
HAL Id: hal-01185525
https://hal.science/hal-01185525

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Sensor Placement in Road Transportation
Networks using Virtual Variances

Enrico Lovisari, Carlos Canudas de Wit, Alain Kibangou

To cite this version:
Enrico Lovisari, Carlos Canudas de Wit, Alain Kibangou. Optimal Sensor Placement in Road Trans-
portation Networks using Virtual Variances. CDC 2015 - 54th IEEE Conference on Decision and
Control, Dec 2015, Osaka, Japan. �hal-01185525�

https://hal.science/hal-01185525
https://hal.archives-ouvertes.fr


Optimal Sensor Placement in Road Transportation Networks
using Virtual Variances

Enrico Lovisari, Carlos Canudas de Wit, and Alain Y. Kibangou

Abstract— This paper addresses the problem of Optimal
Sensor Placement in Road Transportation Networks. The per-
formance of the sensors is measured in terms of estimation
error covariance of the Best Linear Unbiased Estimator of
cumulative flows in the network over a long period. Sensors
are to be placed in such a way that the sum of the error
covariance and of a cost penalizing the number of sensors is
minimized. The problem, inherently combinatorial, is relaxed
using the concept of Virtual Variance. The resulting problem
can be cast as a convex problem, whose computational load is
much lower than the original combinatorial problem. Several
variations are discussed, and the algorithm is applied to a
regular grid network, for which an explicit comparison with
the true optimum is offered, and, using data from the Grenoble
Traffic Lab sensor network, to the real-world scenario of
Rocade Sud in Grenoble, France.

Index Terms— Road Transportation systems; Flow recon-
struction; Convex relaxation; Sensor placement.

I. INTRODUCTION

In the last decades the increase of the number of pas-
senger and commercial vehicles has steered several crucial
highways and arterial roads towards a state of near saturation,
causing the emergence of periods of highly congested traffic
on a daily basis [1]. Traffic congestion is responsible for
the increase of travel times and for stop-and-go and other
oscillatory phenomena, leading in turn to decreased safety,
economical losses, and environmental and psychological haz-
ards in terms of pollution and road rage [2]. Standard practice
to solve congestion problem, by augmenting road capacity
through extension or construction of highways and other
arterial roads, is often infeasible due to physical constraints,
roads passing through densely built up areas, and social
opposition. Among alternative solutions, Intelligent Trans-
portation Systems (ITSs) are expected to provide better and
more robust techniques for real-time monitoring, prediction
and actuation of traffic networks via exploitation of recent
technological and theoretical advancements.

Of paramount importance is the ability to reconstruct the
state of the network, as such an information that is used
to forecast traffic evolution, to inform drivers in real-time
through navigation systems, to provide statistical information
to public authorities to detect in a timely fashion accidents
and predict hazardous scenarios, and finally to compute
controls and to actuate the network through traffic lights,
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ramp metering and speed limits, or, in the future, lane change
and origin-destination suggestions [3], [4], [5], [6].

A primary source of information on the state of the
network are fixed traffic detectors, namely, devices able to
measure density, flow and average speed of vehicles crossing
the section of the road where they are placed. Along with
other sources of information, such as Floating Car Data, it
can be used as input to observe the traffic state, such as the
one designed in the companion paper [7].

Motivated by the importance of good quality monitoring,
in this paper we address the Optimal Sensor Placement prob-
lem, namely, the problem of finding the best location where
to physically place sensors. This is based on trading off
between two contrasting objectives: the first, to maximize the
performance of state reconstruction; the second, to minimize
the total economic cost of the network.

The performance of the state reconstruction is usually
related to the ability to properly estimate the density of
vehicles in the roads. The latter is a time-varying quantity
whose dynamics can be represented via partial differential
equations models, such as the celebrated Lighthill-Whitham
and Richards (LWR) model [8], or via their discretiza-
tions, as in the well known Cell Transmission Model [9].
Unfortunately, density reconstruction, and its relation with
the network topology, is hindered by the complexity and
nonlinearity of such macroscopic traffic models.

