K gˇ 2 i ˇ , ˇ , ˇ i

!
ˇ , ˇ . (54)o o

m

m
m i

0
1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  ∑π′ = − ″ =
◦

=

∞

Here, ǧ i is obtained from

( )g G G G t gˇ i 1̌ ˇ i 1̌ ( ˇ )ˇ 1̌ ˇ , ˇ . (55)i

l

l i i

0
0

⎜ ⎟⎛
⎝

⎡⎣ ⎤⎦
⎞
⎠∑π π+ = + ◦ ′ ◦ ◦ +

=

∞

◦

4.4. Boundary condition for spin-polarized surface to third order in spin-mixing angles

Wefirst treat the case when ť 0̌i o, ≡ , for example the case where one side of the junction is a ferromagnetic
insulator (FI). Then

( )
m

K G
m

K G G Gˇ i

!
ˇ , ˇ i

!
ˇ , ˇ i 1̌ ( ˇ )ˇ . (56)

m

m
m

m l

m
m l

1 , 1

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ ∑ ∑ π= + + ◦ ′ ◦

=

∞

=

∞

To third orderwe have ˇ ˇ ˇ ˇ(1) (2) (3)   = + + , and the derivation in appendixD leads to

K G KGK G aˇ i ˇ , ˇ , ˇ i

2
ˇ ˇ ˇ , ˇ (57 )

(1) (2)⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ 
π

= = −
◦

K G K G K G G bˇ i

24
ˇ , ˇ i

8
ˇ , ˇ ˇ , ˇ ˇ . (57 )

(3) 3
2

2⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦
π

= − − ◦ ◦

For the special case of channel diagonal Ǩ ˇnn 2
n κ= ϑ

with ˇ 1̌2κ = , which follows also fromdirectly expanding

equation (49), we reproduce the results from [55] (G Gˇ i ˇπ= − ),

( ) aG G G
2 ˇ

i
i ˇ , ˇ ,

2 ˇ

i 4
ˇ ˇ ˇ , ˇ (58 )n nn

n n
n nn n n

(1) (2) 2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
 ∑

∑
∑ ∑

π
ϑ κ

π

ϑ
κ κ= − =

◦

bG G G G
2 ˇ

i
i

16

1

3
ˇ , ˇ ˇ ˇ ˇ ˇ ˇ , ˇ . (58 )n nn n n

(3) 3

⎜ ⎟⎛
⎝ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎞

⎠
∑ ∑

π

ϑ
κ κ κ κ= − − ◦

◦

Note that thefirst order term G[ ˇ, ˇ ]κ∼ accounts for the effective exchangefield induced inside the
superconductor by the spin-mixing, whereas the term G G[ ˇ ˇ ˇ, ˇ ]κ κ∼ produces a pair breaking effect similar to that
of paramagnetic impurities [66]. This second termoccurs only at second order in nϑ because it requiresmultiple
scattering at the S/FI interface, which together with random scattering in the diffusive superconductor leads to a
magnetic disorder effect.

4.5. Boundary condition for spin-polarized interface to second order in spin-mixing angles and
transmission probability
Wenow allow forfinite transmission, and concentrate on thematrix current to second order in the quantities Ǩ ,
Ǩ , and ǧ i o

1
, .We need to take care of the scattering phases during transmission events. For this, we define

S S S Sˇ ˇ ˇ ˇ , ˇ ˇ ˇ ˇ . (59)0 0

1
2

1
2

1
2

1
2τ τ τ τ= =

Wenote that equation (23), or S Sˇ ˇ ˇ ˇ†τ τ= , results into

ˇ ˇ . (60)0 0
†τ τ=

Thus, the 0̌τ and ˇ0τ are the appropriate transmission amplitudes, with transmission spin-mixing phases
removed.We further define
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G Gˇ ˇ . (61)1 0 0
†τ τ≡

Weexpand τ̌ up tofirst order in Ǩ and Ǩ ,

( )K Kˇ ˇ
i

2
ˇ ˇ ˇ ˇ , (62)0 0 0τ τ τ τ= + + + …

and obtain ˇ ˇ ˇ(1) (2)  = + from a systematic expansion to second order in Ǩ , Ǩ , and Ǧ1, as shown in
appendix E, leading to one of themain results of this paper:

G G K G aˇ 2 i ˇ , ˇ i ˇ , ˇ , (63 )
(1)

1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ π= − +

◦

G G G G KGK G

G GK KG G G K G G b

ˇ 2 i ˇ ˇ ˇ , ˇ i

2
ˇ ˇ ˇ , ˇ

i ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ , ˇ ˇ , ˇ . (63 )

(2)
1 1

1 1 0 0
†

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦

 π
π

τ τ

= − ◦ ◦ −

+ ◦ + ◦ + ◦

◦ ◦

◦

These relations generalize the results of [55] for the case of arbitrary spin polarization, and are valid evenwhen
Ǩ , Ǩ and τ have different spin quantization axes, i.e. cannot be diagonalized simultaneously.

