Optimal Sensor Placement in Road Transportation Networks using Virtual Variances

Enrico Lovisari 1 Carlos Canudas de Wit 1 Alain Y. Kibangou 1
1 NECS - Networked Controlled Systems
Inria Grenoble - Rhône-Alpes, GIPSA-DA - Département Automatique
Abstract : This paper addresses the problem of Optimal Sensor Placement in Road Transportation Networks. The per formance of the sensors is measured in terms of estimation error covariance of the Best Linear Unbiased Estimator of cumulative flows in the network over a long period. Sensors are to be placed in such a way that the sum of the error covariance and of a cost penalizing the number of sensors is minimized. The problem, inherently combinatorial, is relaxed using the concept of Virtual Variance. The resulting problem can be cast as a convex problem, whose computational load ismuch lower than the original combinatorial problem. Several variations are discussed, and the algorithm is applied to a regular grid network, for which an explicit comparison with the true optimum is offered, and, using data from the Grenoble Traffic Lab sensor network, to the real-world scenario ofRocade Sud in Grenoble, France.
Type de document :
Communication dans un congrès
54th IEEE Conference on Decision and Control, CDC 2015, Dec 2015, Osaka, Japan
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01185525
Contributeur : Enrico Lovisari <>
Soumis le : vendredi 18 septembre 2015 - 12:04:31
Dernière modification le : jeudi 1 juin 2017 - 21:24:08
Document(s) archivé(s) le : mardi 29 décembre 2015 - 08:39:10

Fichier

OptimalPlacementPaper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01185525, version 1

Collections

Citation

Enrico Lovisari, Carlos Canudas de Wit, Alain Y. Kibangou. Optimal Sensor Placement in Road Transportation Networks using Virtual Variances. 54th IEEE Conference on Decision and Control, CDC 2015, Dec 2015, Osaka, Japan. <hal-01185525>

Partager

Métriques

Consultations de
la notice

213

Téléchargements du document

85