To simplify the setting, we consider the related problem
of reconstruction in a static setting, by considering as per-
formance metric the error covariance of an estimator of
the cumulative flows in the network over a long period
of time. Since the resulting trading off problem remains
a combinatorial problem, we relax it using a method that
we call Virtual Variance algorithm, based on the idea to
associate to each sensor a virtual variance, which is large
when the sensor is not needed for good reconstruction of
the flow vector. We also discuss in detail two extensions
of the proposed algorithm dealing with important scenarios,
dealing with geographical constraints and budget limitations.
The only input that the algorithm needs is an estimate of the
matrix of splitting ratios and the nominal variance of each
sensor. Since in real application a pre-existing sensor network
is often unavailable, possible alternatives are field surveys
with operators visually counting vehicles, as commonly done
for calibration of traffic software, or temporary non-invasive
equipment such as radar traffic detectors.

Optimal Sensor Placement is an ubiquitous problem that
has received a high degree of attention in several commu-
nities due to its importance for network design. In Trans-



portation Systems, it is of interest both in the dual-problem
of best placement of hubs for cost-efficient transportation
of goods and people [10] and Origin-Destination coverage
[11], [12]. In these works, and differently from the present
paper, the problem is cast as a mixed integer problem which
corresponds to determine the minimal set of locations from
which the flows on the whole network can be determined,
and sensor measurements are assumed to be perfect.

The contributions of this paper are the following: 1) we
formulate the Optimal Sensor Placement problem in terms
of positions of sensors in a network of noisy sensors; 2)
we propose the Virtual Variance algorithm as a relaxation
of the (combinatorial) Optimal Sensor Placement problem;
3) we show the effectiveness of the devised technique on a
regular grid, for which the true optimal placement is found
by exhaustive search, and a real-world scenario consisting of
the freeway “Rocade Sud” in Grenoble, France.

The rest of the paper is organized as follows: after present-
ing some notation, Section II formulates the Optimal Sensor
Placement problem. Section III presents a solution based on
the concept of Virtual Variance, while Section IV presents
our two numerical experiments. Finally, Section V draws the
conclusions and presents several future research directions.

A. Notation

The sets of real and positive real valued vectors of
dimension n are denoted Rn and Rn

+, respectively. The
set of real valued matrices of dimension n × m is Rn×m.
Dn ⊂ Rn×n is the set of diagonal matrices of dimension
n × n. A positive definite (positive semidefinite, negative
definite, negative semidefinite) matrix A ∈ Rn×n is denoted
A > 0 (A ≥ 0, A < 0, A ≤ 0), and for A,B ∈ Rn×n

A > B means A − B > 0 (and similarly for ≥, <, ≤).
AT is the transpose of A. For a finite set A, RA denotes
the set of vectors indexed by elements of A, and |A| its the
cardinality. The identity matrix and the all-one vector (of
suitable dimensions) are denoted I and 1, respectively.

A graph G is a pair (V, E), V being the set of nodes and
E the set of edges. Edges are equipped with two functions
t : E → V and h : E → V , the head and tail functions,
respectively, such that e is though to the directed edge
between t(e) and h(e). We allow for parallel edges, namely,
edges having the same head and tail, but not for loops,
namely, edges whose head and tail coincide. A path of length
n ≥ 2 is a sequence of edges e1, . . . , en that are consecutive,
namely, such that h(ei) = t(ei+1) for i = 1, . . . , n − 1. A
path of length 1 is a path made of a single link.

II. PROBLEM FORMULATION

We model a Transportation Network as a graph G =
(V, E), in which junctions v ∈ V are interfaces between
links, or cells, e ∈ E . Origin cells, which carry vehicles in
the network from the external world, and destination cells,
which on the contrary let vehicles exit the network, will be
referred to as onramps and offramps, respectively. We assume
that for every cell there are at least one path from an origin
to the cell, and a path from the cell to an offramp.

Let O ⊆ E and D ⊆ E denote the set of onramps and
offramps, respectively. Vehicles flow through the cells of
the network from their origin to their destination splitting
at each junction according to deterministic splitting ratios.
In particular, Rej ≥ 0 denotes the fraction of vehicles
that exiting from cell e want to enter into cell j. As such,∑

j Rej = 1 if e is not an offramp, and
∑

j Rej = 0
otherwise. We assume that the splitting ratios are fixed and
perfectly known, and we gather them in a matrix R =
[Rej ] ∈ Rn×n where n = |E|.