Using the notation G Gˇ i ˇπ= − and T2 ˇ ˇ
0πτ = , we can rewrite the result in leading order in the

quantities Ǩ , Ǩ , and the transmission probability ( TTˇ ˇ †∼ ) as

T T K aG G
2 ˇ

i
ˇ ˇ ˇ 2i ˇ , ˇ , (64 )

(1)
†⎡

⎣⎢
⎤
⎦⎥


π

= −
◦

and for the next-to-leading order

T T T T K K

T T K K T T T K T b

G G G G G G

G G G G G G G

2 ˇ

i

1

4
ˇ ˇ ˇ ˇ ˇ ˇ ˇ , ˇ ˇ ˇ ˇ , ˇ

i

2
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ , ˇ ˇ , ˇ . (64 )

(2)
† †

† † †

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦

⎡
⎣⎢ ⎡⎣ ⎤⎦ ⎤

⎦⎥


π

= − ◦ ◦ +

+ ◦ + ◦ + ◦

◦ ◦

◦

These equations are still fully general with respect to themagnetic (spin) structure, and allow for channel off-
diagonal scattering aswell as different numbers of channels on the two sides of the interface. Note that Ť , Ǩ , and
Ǩ arematrices in channel space, whereas Ǧ and Ǧ are proportional to the unitmatrix in channel space.Whereas
Ǩ , and Ǩ are squarematrices, Ť in general can be a rectangularmatrix (when the number of channels on the
two sides of the interface differ).

4.6. Boundary conditions for channel-independent spin quantization direction
As an application, we assume next that each of the quantities Ǩ , Ǩ , and 0̌τ can be spin-diagonalized

simultaneously for all channels, with spin quantization directions m⃗′, m⃗′, and m⃗ for Ǩ , Ǩ , or 0̌τ , respectively.

We also use that Ǧ and Ǧ are proportional to the unitmatrix in channel space, as they are isotropic [55], andwe
assume that the number of channels on both sides of the interface are equal.We define

m T a1̌ · ˇ ˇ , (65 )nl nl nl0, 1, σ+ ⃗ ⃗ = 

m K m K b1̌
1

2
· ˇ ˇ , 1̌

1

2
· ˇ ˇ , (65 )nn nn nn ll ll llφ ϑ σ φ ϑ σ+ ⃗′ ⃗ = + ⃗′ ⃗ =′ ′ ′ ′ ′ ′

m m m cˇ ˆ 1̌, ˆ
0

0 *
, ˇ · ˇ , ˇ · ˇ , ˇ · ˇ (65 )

ph

⎛
⎝⎜

⎞
⎠⎟σ σ σ

σ
σ

κ σ κ σ κ σ⃗ = ⃗ ⃗ = ⃗
⃗

≡ ⃗ ⃗ ′ ≡ ⃗′ ⃗ ′ ≡ ⃗′ ⃗

with m m m( ) ( ) 12 2 2⃗ = ⃗′ = ⃗′ = , i.e. ˇ ( ˇ ) ( ˇ ) 1̌2 2 2κ κ κ= ′ = ′ = , and introduce the transmission
probability nl and the spin polarization nl as

( )m T T1̌ ˇ ˇ ˇ . (66)nl nl nl nl
†⎡⎣ ⎤⎦  σ+ ⃗ ⃗ =

Wewrite for nl0, and nl1, , allowing for some spin-scalar phases nlψ ,

2
1 1 e ,

2
1 1 e . (67)nl

nl
nl nl

nl
nl0,

2 2 2i
1,
2 2 2inl nl

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
   = + − = − −ψ ψ 

Wewill average over all spin-scalar phases nlψ of the transmission amplitudes as there are usuallymany
scattering channels in an area comparable with the superconducting coherence length squared. This filters out
all the terms in equations (64a) and (64b) where these scalar scattering phases cancel.
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For amagnetic system, in linear order in nl and nnϑ ′ we obtain

( )( )I G G

G

2 ˇ

i
1̌ ˇ ˇ 1̌ ˇ , ˇ

i ˇ , ˇ , (68)

q n nn

q nl nl nl nl nl

q n nn

(1)

(1)

0, 1, 0,
*

1,
*⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

  


∑
∑

∑
π

κ κ

ϑ κ

≡ = + +

− ′

   

where e hq
2 = is the conductance quantum.Aftermultiplying outwe obtain the set of boundary

conditions

{ }I aG G G G2 ˇ ˇ , ˇ ˇ ˇ ˇ i ˇ , ˇ (69 )(1) 0 MR 1⎡⎣ ⎤⎦   κ κ κ κ= + + − ′ϕ
◦

with

( ) b1 1 (69 )q nl nl nl
0 2   ∑= + −

( ) c1 1 (69 )q nl nl nl
1 2   ∑= − −

d, 2 (69 )q nl nl nl q n nn
MR     ∑ ∑ ϑ= =ϕ

For κ κ= ′ and the assumption of a channel-diagonal scatteringmatrix (n = l) this also provides the
derivation of the boundary conditions used for [57].We nowproceed to the second-order terms:

