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We analyze, both analytically and numerically, a two-dimensional six-field fluid model
for collisionless magnetic reconnection, accounting for temperature and heat flux fluctu-
ations along the direction of the magnetic guide field. We show that the model possesses
a Hamiltonian structure with a noncanonical Poisson bracket. This bracket is charac-
terized by the presence of six infinite families of Casimirs, associated with Lagrangian
invariants. This reveals that the model can be reformulated as a system of advection
equations, thus generalizing previous results obtained for Hamiltonian isothermal fluid
models for reconnection. Numerical simulations indicate that the presence of heat flux
and temperature fluctuations yields slightly larger growth rates and similar saturated
island amplitudes, with respect to the isothermal models. For values of the sonic Lar-
mor radius much smaller than the electron skin depth, heat flux fluctuations tend to be
suppressed and temperature fluctuations follow density fluctuations. Increasing the sonic
Larmor radius results in an increasing fraction of magnetic energy converted into heat
flux, at the expense of temperature fluctuations. In particular, heat flux fluctuations tend
to become relevant along the magnetic island separatrices. The qualitative structures as-
sociated with the electron field variables are also reinterpreted in terms of the rotation
of the Lagrangian invariants of the system.

1. Introduction

Magnetic reconnection consists of a modification of the topology of a magnetic field in
a plasma and is one of the most promising candidates to explain the rapid thermal and
kinetic energy releases occurring in phenomena such as solar flares, magnetic substorms
and sawtooth oscillations in tokamaks (Priest & Forbes 2000; Biskamp 2000; Yamada
et al. 2010)). In weakly collisional plasmas, such as those present in the magnetosphere
and in tokamak cores, magnetic reconnection can often be triggered by non-dissipative
mechanisms. In particular, in such plasmas, finite electron inertia can provide an e↵ective
non-dissipative mechanism to break the magnetic frozen-in condition and therefore allow
for magnetic reconnection to take place (Coppi 1964).
A considerable e↵ort has been devoted to the modelling of magnetic reconnection me-

diated by electron inertia (often referred to as “inertial reconnection”) by means of fluid
models. The literature on the subject is vast and we indicate Refs. (Biskamp 2000) and
(Yamada et al. 2010) as well as the works cited therein, for the description of applica-
tions and limitations of such models. Given its non-dissipative nature, models aiming
at describing inertial reconnection are supposed to have Hamiltonian character. This
has naturally motivated an e↵ort, originated with Ref. (Schep et al. 1994), for deriving



2 D. Grasso1,2, E. Tassi3

Hamiltonian fluid models for inertial reconnection in slab geometry, in particular in the
presence of a strong magnetic guide field. The knowledge of the Hamiltonian structure,
in addition to providing an unambiguous expression for the total conserved energy for
the system, has o↵ered means to gain further insights on the reconnection dynamics. For
instance, the existence of alternative topological constraints on the reconnection process
has been unveiled, thanks to the knowledge of the Casimir invariants associated with the
Hamiltonian structure (Cafaro et al. 1998). The presence of such invariants also helped
in understanding the formation of small scale structures in vorticity and current den-
sity fields in the nonlinear phase of the reconnection process (Grasso et al. 2001). The
role of such invariants in inhibiting secondary fluid instabilities has been discussed in
Refs. (Del Sarto et al. 2006; Grasso et al. 2009). Stability conditions and the presence
of negative energy modes for equilibria of inertial reconnection fluid models (Kuvshinov
et al. 1994; Tassi et al. 2008) have also been derived, making use of the Energy-Casimir
method, which is based on the noncanonical Poisson brackets of the models (see, e.g.
Refs. (Morrison 1998; Holm et al. 1985)).

To the best of our knowledge, all fluid models, with a known Hamiltonian structure,
adopted so far to investigate inertial reconnection, evolve at most two fluid moments for
each particle species and assume simple closure relations, of either isothermal or adiabatic
type, for the pressure perturbations in the direction along the magnetic guide field. A
natural question concerns then the derivation of more refined Hamiltonian fluid models
for inertial reconnection that could describe the evolution of higher order moments, such
as heat fluxes. In particular, for weakly collisional low-� plasmas (where we indicate with
� the ratio between thermal and magnetic pressure, the latter based on the guide field),
the limitations of isothermal closures for the electron fluid have been pointed out (de
Blank 2001; Zocco & Schekochihin 2011).

The purpose of the present paper is two-fold. First, we present a Hamiltonian six-field
fluid model for inertial reconnection, coupling the evolution of an isothermal ion fluid,
retaining finite Larmor radius e↵ects, with that of an electron fluid characterized by a
non-isothermal closure accounting for parallel temperature and heat flux evolutions. In
the second place, we intend to make use of this model, and of its Hamiltonian structure,
to investigate some characteristic features of inertial reconnection such as linear growth
rates, widths of the macroscopic magnetic island and energy redistribution. We also
intend to compare the results obtained from the six-field model with those obtained
from a previous Hamiltonian four-field model with isothermal electrons (Waelbroeck &
Tassi 2012). This could provide information on the role played by temperature and heat
fluxes in inertial reconnection in the framework of a Hamiltonian fluid description. The
present investigation aims then at progressing in the description of inertial reconnection
in the framework of Hamiltonian fluid models. Clearly, the role of higher order moments
in collisionless reconnection has also been investigated with alternative approaches. For
instance, investigations by means of a kinetic model have proved the relevance of electron
heat flux contributions to the electric field in a region with the size of the order of the
electron Larmor radius surrounding the null point (Hesse et al. 2004). Also, a hybrid
fluid/kinetic model has been adopted to analyze the transfer of energy to higher order
moments and the role of dissipation, in inertial reconnection, due to electron Landau
damping (Loureiro et al. 2013).

