Hybrid Rolling Element Bearings: a New Answer Facing the Problem of Debris Entrapment

Vincent Strubel, Nicolas Fillot, Fabrice Ville, Philippe Vergne, Alexandre Mondelin, Yves Maheo

To cite this version:

Vincent Strubel, Nicolas Fillot, Fabrice Ville, Philippe Vergne, Alexandre Mondelin, et al.. Hybrid Rolling Element Bearings: a New Answer Facing the Problem of Debris Entrapment . STLE 70th Annual Meeting, May 2015, Dallas, United States. hal-01185859

HAL Id: hal-01185859
https://hal.archives-ouvertes.fr/hal-01185859
Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In the aeronautical domain, due to high speeds and weight-saving, hybrid rolling element bearings (REBs) are foreseen to replace classical REBs. They offer indeed many advantages including a lower density. The higher hardness appears also as a preponderant feature to warranty integrity in contaminated lubrication.

Context/Objectives

From all-steel to hybrid REBs

“Faster, Higher, Stronger”

Recurrent problem: debris contamination with destructive behavior

The type of contaminants found in lubricated mechanisms can be very diversified (debris, pollution particles) and from different sources (external or internal).

Twin-disc machine

Tests with the twin-disc machine and the contamination test bench: Controlled level of contamination (nature, size, quantities)

Numerical tool

Considering a contaminated lubricant suppose to take into account both the lubricant behavior and the particles dynamics.

Firstly by analyzing streamlines and secondly by determining the theoretical particle trajectories.

Results

Using numerical simulations

As particles are dispersed in the lubricant, they can approach the contact region from different positions, named release positions (RP).

The release positions normal to the rolling direction (RP) and across the confinement (RP) influence the entrapment probability.

The closer to the contact center line and the nearer from the walls the particles are released, the more likely they will be entrapped.

Using experiments

Assumption: each particle is responsible for a single dent → quantitative and qualitative comparison of entrapment phenomena.

Tests with different couples of materials → discs made of silicon nitride withstand indentation by ductile particles (Mgo steel).

Mixing both experimental and numerical works

Larger particles are more likely to be entrapped, in accordance with, due here to a larger entrainment width.

Conclusions

Key parameters governing particle entrapment were found:

- Dependence of particle entrapment with
- Release position
- Particle size and mass
- Changing contacting materials has a minor influence on particle entrapment phenomena
- Silicon nitride discs are able to withstand indentation by ductile particles

References

Funded by the industrial chair: SKF – Fondation INSA de Lyon