The next sections are devoted to deriving some properties
of the cumulative flows, to providing a simple linear model
for the flows, and to formalizing the problem that we address.

A. Flow linear constraints

Let f ∈ Rn
+ be the vector of cumulative flows, namely,

the total flow, through the links of the network over a period
of time [t0, t1]. Let ρe(t) denote the density of vehicles
in cell e at time t, and `e the length of cell e. Then the
definition of splitting ratios yields the relation `eρ̇e(t) =∑

j∈E Rjeφj(t) − φe(t) for each non onramp cell, where
here φe(t) denotes the instantaneous flow through cell e.
Integrating over [t0, t1] yields fe =

∫ t1
t0
φe(s)ds and

`e(ρe(t1)− ρe(t0)) =
∑
j∈E

Rjefj − fe, e ∈ E \ O

Assume that [t0, t1] is a long period of time and that at both
times t0 and t1 the number of vehicles in the network is low,
e.g., let t0 and t1 correspond to consecutive midnights. Then
the magnitude of the elements of {`e(ρe(t1)−ρe(t0)}e∈E\O
is negligible compared with the cumulative flows in the net-
work, and the following matrix relation holds approximately

L̄f ≈ 0 , (1)

where L̄ ∈ Rm×n, m = |E \ O|, is obtained by removing
from L = RT − I the rows corresponding to onramps.

As already mentioned in the Introduction, estimation of
flows needs in principle to be coupled to a dynamical
model for densities to realistically monitor a Transportation
Network. Since it is however rather difficult to assess the
performance of the observer of the density, in the present
paper we simplify the problem by limiting our attention to
the estimate of a vector of cumulative flow satisfying Eq. (1).

B. Linear measurement model and the Optimal Sensor
Placement problem

We study in this section the performance of a linear
estimator of the cumulative flows. Let Em ⊆ E be a generic
set of cells in which sensors are placed, and consider the
following simple linear measurement model

y = HEmf + η (2)

where
• ys is the measurement of the s-th sensor, namely fe+ηs

if the s-th sensor is located on link e;
• HEm ∈ {0,+1}p×n, p being the number of sensors,

with [HEm ]se = 1 if the s-th sensor is located on link



e, and [HEm ]se = 0 otherwise, so that HEm1 = 1 and
1THEm1 = p;

• η is a random noise vector with zero mean1 and
covariance matrix Σnom. For sake of simplicity, we
assume that noise components are independent with
same variance σ2

nom, so that Σnom = σ2
nomI .

Let V ∈ Rn×r, r = rank{L̄}, be a matrix whose columns
are an orthonormal basis of the right kernel of L̄T , i.e.,
L̄TV = 0 and V TV = I . Since f belongs to the kernel
of L̄ by Eq. (1), there exists a vector z ∈ Rr such that
f = V z. Therefore, we can write y = HEmV z + η.

We consider a linear estimator ẑ = Kzy+ qz , Kz ∈ Rr×p

and qz ∈ Rr. The Best (minimum variance) Linear Unbiased
Estimator of z is then obtained solving

minKz,qz E[(z − ẑ)(z − ẑ)T ]
s.t. E[z − ẑ] = 0

ẑ = Kzy + qz

(3)

Standard and straightforward computations show that (3)
is equivalent to

minKz KzΣnomK
′
z

s.t. KzHEmV = I
(4)

and qz = 0. The solution to the previous problem is

Kz = (V THT
EmΣ−1

nomHEmV )−1V THT
EmΣ−1

nom ,

with error covariance E[(z − ẑ)(z − ẑ)T ] =
(V THT

EmΣ−1
nomHEmV )−1. Consequently, the BLUE of

f is

f̂ = Kfy = V (V THT
EmΣ−1

nomHEmV )−1V THT
EmΣ−1

nomy

and its error covariance is

Vp(Em) = E[(f − f̂)(f − f̂)T ]

= V (V THT
EmΣ−1

nomHEmV )−1V T .