The paper is organized as follows. In Sec. 2 the six-field model is introduced and in
Sec. 3 its Hamiltonian structure is presented and discussed. Sec. 4 presents a comparison
between the six-field model and the isothermal four-field model. In Sec. 5 the role of
the sound Larmor radius parameter on the dynamics of temperature and heat flux is
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investigated numerically, whereas Sec. 6 describes a qualitative reinterpretation of the
field structures in terms of Lagrangian invariants. We conclude in Sec. 7.

2. Model equations

In a Cartesian coordinate system (x, y, z) the model consists of the evolution equations
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In Eqs. (2.1)-(2.6) n
i,e

are the guiding center and electron density fluctuations with
respect to a constant uniform density background n0, � is the electrostatic potential and
A is the magnetic flux function. The expression of the corresponding magnetic field is
given by B = rA⇥ ẑ+Bẑ, with B indicating the amplitude of the constant and uniform
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indicating the ion and electron skin depths and fluid velocities along the guide
field, respectively. The gyroaveraged magnetic flux function and electrostatic potential
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with L, n0, T0 and v
A

representing a characteristic scale length, the equilibrium uniform
density and electron temperature and the Alfvén speed based on B, respectively. In Eq.
(2.9) we indicated with carets the dimensional quantities.
The fields n

i

, n
e

, F,D, Tk and qk are supposed to possess translational invariance along
the z coordinate, although the extension to a three-dimensional model, under the as-
sumption of a strong guide field, is straightforward.
The six-field model (2.1)-(2.8) represents an extension of the four-field gyrofluid model

derived and investigated in Refs. (Waelbroeck & Tassi 2012; Comisso et al. 2012). Indeed,
the four-field assumed an isothermal closure for the electron fluid, whereas the six-field
model allows for an evolution of the parallel electron temperature and heat flux. On
the other hand, the six-field model can be seen as a simplified version of the gyrofluid
models of Refs. (Scott 2010; Snyder & Hammet 2001) when parallel dynamics, back-
ground inhomogeneities, dissipation and moments involving the perpendicular velocities
are neglected. Also, our six-field model assumes an isothermal ion fluid and standard
closures for the gyroaveraging operators. Electron inertia, which provides the mechanism
for magnetic reconnection, is retained, as in Ref. (Scott 2010), but unlike Ref. (Snyder &
Hammet 2001). Upon denoting with �

e

the � parameter referred to the electron pressure,
and with M and m

e

the ion and electron mass, respectively, we can recall the relation
⇢2
s

/d2
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). Therefore, as a consequence of retaining finite electron inertia,
the ratio between ⇢

s

and d
e

corresponds to determining the �
e

parameter.

3. Hamiltonian structure of the model

In this Section we show that the six-field model admits a Hamiltonian formulation.
This amounts to show that the evolution equations (2.1)-(2.6), taking into account also
Eqs. (2.7) and (2.8), can be cast in the form
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This quantity has indeed been shown to be conserved by the model equations (Scott
2010), which is a necessary condition for it to be the Hamiltonian of the system. We
remark also that the functional (3.2) can be seen as the sum of the Hamiltonian of the
four-field model of Ref. (Comisso et al. 2012), corresponding to the first seven terms
accounting for kinetic, internal and electromagnetic energy, with the internal energy
associated with temperature and heat flux fluctuations, provided by the last two terms.
Concerning the Poisson bracket, the structure of the model equations suggests that it

be of the form
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derivatives, so that F
�i = �F/��

i

. We recall that a Poisson bracket is an operation that
has to satisfy bilinearity, the Leibniz identity, antisymmetry and the Jacobi identity.
The first two of these properties are automatically satisfied by a bracket of the form
(3.3). Antisymmetry and the Jacobi identity, on the other hand, impose constraints on
the coe�cients W ij

k

. In particular, as shown in Ref. (Thi↵eault & Morrison 2000), for
antisymmetry to be satisfied the coe�cients must be symmetric in their upper indices,
that is

W ij

k

= W ji

k

. (3.4)

The Jacobi identity, on the other hand, is satisfied if and only if the matrices W (j)

pairwise commute. These matrices are defined as
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with k labelling rows and i labelling columns. Relying on this result, we can proceed to
construct the Poisson bracket following the same procedure adopted in the case of other
reduced plasma models (see, e.g. Refs. (Hazeltine et al. 1987; Waelbroeck et al. 2004;
Tassi et al. 2008)). More precisely, we can look for a set of six matrices W j satisfying
(3.4)-(3.5) and such that the corresponding equations of motion
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obtained using (3.1), (3.2) and (3.3), match the evolution equations (2.1)-(2.6).
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one finds that the set of pairwise commuting matrices W (j) yielding a Poisson bracket
as well as the desired equations of motion can be written as
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From Eqs. (3.3) and (3.9) it follows then that the Poisson bracket for the model (2.1)-(2.6)
is given by
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As in the case of its isothermal reduction of Ref. (Waelbroeck & Tassi 2012), also this
model possesses a Poisson bracket with a direct sum structure, given that the brackets
{ , }

e

and { , }
i

are Poisson brackets of their own and that the corresponding Hamilto-
nian operators are functions of independent sets of variables. These two brackets evolve
independently the electron and ion fluid variables, the coupling between which being
provided by the Hamiltonian (3.2). In particular, the bracket { , }

i

is already present
in the direct sum for the Poisson bracket of the isothermal model (Waelbroeck & Tassi
2012).
Solutions C of the equation