{ }( )

( )
( )

{ } { }

I I

a

G G M M M G

M G G G G G G

M G G G G G G

M G G G G G G

2 2 ˇ ˇ ˇ , ˇ i ˇ ˇ ˇ , ˇ

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ , ˇ

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ , ˇ ˇ

ˇ ˇ , ˇ ˇ ˇ ˇ ˇ ˇ , ˇ ˇ , ˇ ˇ , ˇ (70 )

(2)
4 2 ,

0
,

1
,

MR

,
0 0 0

,
1 1 1

,
MR MR MR

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦


 
 
 

κ κ

κ κ κ

κ κ κ κ κ κ κ κ κ

κ κ κ κ κ κ

= − + ′ ′ + + +

= ◦ ′ + ′ ◦ + ◦ ′

= ◦ ′ + ′ ◦ + ◦ ′

= ◦ ′ + ′ ◦ + ◦ ′

ϕ
χ χ χ χ χ χ

χ χ χ χ

χ χ χ χ

χ χ χ χ

◦ ◦

where I4 denotes a cumbersome expression in fourth order of the transmission amplitudes, whichwe do not
write downhere explicitly (see appendix F).We have used the abbreviations

( ) b
1

4
1 1 (70 )q nl nn nl nl

0 2   ∑ ϑ= + −χ

( ) c
1

4
1 1 (70 )q nl nn nl nl

1 2   ∑ ϑ= − −χ

d
1

4
,

1

2
(70 )q nl nn nl nl q nn nn

MR
2

2     ∑ ∑ϑ ϑ= =χ
ϕ

′ ′

and 0 χ ,
1 χ ,

MR χ are defined as 0 χ ,
1 χ , and

MR χ with nnϑ replaced by llϑ . Note that nnφ ′ and ll
φ ′ do not appear

in these expressions, in accordance with the intuitive notion that scalar scattering phases should drop out in the
quasiclassical limit, which operates with envelope functions only.

The case for only channel-conserving scattering (channel-diagonal problem) follows by taking in
equations (69b)–(69d) and (70b)–(70d) only the termswith n= l. All other formulas (69a), (70a) remain
unchanged. This case is treated in [55] to linear order in nn , and our formulas reduce to these results for the
considered limit. Note that for this case all spin-scalar phases cancel automatically and no averaging procedure
over these phases is necessary.

5. Application for diffusive superconductor/halfmetal heterostructure

The problemof a superconductor in proximity contact with a half-metallic ferromagnet has been studiedwithin
the frameworks of Eilenberger equations [11, 12, 20, 50, 52, 67–69], Bogoliubov–deGennes equations [70–73],
recursive Green functionmethods [74], circuit theory [75], within amagnon-assisted tunnelingmodel [76], and
in the quantum limit [77]. Various experiments on superconductor/half-metal devices have been reported, both
for layered systems involving high-temperature superconductors [78–81] and in diffusive structures involving
conventional superconductors [82–88]. An important consequence of the new boundary conditions in
equation (69a) is that half-metals can nowbe incorporated in theUsadel equation, which is appropriate to
describe the second class of experimentsmentioned above, whereas there previously existed no suitable
boundary conditions to do so. Consider first a superconductor/half-metal bilayer with the interface located at
x= 0 (see figure 2).
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The superconductor is assumed to have a thickness well exceeding the superconducting coherence length.
Our expansion parameters are the spin-dependent reflection phase shifts at the superconducting side of the
interface, llϑ ′, and the tunneling probabilies nl . For calculating triplet components in the half-metal it is
sufficient to expand the solution for theGreen function in the superconductor up to linear order, and the
solution for theGreen function in the half-metal up to quadratic order. The zeroth order term in the
superconductor is pure spin-singlet, and the first-order termpure spin-triplet. Thus, up to and including the
first order we can assume a bulk singlet order parameter, not affected by the interface scattering (corrections to
the singlet order parameter arise only in second order in llϑ ′ and nl ). For future reference, we define the

quantities c cosh( ) i Eν≡ = −
Ω
, s sinh( ) iν≡ = Δ

Ω
∣ ∣ with Eatanh( )ν Δ= ∣ ∣ , E2 2Ω Δ= ∣ ∣ − , and

denote the SCphase as θ.Wefind for the triplet component Ft0 in the superconductor

( )F x
cs

q
m( ) i e e · i (71)t

q x
y0

SC

i
σ

σ σ= ⃗′ ⃗
ϕ

θ − ∣ ∣

with the normal-state conductivity e N D2SC
2

SC SCσ = in the superconductor (NSC and DSC are the normal-
state density of states per spin projection at the Fermi level and the diffusion constant, respectively), contact area
, and q D2 SCΩ=  .