The quantity Vp(Em) depends on the matrix of splitting
ratios and on the nominal variance of the sensors, two given
quantities, and on the positions of the sensors, namely on
Em. In the following, we use indeed Vp(Em) as a metric to
measure the performance of the placement Em. Clearly, with
no additional constraint, the optimal placement is simply to
equip every cell with a sensor. These devices, however, have
a non-negligible purchase and maintenance cost, which has
to be considered when designing a sensor network. In this
paper, we make the simplifying assumption that the cost of
a network over the lifetime of the network is proportional to
the number of sensors via a coefficient c > 0.

The problem that we want to address is the following
Optimal Sensor Placement problem

minEm trace {Vp(Em)}+ c|Em| (5)

The optimal solution of the previous problem trades off
between network performance, measured as the trace of the

1The case of non-zero mean noise, for example due to more missed
vehicles than overcounting, can be treated analogously. We consider the
zero mean scenario for sake of simplicity.

estimator error covariance, and the total cost of the network:
while the former tends to increase the number of deployed
sensors, and also to position them properly, the latter aims
to reduce it as much as possible.

The problem is inherently combinatorial, and the deter-
mining optimal positions of the sensors, namely, the optimal
Em, becomes intractable even for very low network dimen-
sions. In this paper we propose a different strategy, detailed
in the next section, after a brief discussion on the minimum
required number of sensors.

C. On the minimum number of sensors

Before proceeding, we quickly prove that the minimum
number of sensors to estimate the vector of flows is equal to
the number of onramps of the system. Assume by relabelling
the cells that origin cells are the first 1, . . . , |O| cells. Then
the matrix L can be partitioned as

L =

[
−I 0
Lon Lnn

]
and notice that L̄ =

[
Lon Lnn

]
. Consider the dual graph

Gd = (Vd, Ed) in which Vd = E \ O and (e, j) ∈ Ed if
Lej 6= 0. Then it is easy to see that LT

nn is a sublaplacian
of Gd, namely, it is a Metzler matrix with

∑
j Lej ≤ 0. The

following result is adapted from [13].
Lemma 1: Let G = (V, E) be a graph and J ∈ RV×V be

a weighted sublaplacian of G. Then all the eigenvalues of
J have negative real part except possibly eigenvalues in 0.
Moreover, if S is the set of nodes v for which

∑
u Jvu < 0,

then J is Hurwitz if for every u there exists a directed path
in G from u to a node v ∈ S.

In our case, J = LT
nn and S is the set of cells directly

following an origin cell. Since by assumption for every cell
e there exists an origin j ∈ O and a path from j to e,
then there must also exist a k ∈ S and a path from k to
e, so that the assumptions of Lemma 1 are thus satisfied.
Therefore, Lnn is Hurwitz and thus invertible, and in turn L̄
is a full rank matrix, with rank m = |E \ O|, the number of
non-onramp cells, and its kernel has rank r = |O|, namely
rank {V } = r = |O|.

III. RELAXATION VIA VIRTUAL VARIANCES

It is easy to realize that links in which sensors are not
present can be though of as links with sensors whose variance
is infinite. Indeed, if by convention we consider +∞ to be
an admissible variance, the previous problem is equivalent
to assigning a virtual variance σ2

e to each sensor, and decide
for which it should be σ2

e = σ2
nom, and for which it should

be σ2
e = +∞. With this interpretation, we can set Em = E ,

so that HEm = I .
Let Σ be the (diagonal) matrix of virtual variances, and let

the corresponding trace of error covariance be denoted, with
an abuse of notation, Vp(Σ). Our approach is based on the
intuitive idea that by increasing the variance on the sensors
that are not in the solution to Eq. (5) the quantity Vp(Σ)
does not increase much.



More formally, we consider thus the following problem

minΣ∈Dn
trace

{
V (V T Σ−1V )−1V T

}
+ f(Σ)

s.t. Σ ≥ Σnom
(6)

where f(Σ) is a decreasing function of the diagonal elements
of Σ. Notice that Σ is the optimization variable in (6): by
reducing the virtual variances, namely, the diagonal elements
of Σ, the trace of the error covariance decreases and the term
f(Σ) increases, and viceversa.