{C,F} = 0, (3.13)

valid for any functional F of the dynamical variables, are Casimir invariants of the system.
These functionals foliate the phase space and are preserved by the dynamics (see, e.g.
Ref. (Morrison 1998)). For the Poisson bracket (3.10) they correspond to the following
six infinite families of functionals:
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and where C1,2,3,4 and C± are arbitrary functions. The Casimirs C1,2,3,4 and the Casimirs
C± derive from the brackets { , }

e

and { , }
i

, respectively.
The infinite families of Casimirs are associated with Lagrangian invariants of the model.

Indeed, if one performs the change of variables (n
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the model equations (2.1)-(2.6) take the remarkable form
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The six Lagrangian invariants G1, G2, G3, G4, I+, I� represent “normal” variables (Tassi
et al. 2010) for the bracket (3.10).
From Eqs. (3.21) one then sees that the dynamics of the reconnection model (2.1)-

(2.6) actually expresses the advection of six Lagrangian invariants transported by incom-
pressible flows associated with the stream functions (3.22). Such stream functions are
reminiscent of those advecting the generalized perturbed distribution functions in the
2D gyrokinetic description from which the model can be derived from (Scott 2010). Such
stream functions are linear combinations of the electrostatic and magnetic potential, or
of their gyroaveraged versions in the case of �±. This has its origin at the guiding center
level, where such potentials are associated with the E⇥B drift and with the free stream
of the guiding centers along the poloidal magnetic field.
Lagrangian invariant dynamics underlying collisionless reconnection is a feature ob-

served in earlier Hamiltonian models for reconnection, where isothermal closures were
adopted (Cafaro et al. 1998; Grasso et al. 2000; Waelbroeck et al. 2009; Waelbroeck &
Tassi 2012). For such models, the connections with drift or gyro-kinetic dynamics had
been pointed out in Refs.(de Blank 2001; Liseikina et al. 2004; Pegoraro et al. 2005a,b;
Comisso et al. 2012; Tassi 2014a,b). The above Hamiltonian structure and the formulation
(3.21) of the model, show that, when going beyond the isothermal closure and imposing
for the electrons a fluid closure consistent with that adopted in Refs. (Scott 2010; Snyder
& Hammet 2001) in the non-dissipative limit, the model still preserves a Hamiltonian
structure and its dynamics still can be entirely interpreted in terms of Lagrangian invari-
ants. We recall that the model (2.1)-(2.6) can be derived from the following gyrokinetic
system, written in dimensional form:

@g
i

@t
+

c

B

h
J0

⇣
�� v

c
A
⌘
, g

i

i
= 0, (3.23)

@g
e

@t
+

c

B

h
�� v

c
A, g

e

i
= 0. (3.24)

Eqs. (3.23)-(3.24) are coupled with the quasi-neutrality relation
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and Ampère’s law
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mev2+2(me/mi)µB

2T0 .

(3.27)
We indicate with v the velocity coordinate along the magnetic guide field direction
and with µ the ion magnetic moment. The volume element dW is defined as dW =
2⇡Bdµdv/m

i

.
The model equations (2.1)-(2.6) can be derived from Eqs. (3.23)-(3.24) by taking mo-

ments with respect to the Hermite polynomials in the parallel velocity coordinate, and
truncating the resulting fluid system by imposing that the moment of order four, for
the electron fluid, and of order two for the ion fluid, be zero (Scott (2010)). The quasi-
neutrality relation (3.25) and Ampère’s law (3.26) can, on the other hand, be easily
identified with Eqs. (2.7) and (2.8), respectively, upon introducing fluid velocities and
densities and applying standard gyroaveraging closure rules (Scott (2010)).
The parent gyrokinetic system (3.23)-(3.24) also possesses a Hamiltonian structure

(Tassi (2014a)), given by the Hamiltonian functional

H(g
i

, g
e

) =
1

2

Z
d2xdW


T
i

F
i

g2
i

+
T0

F
e

g2
e

+ e�(J0gi � g
e

)

�e
v

c
A(J0gi � g

e

)
i
.

(3.28)

and the Poisson bracket

{F,G} =
c

eB

Z
d2xdW (�g

i

[F
gi , Ggi ] + g

e

[F
ge , Gge ]). (3.29)

The closure adopted to derive the six-field model preserves then the Hamiltonian charac-
ter of the parent gyrokinetic model. The Hamiltonian (3.2), in particular, can be derived
from the gyrokinetic Hamiltonian (3.28) by replacing g

i

and g
e

with the corresponding
truncated expansions in terms of Hermite polynomials. The Casimirs of the gyrokinetic
bracket (3.29), on the other hand, are given by

C
i

=

Z
d2xdW C

i

(g
i

), C
e

=

Z
d2xdW C

e

(g
e

), (3.30)

with C
i,e

arbitrary functions. Upon applying the fluid closure, such two families of gy-
rokinetic Casimirs transform into the six families of gyrofluid Casimirs (3.14)-(3.15).
We remark that the model (2.1)-(2.6) can easily be upgraded, following for instance