In the half-metal (width d), only spin‐↑ particles have a non-zero density of states at the Fermi level. In the
spirit of quasiclassical theory of superconductivity, a strong exchange field is incorporated not in the transport
equation, but directly in the band structure which is integrated out at the quasiclassical level [17, 69], leaving
only parameters such as the diffusion constant and normal state density of states at the Fermi level for each
itinerant spin band. For transport in a half-metallic ferromagnet, thismeans onemust just include one spin-
bandwith diffusion constant DHM in theUsadel equation. Thus, only the elements G↑↑ and F↑↑ exist in the

Green function Ǧ of the half-metal. Aswe expand in the tunneling probability, we can (for energies well
exceeding the Thouless energy D dHM

2 of the half-metal) use the linearizedUsadel equation,

D F EF2i 0. (72)xHM
2∂ + =↑↑ ↑↑

Since there is only one anomalousGreen function in the half-metal, we omit the spin indices for brevity of
notation and define F F≡ ↑↑. The general solution is F x A B( ) e ekx kxi i= + − with A B, being complex

coefficients to be determined from the boundary conditions, and k E D2i HM=  . At the vacuumedge of the
half-metal x d( )= , we have F 0x∂ = . At the interface between the superconductor and half-metal, the
boundary conditions for F from the half-metallic side is obtained from equations (69a)–(70d) with 1nl = .
Note that for 1nl = , we have 0 1 MR   = = ≡χ χ χ χ as well as 0 1 MR  = = .Wefind that in
order to obtain a non-vanishing proximity effect, it is necessary that themagnetization direction associatedwith
transmission across the barrier (κ̌) and spin-dependent phase-shifts picked up on the superconducting side of
the interface ( ˇ )κ′ are different.We set ˇ ˇzκ σ= since the barriermagnetization determining the transmission
properties is expected to be dominated by the half-metalmagnetizationwhich points in the z-direction. The
boundary condition for F at x= 0 reads:

( )F cs m m
q

2i e i , 2 (73)x x yHM
i

0

SC
     

σ
σ

∂ = ′ − ′ = +ϑ
θ

ϑ χ

ϕ

with the normal-state conductivity e N DHM
2

HM HMσ = in the half-metal (NHM is the normal-state density of

states at the Fermi level), and the conductance  ϑ contains two terms: 2 χ which is proportional to nl ll nl∑ ϑ ,

and a second term containing 0 ϕ which is proportional to ( )( )
l ll nl nl∑ ∑ϑ ′ ′ .Moreover, mx′ and my′ are the

Figure 2.A superconductor/half-metal bilayer with amagnetically inhomogeneous barrier region. Themagnetization direction
associatedwith the spin-dependent phase-shifts occurring on the superconducting side (described by thematrix κ̌′) does not in
general alignwith themagnetization direction associatedwith the transmission of quasiparticles across the barrier (described by the
matrix κ̌ ).
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normalized components of a possiblemisaligned barriermoment compared to themagnetization of the half-
metal.We have taken this into account bywriting:

m m mˆ
0

0

0

0

0

0
(74)x

x

x
y

y

y
z

z

zph
*

ph ph

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟κ

σ
σ

σ

σ
σ

σ
′ = ′ + ′ + ′

Inserting the general solution of F into the boundary conditions, one arrives at thefinal result for the proximity-
induced superconducting correlations F in the half-metal:

( )F x
k x d

kd

cs

k
m m( )

2 cosh[i ( )]

sinh(i )
e i . (75)x y

HM

i


σ
= − − ′ − ′ϑ θ

This is thefirst time theUsadel equation has been used to describe the proximity effect in a superconductor/half-
metal structure. Several observations can bemade from the above expression. For smallE the energy factors
c E∝ in the numerator and k E2 ∝ in the denominator cancel, such that the proximity-effect, if present,
happens even at E=0. The proximity-effect is seen to be non-zero only if spin-dependent scattering phases at the
superconducting side of the interface are present, and at the same time their quantization axis κ′ ismisaligned
with that of the transmission amplitudes, κ. The reason for this is that phase-shifts on the half-metallic side are
irrelevant on the quasiclassical level, because they are spin-scalar (only spin‐↑ particles have afinite density of
states there). On the other hand, the phase-shifts nnϑ on the superconducting side have two consequences: they

are responsible for an S m· 0⃗ ⃗ = spin-triplet component on that side of the interface (where S ⃗ is the spin vector
of the Cooper pair), and they affect also transmission amplitudes. As a consequence, during transmission the
quantization axis κ′ can be rotated into the S 1z = ± spin triplet components which are allowed to exist in the
half-metal if spin-flip processes exist at the interface (e.g. due to somemisaligned interfacemoments). This is
exactly the reasonwhy F also depends on mx′ and my′ whereas it is independent on the barriermoment mz′: only
a barriermomentwith a component perpendicular to themagnetization of the half-metal can create spin-flip
processes which rotate the S m· 0⃗ ⃗ = into the S 1z = ± components, and thus F also vanishes if
m m 0x y′ = ′ = .