For sake of simplicity, let f(Σ) = 1T Σ−11. With the
change of variables Ω = Σ−1, Ω > 0 diagonal, and noticing
that trace

{
V (V T Σ−1V )−1V T

}
= trace

{
(V T Σ−1V )−1

}
by known properties of the trace and because V TV = I , we
obtain the following problem

minΩ∈Dn
trace

{
(V T ΩV )−1

}
+ γ1T Ω1

s.t. 0 ≤ Ω ≤ Σ−1
nom

(7)

Once a solution Ω is found, we obtain the solution of (6) by
Σ = Ω−1; then, we discard all links whose virtual variance
is above a certain threshold. We refer to this procedure as
the Virtual Variance algorithm. Notice that if the solution
provides high virtual variances at locations where sensors
are redundant then this is effectively a way to select the
most important cells where to place sensors.

This is however not enough to solve the problem. As
numerical simulations show, it is often the case that (7) is
solved by assigning low virtual variances to all sensors of
the network, rather than keeping it low in some of them
and high in others. In order to enhance diversity between
sensors, we enrich the cost with a further term that penalizes
homogeneity and is reminiscent of works on dissensus (as
opposed to consensus) in multi agent networks. Our choice in
this paper is the following: let W ∈ Rn×n−1 be an orthonor-
mal base of the subspace orthogonal to 1. The additional
considered term is then proportional to e−1

TW∗Ω1, which
is, as required, a function that decreases as the diagonal
elements of Ω become more and more different. Following
this idea, we propose the following optimization problem to
solve the original combinatorial problem

minΩ∈Dn
trace

{
(V T ΩV )−1

}
+

γ1T Ω1 + κe−1
TW∗Ω1

s.t. 0 ≤ Ω ≤ σ−2
nomI

(8)

which, notice, is convex in the diagonal entries of Ω. Here
γ, the total variance weight, and κ, the discrepancy weight,
are tunable parameters. In particular, notice that high γ
indirectly penalizes the number of sensors, thus yielding to
solutions with higher virtual variances at the expense of poor
performance. As already mentioned, the cells over which a
sensors is to be placed are those whose virtual variance,
computed via Σ = Ω−1, is below a certain threshold.
Numerical simulations have shown that the resulting virtual
variances are distributed in a highly bimodal way, the low and
the large ones being different by several orders of magnitude,
thus making easy to distinguish among the two groups.

A. Optimal Sensor Placement with Location constraints

It can be the case, due for example to physical constraints,
that some cells cannot be equipped with sensors. This section
shows how to adapt the proposed approach to this case.

In particular, let Eam ⊆ E , |Eam| = k, be the subset of
available cells, and let HEam ∈ {0,+1}k×n be built as in
Section II-B. Then the following problem

minΩ∈Dk
trace

{
(V THT

Eam
ΩHEam

V )−1
}

+

γ1T Ω1 + κe−1
TW∗Ω1

s.t. 0 ≤ Ω ≤ σ−2
nomI

(9)

is a restriction of (8) once we constrain sensors to be placed
on cells in Eam only, and the diagonal entries of Ω are the
inverse of the virtual variances on the cells in Eam. The
matrix W is defined as in the previous section, but with
suitable dimension (k × k − 1). As in the general problem,
cells are chosen only if the corresponding virtual variance is
below a certain threshold.

Remark 1: By the discussion in Section II-C, the mini-
mum number of sensors is r = |O|. As such, if |Eem| < |O|
the problem (9) is not well posed and the solution will only
have very high virtual variances. Clearly, such a solution is
not acceptable and should be discarded.

B. Optimal Sensor Placement with Number of Sensors con-
straints

The second scenario that we discuss consists in imposing a
constraint on the maximum number of chosen sensor, which
might be due to hard budget constraints.

Our solution is based on the following iterative approach:
• Initialization: set γ(0) and κ to chosen nonnegative

values; tmax to the maximum number of iterations;
nmax to the maximum number of sensors;

• At the t-th step
– Solve (8) with γ(t);
– If the Virtual Variance algorithm yields a solution

with number of sensors less than nmax, or if t ≥
tmax, stop;

– Otherwise, set γ(t + 1) = g(γ(t)), where g is an
increasing function of its argument, and iterate.