Scott (2010), to an eight-field model accounting also for parallel ion temperature and
heat flux fluctuations. The two additional equations would be analogous to Eqs. (2.3)-
(2.4), but with electron quantities replaced by the corresponding ion quantities, and
electrostatic and magnetic potential replaced by their gyroaveraged counterparts. The
resulting model would still be Hamiltonian. In the total conserved energy ion and electron
quantities would then enter in the same way. The corresponding Poisson bracket would
be the direct sum {F ,G} = {F ,G}

e

+ {F ,G}
I

, where {F ,G}
I

is analogous to {F ,G}
e

,



Hamiltonian magnetic reconnection with parallel electron heat flux dynamics 9

but with electron quantities replaced by the corresponding ion quantities. Consequently,
the eight-field model would possess eight infinite families of Casimirs associated with
Lagrangian invariants. Four families of Casimirs analogous to C1, · · · , C4, but for the ion
species, would indeed be present. Although the extension to the eight-field model appears
to be relatively straightforward, for the present numerical investigation we decided to
reserve the refined closure for the electron fluid only. Indeed, for the equilibrium state
that we consider, which does not include ion density, velocity or temperature gradients,
ion fluctuations appear to have little influence on the inertial reconnection dynamics
(see, for instance Grasso et al. (2010) and Comisso et al. (2012)). Actually, most of the
magnetic energy turns out to be converted into electron fluctuations, as will be confirmed
also in Sec. 4. Consequently, we stick to the six-field model and postpone the inclusion of
ion temperature and heat flux e↵ects to future work, where di↵erent equilibrium gradients
will be considered.
Incidentally, we remark also that the eight-field model could be reduced to another

six-field model by neglecting heat fluxes and thus leaving three pairs of equations for
densities, parallel canonical momenta and temperatures of ions and electrons, respec-
tively. Such model would also be Hamiltonian. The Hamiltonian functional would be
simply obtained from that of the eight-field model by suppressing heat flux terms. The
Poisson bracket would, again be a direct sum of two Poisson brackets, one related to the
electron and one to the ion quantities. Such brackets could be obtained from {F ,G}

e

and
{F ,G}

I

by suppressing all the terms depending on heat fluxes and on functional deriva-
tives with respect to them, and by replacing the factor 4 by a factor 1 in the coe�cient
multiplying Tk[FTk ,GTk ] in {F ,G}

e

(and proceeding analogously with {F ,G}
I

).

4. Comparison with the isothermal closure

As pointed out in section 2 the six-field model equations reduce to the four-field ones
when an isothermal behavior for the electrons is considered. In this section we intend to
highlight the di↵erence between these two sets of equations, by comparing results from
simulations obtained for the same set of parameters. We use here an extended version of
the pseudo-spectral numerical code adopted in Ref. (Comisso et al. 2012), where the fields
of the model are decomposed in a time independent equilibrium and an evolving pertur-
bation which is advanced in time according to a third order Adams-Bashforth algorithm.
In order to investigate the evolution of spontaneous magnetic reconnection instabilities,
the system of Eqs. (2.1)-(2.6) is solved numerically considering an equilibrium which is
linearly unstable with respect to tearing modes. In particular, we adopt the following
equilibrium:

n
i

eq

(x) = n
e

eq

(x) = n0, u
i

eq

(x) = 0, A
eq

(x) =
11X

n=�11

f̂
n

einx, (4.1)

Tk
eq

= 0, qk
eq

= 0, (4.2)

where we recall that n0 represents a uniform background density, whereas f̂
n

are the
Fourier coe�cients of the function

f(x) = A0/ cosh
2(x) (4.3)

with A0 representing a parameter that determines the strength of the in-plane equi-
librium magnetic field. In the following we consider A0 = 0.1 and restrict ourselves
to the strongly unstable regime, which is characterized by large values of the standard
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instability parameter, �0 (Furth et al. 1963), and which is relevant to the general prob-
lem of fast magnetic reconnection. Our integrations domain is fixed by L

x

= 2⇡ and
L
y

= 4⇡, while for the physical parameters we choose the following values: d
e

= 0.2,
d
i

= 2, ⇢
i

= 0.2 and ⇢
s

= 0.01, 0.1, 0.4 and 0.8. The first characteristic quantity of the
reconnection process that we investigate is the linear growth rate of the perturbation.
Figure 1 shows, for di↵erent values of ⇢

s

, a comparison of the growth rate, obtained
from numerical simulations of the six-field model and of four-field model. The growth
rate is measured as the variation of the perturbed magnetic flux at the X-point. In
the same figure the numerical values are also compared against the analytical predic-
tions obtained by applying the asymptotic formula for the linear growth rate �

L

given by
�
L

= 0.2k
y

(2d
e

⇢2
⌧

/⇡)1/3(Porcelli 1991; Fitzpatrick & Porcelli 2004), where k
y

= 2m⇡/L
y

,
m is the mode number and ⇢

⌧

=
p
⇢2
s

+ ⇢2
i

. This formula is valid for ⇢2
s

<< d2
e

(m
i

/m
e

)3/4

and for �0 >> min[1, (d
e

/⇢
⌧

)1/3]. We note that the presence of heat flux fluctuations
leads to slightly greater growth rates. The increase in the growth rates is in the range of
5 � 7%. On the other hand the analytic formula overestimates the growth rates, when
compared to both the six- and four field models. The di↵erence is greater for larger values
of ⇢

s

, as it should be expected when increasing the ratio ⇢
s

/d
e

at fixed mass ratio. The
similarity in the linear growth rates between the six and four-field model, reflects also
in similar magnetic island amplitudes at saturation, in agreement with what is observed
when a drift-kinetic description is adopted for the electrons (Loureiro et al. 2013). We
note that this result refers to the large �0 regime we are addressing here, and does not
extend to small �0 regimes, when the island saturation amplitude becomes comparable
with the kinetics scales, as already pointed out in Ref. (Loureiro et al. 2013).
Subsequently we analyze the energy distribution in the two models. Clearly the evolution
of the heat flux in the six-field model allows the electron temperature to deviate from
the isothermal behavior and opens new energy channels. The di↵erent contributions to
the total energy are denoted as

E
mag

=
1

2

Z
d2x |rA|2, E

ke

=
d2
e

2

Z
d2xu2

e

, E
ele

= �1

2

Z
d2x�n

e

,

E
the

=
⇢2
s

2

Z
d2xn2

e

, E
Tk =

⇢2
s

4

Z
d2xT 2

k , E
qk =

d2
e

3

Z
d2x q2k,

E
ki

=
d2
i

2

Z
d2xu2

i

, E
eli

= �1

2

Z
d2x�n

i

, E
thi

=
⇢2
i

2

Z
d2xn2

i

.

In Fig. 2 a comparison between the relative variations of the di↵erent contributions
to the total energy is presented for the case where the ion sound Larmor radius is equal
to 0.1. The relative variations for each form of energy are calculated with respect to the
initial values and normalized with respect to the total energy, so that, for instance, in
the case of the magnetic energy one has �E

mag

(t) = (E
mag

(t) � E
mag

(0))/H(0), where
H is the Hamiltonian functional (3.2). We compare two simulations that were initialized
with the same equilibrium configuration and perturbation, hence, the same total energy.
The simulations have been stopped when the magnetic island has reached approximately
the same macroscopic size. This explains why we find that the behavior of the converted
magnetic energy is similar, as shown in the second panel of Fig. 2 (we number the panels
starting from the left panel in the top row and attributing odd numbers to panels on
the left column and even numbers to those on the right column). In both models the
magnetic energy, E

mag

is mainly converted into electron and ion internal energy, shown
in the fifth ans sixth panels. We remark that the main di↵erences occur in the energies
involving the electron quantities, i.e. E

ke

, E
ele

and E
the

shown in the third, fifth and
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Figure 1. Growth rates obtained from the numerical simulations and analytical prediction
for di↵erent values of ⇢s. Asterisks and squares correspond to results of the six- and four-field
simulations, respectively, whereas the solid line refers to the analytical prediction.

seventh panels respectively. The smaller amount of magnetic energy converted into these
forms in the six-field model is compensated by the energy conversion into internal energy
due to the temperature and heat flux fluctuations, that is E

Tk , and E
qk , shown in the

ninth and tenth panels respectively.

5. Dependence on ⇢s
In this section we examine the dependence of some aspects of the dynamics of the

six-field model on the sound Larmor radius ⇢
s

. The motivation for the choice of this
parameter is that ⇢

s

is an appropriate variable to investigate the role of heat flux fluc-
tuations, which is the main new ingredient of the six-field model. Indeed, by varying ⇢

s

we can study the transition from a regime with negligible heat flux (⇢
s

<< d
e

), as is the
case with an adiabatic equation of state, to a regime with finite heat flux fluctuations.
It is worth to remember that ⇢2

s

/d2
e

= (1/2)�
e

(M/m
e

). In our simulations we kept fixed
both the value of d

e

= 0.2 and the ratio d
i

/d
e

= 10. Hence, the value of ⇢
s

can also be
seen as a measure of the value of the �

e

parameter.
Examining the model equations (2.1-2.6) we see that in the limit ⇢

s

⌧ d
e

the heat flux
equation (2.4) tends to decouple from the system. Because we set the initial heat flux
equal to zero, we expect it then not to increase significantly. It hence follows, by com-
paring Eqs. (2.1) and (2.3), that n

e

⇡ Tk/2, given that n
e

(x, y, 0) = Tk(x, y, 0)/2 = 0.
On the contrary, when increasing the value of ⇢

s

we expect the heat flux evolution to
be not trivial. As a consequence, density and temperature fluctuations are no longer
proportional. We illustrate this behavior with the support of the numerical simulations.
An example is given in Figs. 3 and 4, where in the left panels we plot the profiles at
y = ⇡, for two di↵erent simulation times, of the electron density fluctuations and of half
the parallel temperature fluctuations for two cases with ⇢

s

= 0.01 and ⇢
s

= 0.4, respec-
tively. The simulation times are chosen for both cases in the nonlinear phase and close to
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Figure 2. Comparison of relative energy variations between the six-field model (solid line)
and the four-field model (dashed line) at ⇢s = 0.1.
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Figure 3. Figures on the left-hand side show profiles at y = ⇡ of fluctuations of the electron
density ne (dashed line) superimposed to those of half the electron temperature Tk/2 (solid line).
The figures on the right-hand side show the profiles at y = ⇡ of the heat flux fluctuations qk.
All figures refer to the case ⇢s = 0.01. The first row corresponds to t = 325⌧A, a simulation time
in the nonlinear phase, and the second row corresponds to t = 400⌧A, close to saturation. We
indicate with ⌧A = L/vA the characteristic Alfvén time. In this regime the heat flux fluctuations
remain negligible and temperature fluctuations are almost proportional to density fluctuations.