Another important observation that can bemade from the above expression is that amisaligned barrier
moment effectively renormalizes the superconducting phase. Using spherical coordinates, wemaywrite
m mi sin ex y

iΘ′ − ′ = ′ φ− ′where φ′ is the azimuthal angle describing the orientation of the barriermoment in
the xy-plane. Thus, the effective phase becomes θ θ φ→ − ′. To seewhat consequence this has in terms of
measurable quantities, we proceed to consider a Josephson junctionwith a half-metal by replacing the vacuum
boundary condition at x= dwith another superconductor. Solving for the anomalousGreen function F in the
sameway as above, wemay compute the supercurrentflowing through the system via the formula (see
equation (15)):

{ }( )I
eN D

E G G
8

d Tr ˆ ˇ ˇ . (76)x
KHM HM

3 HM HM
 ∫ τ= ∂

−∞

∞

Here, Tr denotes a trace over 2 × 2Nambu–Gor’kov space. After some calculations, one arrives at the result:

( )I I sin sin sin , (77)L R R L L R0 Θ Θ θ θ φ φ= ′ ′ − + ′ − ′

where I0 is a lengthy expression depending on parameters such as thewidth d of the half-metal and the
temperatureT (andwhich vanishes unless L ϑ and

R ϑ are non-zero). To be general, we have allowed the spin-
dependent phase-shifts for each superconductor and the barriermoment at each interface to be different,
indicated by the notation ‘L’ and ‘R’ for left and right.Wefind that I0 is negative, giving rise to a π-Josephson
junction behavior for the case of

L R
φ φ′ = ′ . Equation (77) is consistent with the ballistic case result of

[12, 52, 89] and shows how afinite supercurrent will appear in a ring geometry even in the absence of any
superconducting phase difference, 0R Lθ θ− = , if the barriermoments aremisaligned in the plane
perpendicular to the junction, 0

L R
φ φ′ − ′ ≠ . A similar effect was also reported via circuit theory for a diffusive

system [75], however not due to spin-dependent scattering phase shifts but due to some ‘leakage terms’.Within
our formalism,we thus obtain a so-called 0ϕ Josephson junction behavior [90–94]with

( )
L R0ϕ π φ φ= + ′ − ′ mod (2 )π .

The above framework can be readily generalized to cover strongly spin-polarized ferromagnets building on
the same idea as [17]. For a sufficiently large spin-splitting, the ↑‐ and conduction↓‐ bands can be treated
separately in the bulkwith a separateUsadel equation for F↑↑ and F↓↓. Thesewould then only couple via interface
scattering and the strong exchange fieldwould only enter by having different normal-state density of states N↑,
N↓ and diffusion coefficients D↑, D↓ of the spin-bands in each separateUsadel equation.
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6. Conclusions

Wehave derived new sets of boundary conditions for Usadel theory of superconductivity, appropriate for
spin-polarized interfaces.We present a general solution of the problem appropriate for arbitrary
transmission, spin-polarization, and spin-dependent scattering phases. The explicit equations for themost
general set of boundary conditions are given in equations (33)–(34b), (38)–(40b), and (43)–(46).With the
solution of this long-standing problemwe anticipate amultitude of practical implementations in future to
tackle superconducting systems that involve strongly spin-polarizedmaterials.We have applied the general
set of equations to various special cases important for practical use.We derived boundary conditions for an
interface between a superconductor and a ferromagnetic insulator valid for arbitrary spin dependent
scattering phases, equation (49). This extends previous work of [55], whichwas restricted to small scattering
phases. Using an exact series expansion of the general set of boundary conditions, equations (50)–(55), we
have obtained a perturbation series for the boundary conditions appropriate for such an interface, which
allows for channel off-diagonal scattering and channel-dependent spin quantization axes, equations (57a)
and (57b). For the tunneling limit, we have presented a new set of boundary conditions appropriate for
arbitrary spin polarization, non-trivial spin texture across the interface, and allowing for channel off-diagonal
scattering, equations (64a) and (64b). Neither of these three ranges of validity has been covered previously. As
an applicationwe then proceed to give a theoretical foundation of the boundary conditions used in [57–59],
equations (69a)–(69d), whichwe have generalized for channel off-diagonal scattering and non-trivial spin
texture across the interface. One central result of the application of our formalism is the extension of these
relations to second order, including the importantmixing terms between transmission and spin-dependent
scattering phases. These terms, equations (70a)–(70d) generalize the corresponding terms from [55] to
arbitrary spin polarization, possible nontrivial spin-texture across the interface, and channel off-diagonal
scattering.We have demonstrated the application of the new set of boundary conditions by treating a diffusive
superconductor/half-metal proximity junction and a diffusive superconductor/half-metal/superconductor
Josephson junction. In the latter case we found a realization of a 0ϕ -junction.We are confident that our
boundary conditions will advance the field of superconducting spintronics considerably.