Since, as discussed in the previous sections, γ weights
the penalty to low variances, by iteratively increasing it the
solution to (8) tends to exhibit more and more high virtual
variances, thus reducing the selected number of sensors.

Remark 2: Again by the discussion in Section II-C, the
specified maximum number of sensors cannot be be less than
r = |O|. If this is not the case the algorithm either does not
find a solution and simply cycles until the last iteration step
tmax, or numerically finds a solution with an extremely high
trace

{
(V THT

Eam
ΩHEamV )−1

}
.

IV. NUMERICAL EXPERIMENTS

In this section we present the results of two numerical
experiments. In the first, we solve the problem of Optimal
Sensor Placement in a small (but not trivial) regular grid
over which we run an exhaustive search, thus allowing
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Fig. 1. The regular grid network used in the numerical experiment.
The green dots correspond to the 8 cells selected by the Virtual Variance
algorithm with γ = 2 and κ = 20. The red dots correspond to cells selected
via exhaustive search when the number of possible sensors is 8.

us to explicitly compare the result of the Virtual Variance
algorithm with the optimal solution; in the second, we apply
the procedure to the real-world case of the peri-urban freeway
“Rocade Sud” in Grenoble, France.

A. Regular grid

We consider the 25 cells regular grid illustrated in Fig-
ure 1. We assume that all sensors have a nominal variance
of σ2

nom = 1 and that the cost of each sensor is c = 1. First
of all, we solve by exhaustive search the problem (5) for
|Em| = 4, 5, 6, . . . , 21, considering for each possible number
of sensors all possible combinations of cells and finding that
which minimizes Vp(Em). Then, we run the proposed Virtual
Variance algorithm with total variance weight γ = 2 and
discrepancy weight κ = 20, setting the lower threshold on
the virtual variance for discarding a sensor to Td = 100.

The results are shown in Figures 1 and 2. In the former,
we mark the 8 cells chosen by the Virtual Variance algorithm
with a green dot, and the optimal cells when the number of
possible sensors is 8 with a red dot. As it can be seen, both
procedures place the majority of the sensors at the boundary
of the network. The cost between the two solutions is not
very different, as it can be observed in Figure 2. Here, we
plot with crosses the cost V (h) = trace {Vp(h)} + ch for
h = 4, 5, 6, . . . , 21, where Vp(h) is Vp(Em) with |Em| =
h and Em is the optimal placement. The optimal trade off
between cost and performance is in this case 6, as further
increasing the number of sensors is not beneficial. The figure
also shows that the solution of the Virtual Variance algorithm
has 8 sensors, and plots as a circle the corresponding cost
trace {Vp} + 8c. As it can be seen, not only the Virtual
Variance algorithm finds a solution with a number of sensors
that is close to the true optimum, but also, for that number
of sensors, is able to place them almost in the optimal way.

B. Rocade Sud

Our second experimental setting is the Grenoble Traffic
Lab (GTL) [14], a network of sensors deployed for moni-
toring and research purposes along the “Rocade Sud”, a 12
km long freeway surrounding the town of Grenoble, France,

4 6 8 12 16 21
10

15

20

25

C
o
st

V
(h
)

Number of sensors

Fig. 2. Results of the exhaustive search and of the virtual variance
algorithm. Crosses represent the cost of the true optimal placement of
4, . . . , 21 sensors. The Virtual Variance algorithm provides a solution with
8 sensors, with cost plotted as a circle.

Fig. 3. The Grenoble Traffic Lab sensor network in Grenoble.

see Figure 3. The network consists in 135 magnetometers
buried in the asphalt on both lanes of the main line and on
each onramp and offramp, totalling 68 sensing locations. For
our purposes, each sensing location will correspond to one
sensor. For a detailed report on the GTL, we refer to [14].

The Rocade is partitioned in such a way that each cell
includes one sensor; furthermore, for sake of simplicity, we
do not consider onramps and offramp, limiting our attention
to the main line. The corresponding network consists of 46
cells, and a stylized version of it is shown in Figure 4.