saturation. We see that for small values of ⇢
s

(Fig. 3) the two curves of n
e

and Tk/2 are
indistinguishable in the nonlinear phase and almost overlap at saturation as well. On the
contrary for ⇢

s

= 0.4 (Fig. 4) the density fluctuations are much larger than those of Tk/2.
In particular, the greatest di↵erences occur in regions where the heat flux fluctuations,
shown in the right panel of the same figure, become more pronounced. We observe in
particular two positive peaks in qk, which move further apart in time. It turns out that
these peaks are located in correspondence with the magnetic island separatrices. Their
drift in opposite directions indicates that the peaks are following the separatrices of the
growing magnetic island. Further simulations suggest this behavior to be quite generic
for su�ciently large ⇢

s

. Therefore, we can expect heat flux e↵ects, when relevant, to be
concentrated along the island separatrices rather than inside the island.
When we examine the role of high values of the ion sound Larmor radius we observe a
tendency toward the suppression of temperature fluctuations. This behavior is illustrated
through the evolution of the integral quantity 2E

Tk/⇢
2
s

=
R
d2xT 2

k /2 in Fig. 5. We see
that between the small and the large ⇢

s

limits there are approximately three orders of
magnitude of di↵erence in the temperature fluctuations. As expected, then, heat flux con-
tributes to distribute the temperature uniformly in space, which reflects into a reduction
of temperature fluctuations.
The spatial distribution of temperature fluctuations in the smallest and largest ⇢

s

cases
can be observed from the contour plots shown in Fig. 6. In the small ⇢

s

limit small scale
structures are aligned with the magnetic island separatrix. An identical distribution is ob-
served in the contour plots of n

e

(Fig. 8 left panel) and agrees with previous studies of the
two-field model of Ref. (Cafaro et al. 1998), where density fluctuations were proportional
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Figure 4. The meaning of the figures is the same as in Fig. 3, but here the case ⇢s = 0.4 is
shown. The first row corresponds to t = 250⌧A, a simulation time in the nonlinear phase, and
the second row corresponds to t = 325⌧A, close to saturation. By comparing with Fig. 3 we
observe that increasing ⇢s leads to an increase in the heat flux. The highest peaks in the heat
flux turn out to be located in correspondence with the island separatrices. As a consequence,
temperature fluctuations no longer follow density fluctuations.

Figure 5. Evolution in time of the energy associated with the parallel temperature variations
for three di↵erent values of ⇢s; ⇢ = 0.01 (solid line), ⇢s = 0.4 (dashed line) and ⇢s = 0.8
(dashed-dotted line). We observe that triggering heat flux, by increasing the value of ⇢s, implies
a reduction of temperature fluctuations.
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Figure 6. Contour plot of the parallel temperature fluctuations Tk for ⇢s = 0.01 (left panel)
and ⇢s = 0.8 (right panel). For ⇢s ⌧ de, Tk distributes along the separatrices, similarly to
ne (compare with the left panel of Fig. 8). For larger ⇢s, temperature fluctuations reduce and
distribute more uniformly inside the island.

to vorticity fluctuations. In the large ⇢
s

limit, as already noticed, the heat flux breaks the
proportionality between n

e

and Tk/2. Whereas the former remains mainly concentrated
along the separatrices, little energy is available for temperature fluctuations, which tend
to be uniformly distributed inside the island.

6. Role of the Lagrangian invariants

In this section we investigate the role, on the reconnection process, of the Lagrangian
invariants of the model, introduced in Sec. 3. The Lagrangian invariant dynamics under-
lying collisionless reconnection has already been exploited in two-, three- and four-field
models for Hamiltonian reconnection such as those studied in Refs. (Cafaro et al. 1998;
Grasso et al. 2001, 2010, 2009; Comisso et al. 2012). In all of these models some field
variables (typically densities, parallel canonical momenta or vorticity) could be expressed
as linear combination of two Lagrangian invariants associated with Casimirs of the cor-
responding Poisson brackets. The dynamics of the Lagrangian invariants could then be
used as a viewpoint alternative to that of the original field variables. The inclusion of
parallel temperature and heat flux fluctuations in the six-field model extends this picture.
Indeed, by inverting the relations (3.16)-(3.19) one obtains
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n
e

= �G1 �G2 � (
p
2 +

p
3)(G3 �G4)

4
p
3 +

p
6d

e

⇢
s

, , (6.1)

F =
G1 +G2 +G3 +G4

4
, (6.2)

Tk = � (
p
2 +

p
3)(G1 �G2) +G3 �G4

2
p
2
p
3 +

p
6d

e

⇢
s

, (6.3)

qk = �
p
3
G1 +G2 �G3 �G4

4
p
2d2

e

, (6.4)

n
i

=
I+ � I�
2d

i

⇢
i

, (6.5)

D =
I+ + I�
2d

i

⇢
i

. (6.6)