Acknowledgments

ME acknowledges financial support from the Lars Onsager committee during his stay as Lars Onsager
Professor at NTNU, as well as support from the UK EPSRC under grant reference EP/J010618/1. ME
also benefited from fruitful discussions at the Aspen Center of Physics and within the Hubbard Theory
Consortium. He thanks in particular Mikael Fogelström for valuable discussions. AC acknowledges
financial support from the ANR-NanoQuartet [ANR12BS1000701] (France). WB acknowledges useful
discussions with Peter Machon and financial support from the DFG through BE 3803/03 and SPP 1538,
and from the Baden-Württemberg-Foundation through the Network of Competence ‘Functional
Nanostructures.’ JL was supported by the ‘Outstanding Academic Fellows’ programme at NTNU and
Norwegian Research Council grant nos. 205591 and 216700, and acknowledges support from the
Onsager committee at NTNU and by the COST Action MP-1201 ‘Novel Functionalities through
Optimized Confinement of Condensate and Fields.’

AppendixA. Singular value decomposition of scatteringmatrix

Weperform a singular value decomposition of the reflection and transmissionmatrices (with dimensions n×n
for Ŝ11,m × m for Ŝ22, n × m for Ŝ12, andm × n for Ŝ21)

S S

S S

URV WTZ

WTZ URV
Ŝ

ˆ ˆ

ˆ ˆ

˘

˘ ˘ ˘ ˘ ˘
. (A.1)

11 12

21 22

† †

† †

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−
=

−⤧ ⤧

HereU V W Z U V W Z, , , , ˘ , ˘ , ˘ , ˘ are unitarymatrices, and the R T R T, , ˘, ˘ contain the real and non-negative

singular values in themain diagonal and are zero otherwise, i.e.T TT† = andT T˘ ˘T† = , R R† = and

R R˘ ˘† = .We assume that the singular values are sorted from smallest to largest inR and R̆, and from largest to

smallest inT and T̆ .We introduce the unitarymatrices W U†Φ = , Z V†Ψ = W U˘ ˘ ˘†Φ = , and

Z V˘ ˘ ˘†Ψ = . In terms of those, unitarity of thematrix Ŝ requires that (we denote for simplicity the unitmatrices
1n n× and 1m m× with the same symbol 1; the dimension is clear from the context)

16

New J. Phys. 17 (2015) 083037 MEschrig et al



( )R TT T T1 ˘ ˘ (A.2)2 † † † †Φ Φ Ψ Ψ− = =

( )R TT T T1 ˘ ˘ ˘ ˘ ˘ ˘ ˘ . (A.3)2 † † † †Φ Φ Ψ Ψ− = =

We see that R1 2− and R1 ˘2− contain the eigenvalues of theHermitianmatrices on the right-hand sides of the

equations, which requires that these eigenvalues coincide with the values in the diagonalmatricesTT †,T T˘ ˘†
,

TT˘ ˘ †
, andT T† , respectively. Thus, with the sorting arrangement done above, the relations

R TT T T(1 ) ˘ ˘2 † †− = = and R TT T T(1 ˘ ) ˘ ˘2 † †− = = hold. Because all singular values ofT are real,

thismeans thatT T˘ †= , R TT T T1 1 ˘ ˘† †= − = − , R T T TT˘ 1 1 ˘ ˘† †= − = − , and

RT TR˘ ˘† = , RT T R˘ ˘†= . Furthermore, the unitarymatricesΦ andΨ commutewithR and the unitary
matrices Φ̆ and Ψ̆ commutewith R̆. In particular, thosematrices are block diagonal, with block sizes given by
the degeneracy of the singular values inR and R̆, respectively. The remaining unitarity requirements, using the
abovefindings, reduce to

( ) ( )TR TR˘ ˘ ˘ ˘ (A.4)† †ΦΨ ΨΦ=

RT RT( ) ( ) ˘ ˘ . (A.5)† †ΨΦ ΦΨ=

Thatmeans that for the blocks corresponding to non-zero reflection singular values the above two equations
lead to the one condition T T˘ ˘† †Φ Ψ Ψ Φ= . If there are no zero-reflection singular values then, remembering
thatΦ commutes withR and Ψ̆ with R̆,

U

U

R T

T R

V

V
Ŝ

0

0 ˘ ˘ ˘
0

0 ˘ ˘
. (A.6)

†

† †

†

†

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Φ
Ψ

Φ
Ψ

=
−

⤧ ⤧ ⤧

The blocks with zero-reflection singular values can be treated separately, and it is easily seen that the singular
value decomposition of the scatteringmatrix has the general form

TT T

T T T
Ŝ

0

0 ˘
1

1

0

0 ˘
(A.7)

†

† †

†

†

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟





= −

− −⤧ ⤧ ⤧

with unitarymatrices  , ̆ ,  , and ̆ . The decomposition is not unique.