To estimate the matrix of splitting ratios R, we considered
a period of data from the ten days 1st - 10th of April, 2014
(excluding the 5th and the 6th, weekend days), all typical
working days, during the six hours time period 6:00 - 12:00.
We gathered the cumulative measured flows in all 68 cells
and we used them to estimate the matrix R as follows: for
each junction v, let E−v and E+

v be its incoming and outgoing
cells, respectively. Also, let f−v (d) and f+

v (d) be the vectors
of cumulative flows on the incoming and outgoing flows at
junction v for day d, namely, f−v (d) = [fe(d)]e∈E−v , and
analogously for f+

v (d). Let F−v = [f−v (1), . . . , f−v (8)] and
F+
v = [f+

v (1), . . . , f+
v (8)] be the collection in matrices of

such flows. Also let Rv ∈ RE−v ×E+v be the local matrix of
splitting rations, namely, let [Rv]ej be the splitting ratio of
cell e ∈ E−v towards cell j ∈ E+

v .
Then using Eq. (1) we have RT

v F
−
v ≈ F+

v , so we can cast,
for each v ∈ V , the problem of estimation of the matrix of
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Fig. 4. Stylized representation of the main line part of the Rocade Sud.
White ovals represents junctions of the graph. The selected positions of the
17 fixed sensors by CNIR are marked by red dots, those of the 14 sensors
by the virtual variance algorithm by green dots.

splitting ratios as the optimization problem

minRv
||RT

v F
−
v − F+

v ||2
s.t. Rv1 = 1

[Rv]ej ≥ 0,∀e ∈ E−v , j ∈ E+
v

(10)

The matrix of splitting ratios is then projected over a ma-
trix consistent with the graph made of the cells on the main
line only, simply deleting rows and columns corresponding
to non-main line cells, and renormalizing the rows of the
resulting matrix in such a way that the row sum is 1.

We did not run an exhaustive search due to the relatively
high dimension of the network. Instead, we compare the
results with the locations of fixed loops installed for moni-
toring purposes by the Government Agency Centre national
d’information routiére (CNIR) [15], which are placed on the
cells marked with a red dot in Figure 4.

We run the Virtual Variance algorithm in three scenarios:
1) unconstrained scenario with total variance weight γ = 0.2
and discrepancy weight κ = 20; 2) unconstrained scenario
with γ = 1 and κ = 20; 3) constrained scenario with number
of sensors at most 10, initial γ = 0.2, and κ = 20. We
assume that σ2

nom = 1 and that the cost per sensor is c = 1.
The results are summarized in Figure 4 and Table I.

In the table we provide the optimal number of sensors
computed via the Virtual Variance algorithm, as well as the
corresponding estimator error covariance Vp(Em) and the
total cost V (Em) = Vp(Em) + c|Em|. In Figure 4, cells
found in the unconstrained scenario with γ = 0.2 are denoted
using a green dot. As can be seen in Table I, our algorithm
requires 3 sensors less than the network deployed by CNIR,
while the error covariance increases only very slightly. In the
constrained scenario and in the unconstrained scenario with
high γ (which, as explained above, indirectly penalizes the
number of sensors), the error covariance Vp(Em) increases,
as expected. Interestingly, the chosen cells in the latter two
cases are subsets of the cells chosen in the unconstrained
case: in particular, in the constrained scenario all cells are
kept except 8, 11, 20 and 41, and in the unconstrained
scenario with high γ the algorithm further discards cells 17
and 20. Whether this is a feature of the present case study or
a more general property will be matter for future research.

Scenario γ
optimal

# sensors Vp(Em) V (Em)

Fix 17 3.8072 20.8072
Unconstrained 0.2 14 3.6867 17.6867
Unconstrained 1 8 5.6822 13.6822
Constrained, # ≤ 10 0.43 10 4.6703 14.6703

TABLE I
RESULTS OF THE FOUR CONSIDERED SCENARIOS.

V. CONCLUSIONS

This paper addresses the problem of optimal placement
of sensors in transportation networks. The problem, combi-
natorial by nature, is relaxed into a convex problem using
the concept of Virtual Variance. Future research includes 1)
addressing the case of uncertain matrix of splitting ratios,
2) providing theoretical guarantees on the robustness of the
proposed approach, such as under sensor failure, and 3)
investigating the scaling properties of the proposed strategy.
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