The ion fields n
i

and D remain linear combinations of two contributions I±, as in the
four-field model (Waelbroeck & Tassi 2012). The four electron fields, on the other hand,
are all linear combinations of the four Lagrangian invariants G1, G2, G3 and G4. In
particular we remark that n

e

and Tk can be seen as linear combinations of the two fields
G1 � G2 and G3 � G4, weighted with di↵erent coe�cients. On the other hand, F and
qk can be seen as linear combinations of the two fields G1 +G2 and G3 +G4. Such two
fields contribute to F and qk with the same weight (up to the sign).
We observe that the field variables possess also discrete symmetries. The symmetries

for the even-order moments n
e

, Tk and n
i

are

n
e

(�x, y, t) = �n
e

(x, y, t), n
e

(x,�y, t) = �n
e

(x, y, t), (6.7)

Tk(�x, y, t) = �Tk(x, y, t), Tk(x,�y, t) = �Tk(x, y, t), (6.8)

n
i

(�x, y, t) = �n
i

(x, y, t), n
i

(x,�y, t) = �n
i

(x, y, t), (6.9)

whereas the symmetries for the odd-order moments are

F (�x, y, t) = F (x, y, t), F (x,�y, t) = F (x, y, t), (6.10)

qk(�x, y, t) = qk(x, y, t), qk(x,�y, t) = qk(x, y, t), (6.11)

D(�x, y, t) = D(x, y, t), D(x,�y, t) = D(x, y, t). (6.12)

Such symmetries, through the linear combinations (3.16)-(3.20), reflect in the following
relations between the Lagrangian invariants:

G1(�x, y, t) = G2(x, y, t), G1(x,�y, t) = G2(x, y, t), (6.13)

G3(�x, y, t) = G4(x, y, t), G3(x,�y, t) = G4(x, y, t), (6.14)

I+(�x, y, t) = I�(x, y, t), I+(x,�y, t) = I�(x, y, t). (6.15)

In Ref. (Comisso et al. 2012), simulations of the four-field model showed that the two
Lagrangian invariants associated with the electron fluid tend to rotate in opposite di-
rections, under the action of stream functions analogous to those of Eqs. (3.22). For the
Lagrangian invariants associated with the ion fluid, the rotations were greatly reduced
as a consequence of the mass ratio. In the six-field model we confirm, without showing
it, the same behavior with regard to the ion variables n

i

and D. We focus then on the
electron field variables, whose dynamics can be equivalently described by that of the
Lagrangian invariants G1, G2, G3 and G4, following Eqs. (6.1)-(6.4). In Fig. 7 contour
plots of the Lagrangian invariants G1 and G3 are shown (the contours plot of G2 and
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Figure 7. Contour plot of the invariants G1,3 for ⇢s = 0.01 (left panel) and ⇢s = 0.8 (right
panel). For ⇢s = 0.8 one can observe in the plot of G3 the presence of two spiral arms, which
are a signature of the rotation of the Lagrangian invariant. For ⇢s = 0.01 rotations in opposite
directions of the two pairs of Lagrangian invariants tend to be suppressed.

G4 can be obtained by reflection exploiting the symmetry properties discussed above).
By looking in particular at the contour plot, for ⇢

s

= 0.8, of G3,4, one observes two
sorts of spiral arms which turn out to be essentially aligned with the island separatrices.
These spiral arms are the result of a rotation of G3,4 induced by the stream function �3,4.
Analogously, G1,2 rotate in opposite directions under the action of the stream functions
�1,2. For the case ⇢

s

= 0.01 the rotations in opposite directions are essentially negligible
because for ⇢

s

⌧ d
e

one has �1,2,3,4 ⇡ �.
We can then reinterpret qualitative features of field structures in terms of the La-

grangian invariants. For the parallel temperature, for instance, the rotation of the invari-
ants for ⇢

s

= 0.8 leads to the homogeneization of the fluctuations inside the island, as
observed in Fig. 6. The absence of rotation for the case ⇢

s

= 0.01, on the contrary, leads
to the persistence of structures clearly aligned with the island separatrix.
As above observed, the electron density is also given by a linear combination of G1�G2

and G3 � G4, as the parallel temperature, but with di↵erent coe�cients. Whereas for
Tk the dominating contribution in the linear combination is G1 � G2, for the density it
comes fromG3�G4 which is multiplied times the greater coe�cient (and also subtracted).
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Figure 8. Contour plot of the electron density fluctuations ne for ⇢s = 0.01 (left panel) and
⇢s = 0.8 (right panel). The distribution of the density fluctuations can be obtained as superpo-
sition of those of G1 �G2 and G3 �G4, according to Eq. (6.1).

Figure 9. Contour plot of the heat flux fluctuations qk for ⇢s = 0.01 (left panel) and ⇢s = 0.8
(right panel). Heat flux structures can be obtained as superposition of the structures of G1+G2

and G3 +G4 according to Eq. (6.4). We note in particular the concentration along the separa-
trices, as a result of the opposite rotations of the Lagrangian invariants in the case ⇢s = 0.8.