Appendix B. Polar decomposition of scatteringmatrix

An important feature of the above representation is that the center matrix is Hermitian. If we only
require this property of the central part, but not necessarily diagonality of the m × n matrix T, then

we can find an entire class of transformations that keep this property. We define D T˘ †  = with
unitary matrices  and ̆. Then

R DD D

D D D
Ŝ

0

0 ˘ ˘
1

1

0

0 ˘ ˘
(B.1)

†

† †

† †

† †

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟


 

 
 = −

− −⤧ ⤧ ⤧

whereD is now an n × mmatrix that is not necessarily diagonal anymore. Consider now some special cases.

First, we chose † = , ˘ ˘ † = . Then

V C C C

C C C
Ŝ

0

0 ˘ ˘

1

1
(B.2)

†

†

†

† †

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


 = − ′ ′ ′

′ − − ′ ′⤧ ⤧

with C T ˘ † ′ = gives a polar decomposition of the reflection parts of the scatteringmatrix Ŝ. Similarly,
† = , ˘ ˘ † = leads to

CC C

C C C

V
Ŝ

1

1

0

0 ˘ ˘
(B.3)

†

† †

†

†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟


 = −

− − ⤧ ⤧

with C T V C˘ ( ˘ ˘ )
† † † †    = = ′ .We can also chose a decomposition in the form

V C C C

C C C
Ŝ 0

0 1

1

1

1 0

0 ˘ ˘
(B.4)

† †

† †
†

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟


 = − ″ ″ ″

″ − − ″ ″⤧ ⤧ ⤧

with C T ˘ † ″ = , or other decompositions.
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These decompositions are uniquewhen there are no zero-reflection singular values. Thismeans, that under

the conditions of no zero-reflection channels V † and ˘ ˘ †  are uniquely defined, as thematricesC andD are.

The unique unitarymatrices V † and ˘ ˘ †  are the surface scatteringmatrices  and ̆ , that occur in the limit
of zero transmission equation (19).

AppendixC. Parameterization of scatteringmatrix

Wenow turn to a useful parameterization of the transmissionmatrixC.We note that with the definition

( )C tt t1 2 (C.1)† 1
= +

−

we obtain

CC C

C C C

r d

d r

1

1

ˆ ˆ

ˆ ˆ̆
(C.2)

†

† † †

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

− −
=

−⤧ ⤧

with

( ) ( )r tt ttˆ 1 1 (C.3)† 1 †= + −
−

( ) ( )r t t t tˆ̆ 1 1 (C.4)† 1 †= + −
−

( )d tt tˆ 1 2 . (C.5)† 1
= +

−

To connect with themain text, we have t ˆπτ= . Furthermore, if t u v†θ= is a singular decomposition for t,
then C u v[(1 ) 2 ]2 1 †θ θ= + − is a singular decomposition ofC. Conversely, if C u v†δ= is a singular

decomposition forC, then t u v[(1 1 ) ]2 †δ δ= − − is a singular decomposition for t. If 0 1θ< < then
0 1δ< < and vice versa. Thus, the parameterization in terms of t is equivalent to that in terms ofC.

AppendixD. Expansion to third order of equation 56

To third orderwe obtain from equation (56)

K Gˇ i ˇ , ˇ (D.1)
(1) ⎡⎣ ⎤⎦ =

( )K G K G G Gˇ 1

2
ˇ , ˇ i ˇ , ˇ i 1̌ ( ˇ ) ˇ (D.2)

(2) 2 (1)⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ π= − + + ◦ ′ ◦

( )

( )

( )

K G K G G G

K G G G

K G G G G G

ˇ i

6
ˇ , ˇ 1

2
ˇ , ˇ i 1̌ ( ˇ ) ˇ

i ˇ , ˇ i 1̌ ( ˇ ) ˇ

i ˇ , ˇ i 1̌ ( ˇ ) ˇ ( ˇ ) ˇ (D.3)

(3) 3 2 (1)

(2)

(1) (1)

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

 π

π

π

= − − + ◦ ′ ◦

+ + ◦ ′ ◦

+ + ◦ ′ ◦ ◦ ′ ◦

and

G K G G K G( )
i

2
ˇ , ˇ , ( )

1

4
ˇ , ˇ . (D.4)(1)

2
(2)

2
2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦π π

′ = − ′ = −

This can be simplified further noting

G G G Gˇ ( ˇ ) ( ˇ ) ˇ , (D.5)
(1) (1)◦ ′ = − ′ ◦

{ }( )G G G G2 ( ˇ ) ( ˇ ) ˇ , ˇ , (D.6)2 (1) (1) (2)
π ′ ◦ ′ = − ′

( ) ( )G G Gˇ i 1̌ ˇ i ˇ i 1̌ , (D.7)π π π+ ◦ = +

K G K G2 ˇ , ( ˇ ) i ˇ , ˇ , (D.8)n n2 (1) 1⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦π ′ = − +

K G K G4 ˇ , ( ˇ ) ˇ , ˇ , (D.9)2 (2) 3⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦π ′ = −

yielding equation (57a) of themain text.
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Appendix E. Expansion ofmatrix current forfinite transmission

From section 4.3we obtain the following expressions to second order in the spin dependent reflection phases
and in the transmission probability:

t g K Gˇ 2 i ˇ , ˇ i ˇ , ˇ , (E.1)o o(1)

0

(1)⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ π= − +
◦

( )t g K g K Gˇ 2 i ˇ , ˇ i ˇ , ˇ
1

2
ˇ , ˇ , (E.2)o o i(2)

0

(2) (1) 2⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ π= − + −

◦

with

t g G Gˇ , ˇ ˇ ˇ ˇ , ˇ (E.3)o o
0

(1)
0 0

†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦τ τ=
◦ ◦

t g G Gˇ , ˇ ˇ , ˇ (E.4)o o
0

(1)
1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦=
◦ ◦

( ) ( )t g g G G g

G G G G G G G G

K G G K G G

ˇ , ˇ ˇ ˇ ˇ , ˇ ˇ , ˇ

ˇ ˇ ˇ , ˇ ˇ , ˇ ˇ ˇ

i

2
ˇ , ˇ , ˇ ˇ , ˇ , ˇ , (E.5)

o o i o
0

(2)
0 0

(1)

0
†

1 0

(1)

1 1 1 1

1 0 0
†⎜ ⎟

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎛
⎝

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ ⎞
⎠

τ τ

τ τ

= +

+ ◦ ◦ + ◦ ◦

+ +

◦ ◦ ◦

◦ ◦

◦ ◦

and

( )( ) ( )g G G G G Gˇ ˇ i 1̌ ˇ , ˇ ( ) ˇ (E.6)i (1)
1

(1)⎡⎣ ⎤⎦π= + ◦ + ′ ◦
◦

( ) ( )( )g G G Gˇ ˇ i 1̌ ˇ ˇ (E.7)i
0

(1) (1)
π= + ◦ ′ ◦

( ) ( ) ( )g G G Gˇ ˇ i 1̌ ˇ ˇ (E.8)o
0

(1) (1)
π= − ◦ ″ ◦

with G G( ˇ ) ( ˇ )(1) (1)″ = − ′ from equation (D.4). Collecting everything together, we obtain the result shown in
equations (63a) and (63b) of themain text.

Appendix F. Termof second order in transmission probability

For completeness we present here the expression of order nl
2 :

( )
( )

( ) { } { }
{ } { }

{ } { }

I G G G G G G

G G G G G G G G G

G G G G G G

G G G G G G

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ , ˇ ˇ ˇ , ˇ

ˇ ˇ ˇ , ˇ ˇ , ˇ ˇ ˇ

ˇ ˇ ˇ ˇ ˇ , ˇ ˇ , ˇ ˇ ˇ ˇ ˇ (F.1)

4 4
0

4
1

4
MR

4
MR

4
mix

4
mix

 
 



κ κ κ κ

κ κ κ κ κ κ

κ κ

κ κ κ κ κ κ

= ◦ ◦ + ◦ ◦

+ ◦ ◦ + ◦ ◦ + ◦ ◦

+ ◦ ◦ + ◦ ◦

+ ◦ ◦ + ◦ ◦

′

′

with

( )( )p
1

8
1 1 1 1 (F.2)q

nln l
nln l nl n l nl n l4

0 2 2     ∑= + − + −
′ ′

′ ′ ′ ′ ′ ′

( )( )p
1

8
1 1 1 1 (F.3)q

nln l
nln l nl n l nl n l4

1 2 2     ∑= − − − −
′ ′

′ ′ ′ ′ ′ ′

( )( )p
1

8
1 1 1 1 (F.4)q

nln l
nln l nl n l nl n l4

MR 2 2     ∑= + − − −
′ ′

′ ′ ′ ′ ′ ′

p
1

8
(F.5)q

nln l
nln l nl n l nl n l4

MR     ∑=′

′ ′
′ ′ ′ ′ ′ ′

( )p
1

8
1 1 (F.6)q

nln l
nln l nl n l n l nl4

mix 2     ∑= + −
′ ′

′ ′ ′ ′ ′ ′

( )p
1

8
1 1 (F.7)q

nln l
nln l nl n l n l nl4

mix 2     ∑= − −′

′ ′
′ ′ ′ ′ ′ ′
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with pnln l nn ll nn llδ δ δ δ≡ + −′ ′ ′ ′ ′ ′, arising fromaveraging over the typical phase factor ei( )nl n l n l nlψ ψ ψ ψ− + −′ ′ ′ ′ of spin-
scalar transmission phases. The channel-diagonal case follows from setting n l n l= = ′ = ′ and p 1nnnn = .
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