This reflects in the electron density not having small scale structures inside the island
for ⇢

s

= 0.8 (see Fig. 8), unlike Tk. The absence of rotation for ⇢
s

= 0.01 amounts to
yielding the same structures for n

e

and Tk, which corresponds, as observed in Sec. 5, to
negligible heat flux.
The qualitative structures of the heat flux fluctuations can also be reinterpreted in

terms of the Lagrangian invariants. We recall that in Sec. 5 we remarked that qk, when
non-negligible, exhibits peaks around the separatrices. This can be observed also in Fig.
9 in the case ⇢

s

= 0.8. Such peaks reflect the superposition of the spiral arms of the
invariants G1,2,3,4 formed as a consequence of their rotation. When the rotation is es-
sentially absent, as is the case for ⇢

s

= 0.01, such peaks are not present and the little
amount of energy in the heat flux fluctuations is concentrated, to a large extent, also
inside the island around the resonant surface x = 0.
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7. Conclusions

We considered a six-field fluid model for collisionless reconnection accounting for elec-
tron parallel temperature and heat flux dynamics. The model extends previous Hamil-
tonian reconnection models (Cafaro et al. 1998; Waelbroeck et al. 2009; Waelbroeck &
Tassi 2012) based on an isothermal closure. We showed that, like its isothermal prede-
cessors, also the six-field model possesses a Hamiltonian structure with a noncanonical
Poisson bracket. With regard to this point we mention that conservation of the total en-
ergy (the Hamiltonian functional) for the six-field model was already evident from Ref.
(Scott 2010). Also, the property of energy conservation of the six-field model is compati-
ble with the analysis of Ref. (Hammett et al. 1993). In this reference it is indeed pointed
out that fluid models evolving a finite number N of moments of the Vlasov distribution
function with respect to Hermite polynomials of the velocity coordinate, conserve energy
if the hierarchy of fluid equations is closed setting the moment of order N + 1 equal to
zero. The six-field model can actually be shown to admit a derivation from gyrokinetic
equations by taking moments with respect to Hermite polynomials (Scott 2010) in the
parallel velocity coordinate, and imposing the fourth-order moment to be zero. In this
paper we have shown that the model, in addition to be energy-conserving, possesses the
stronger property of being Hamiltonian. In particular, the noncanonical nature of the
Poisson bracket implies, in addition to energy conservation, the existence of an infinite
number of conserved functionals, corresponding to the Casimirs (3.14)-(3.15). Similarly
to what occurred for the isothermal models (Cafaro et al. 1998; Waelbroeck et al. 2009;
Waelbroeck & Tassi 2012), also in the six-field model then, in spite of the violation of the
conservation of the topology of the magnetic field, alternative topological conservation
laws constrain the dynamics. All contour lines of the Lagrangian invariants G1,2,3,4, I±
are indeed conserved, in spite of reconnection of magnetic field lines.

By means of numerical simulations we have observed that, when compared to the
isothermal four-field model (Comisso et al. 2012), the six-field model yields, in the large
�0 regime, slightly greater linear growth rates, but essentially the same island saturation
amplitudes, in agreement with hybrid fluid/kinetic models (Loureiro et al. 2013). In
this respect, the e↵ect of the heat flux on the reconnection process seems not to be
considerable, at least for a plasma with no density or temperature equilibrium gradients,
such as that considered in this paper.

Heat flux and parallel temperature o↵er new forms where energy can be converted to,
when compared with the isothermal models. Indeed we observed that temperature and
heat flux fluctations gain energy at the expense of electron thermal, electrostatic and
parallel kinetic energies.

We also investigated the dynamics of the six-field model as function of the ⇢
s

pa-
rameter (or, equivalently, of the �

e

parameter). For ⇢
s

⌧ d
e

heat flux is negligible and
consequently temperature fluctuations tend to go in phase with density fluctuations. In
particular they both concentrate along the island separatrices. Increasing the value of ⇢

s

triggers heat flux fluctuations which, as expected, act to damp temperature fluctuations.
The latter, in particular, tend to distribute more uniformly inside the island. This occurs
as a consequence of heat flux distributing along the separatrices. Density fluctuations
too, still exhibit a considerable concentration along the separatrices.

The field structures can also be qualitatively reinterpreted in terms of the Lagrangian
invariants as done in Refs. (Cafaro et al. 1998; Grasso et al. 2001; Comisso et al. 2012). In
particular, it emerged that the four electron variables n

e

, F , Tk and qk organize in pairs
according to their discrete symmetry properties. n

e

and Tk, which are odd functions,
appear as linear combinations of G1 � G2 and G3 � G4. On the other hand, the even
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fields F and qk are proportional to the sum and the di↵erence, respectively, of G1 +G2

and G3+G4. Rotation of the Lagrangian invariants G1,2,3,4 is observed as was the case for
the Lagrangian invariants of isothermal models. In particular, for large ⇢

s

, the rotation
induces the formation of structures similar to spiral arms, along the separatrices, in G3

and G4. For ⇢s ⌧ d
e

, on the other hand, little stretching of the invariants is observed, due
to the negligible influence of the magnetic potential in the advecting stream functions
�1,2,3,4. Above mentioned features of the field structures, such as the concentration of
density and heat flux along the separatrices, can then be seen as the superposition of
the Lagrangian invariants undergoing more or less intense stretching depending on the
value of ⇢

s

. Rotation of the Lagrangian invariants had already been observed for the
Hamiltonian isothermal models (Cafaro et al. 1998; Grasso et al. 2001; Comisso et al.
2012) and drift-kinetic systems (Liseikina et al. 2004; Pegoraro et al. 2005a,b). Our
analysis shows that this feature persists when including parallel temperature and heat
flux e↵ects while preserving the Hamiltonian structure of the model.
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GYPSI n. 2010 BLAN 941 03) and from the CNRS through the PEPS project GEO-
PLASMA 2.
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