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Data fusion algorithms for Density Reconstruction
in Road Transportation Networks

Enrico Lovisari, Carlos Canudas de Wit, and Alain Y. Kibangou

Abstract— This paper addresses the problem of density re-
construction in traffic networks with heterogeneous information
sources. The network is partitioned in cells in which vehicles
flow from their origin to their destination. The state of the
network is represented by the densities of vehicles in each cell.
Density estimation is of crucial importance in future Intelligent
Transportation Systems for monitoring, control, and navigation
purposes. However, deploying fixed sensors for this purpose can
be very expensive. Therefore, most of fixed sensors networks
are rather sparse. On the contrary, recent technologies have
enormously increased the availability of relatively inexpensive
Floating Car Data. A data fusion algorithm is then proposed
to incorporate the two sources of information into a single
observer of density of vehicles. The efficiency of the proposed
algorithm is shown in a real scenario using data from the
Grenoble Traffic Lab fixed sensor network and INRIX Floating
Car Data on the Rocade Sud in Grenoble.

Index Terms— Road Transportation systems; Dynamical flow
network; Density reconstruction; Floating Car Data.

I. INTRODUCTION

The increase of the number of vehicles observed in
the last decades has steered crucial roads towards a state
of near saturation, exhibiting on a daily basis periods of
congested traffic [1], in turn causing severe economical and
environmental losses. Built upon recent technological and
theoretical advancements, Intelligent Transportation Systems
(ITSs) are expected to provide robust techniques for real-time
monitoring, prediction and actuation of traffic networks.

This paper studies the problem of estimating the density
of vehicles in traffic networks. Such an information allows
to forecast travel time and traffic evolution, therefore pro-
viding navigation suggestion to drivers and allowing traffic
managers to control the network through traffic lights, ramp
metering and speed limits [2], [3], [4], [5].

The main tool to estimate the state of the network are fixed
sensors, such as induction loops or magnetometers. These
devices are able to 1) count the number, 2) estimate the
density, and 3) measure the average speed of the vehicles
that cross a certain section of road in a period of time.

In addition, the spread of wireless devices allows new
sensing and communication capabilities. In particular for the
traffic application, any vehicle equipped with GPS devices
can act as a probe in the traffic and provide Floating Car Data
(FCD). If a non negligible fraction of vehicles acts as probe,
the collected data provides an estimate of the evolution of
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speed in the network. Due to privacy reasons, single vehicles
traces are usually not directly used, but rather aggregated as
average speed of vehicles in segments of road. Advanced
methodologies, such as the one employed by INRIX, ensure
a very fine spatial partition of the network, with segments
as short as 250 meters ([6]). Compared to fixed sensors,
this technology is less precise, but since it exploits existing
communication systems it is relatively less expensive and
already covers all major traffic networks.

In this paper we propose an algorithm that aims to
reconstruct the traffic density by fusing fixed sensors mea-
surements and Floating Car Data. We employ a macroscopic
model, partitioning the network in cells and assigning to each
cell a density of vehicles. The latter evolves dynamically
according to a first order mass-conservation law.

The most celebrated macroscopic traffic model is the
PDE based Lighthill-Whitham and Richards (LWR) model
[7], which is able to reproduce crucial phenomena such as
traffic shock waves, and a well known discretization of the
LWR-PDE is the Cell Transmission Model (CTM) [8]. Huge
efforts have been put in the last 15 years to calibrate the
CTM [9] and to unveil its system-theoretical properties [10].
Fusion of flow, density and speed measurements, mostly
considering single vehicles traces, has also been addressed.
Approaches range from signal processing techniques such
as the generalized Treiber-Helbing filter [11], to nonlinear
versions of the Kalman filter [12], to stochastic versions of
the three-detector model [13].

Our approach inherits from the CTM the cell-based topol-
ogy, but we do not directly employ the resulting dynami-
cal model. Instead, inflows and outflows are estimated on
the basis of the available flow measurements only, and
speed measurements are employed to compute a pseudo-
measurement of the density. These quantities are the inputs
for the density observer. In addition, we propose a gradient
descent method to calibrate the Fundamental Diagram, and
we implement the proposed solution using real fixed sensor
measurements from the Grenoble Traffic Lab [14], a sensing
network deployed along the Rocade Sud in Grenoble, France,
and speed FCD measurements provided by INRIX, one of
the most well known traffic solutions companies.

The remainder of the paper is organized as follows:
Section II formulates the problem and details the available
measurements. Section III describes the proposed solution,
while Section IV presents our numerical experiments. Fi-
nally, Section V draws the conclusions and presents several
future research directions.



A. Notation

The symbols R™, R} and R"*™ denote the sets of real
and positive real valued vectors of dimension 7, and of real
valued matrices of dimension n X m, respectively. For a finite
set A, the symbol R4 denotes the set of vectors indexed
by elements of A, and |.A| its cardinality. The transpose of
A € R™™™ is AT For a vector x € R™, £ > 0 is meant
component-wise. The symbol I denotes the identity matrix
of suitable dimension.

A graph G is a pair (V,€) where V is called the set of
nodes and £ the set of edges. Edges are equipped with two
functions ¢t : £ — V and h : £ — V, the head and tail
functions, respectively, so that e is the directed edge between
t(e) and h(e). We allow for parallel edges, namely, edges
having the same head and tail, but not for loops, namely,
edges whose head and tail coincide. A path of lengthn > 2 is
a sequence of edges ey, ..., e, that are consecutive, namely,
such that h(e;) = t(e;41) fori = 1,...,n — 1. A path of
length 1 is a path made of a single link.

II. PROBLEM FORMULATION

A Transportation Network is a graph G = (V, ), where
junctions v € V are interfaces between cells e € £, and
multi-lane roads are partitioned in sequences of parallel cells.
Cells that carry vehicles in and out from the network are
called onramps and offramps, respectively, and each cell e
lies on the path from an onramp to an offramp. Time is
discrete and slotted in intervals of length 7 > 0. On each
cell e € £ we denote by p(t) the density of vehicles, in
vehicles per km (veh/km), during the ¢-th time slot. The state
of the network p(t) = [pe(t)]ece changes dynamically in
time according to the first-order model

pelt+1) = pelt) £ (0 — F) ()

where /. is the length of cell e, and fi(t) and fout(t) are
the inflow and the outflow at cell e during the ¢-th time slot.

The fraction of vehicles on cell e that turns into the cell
7, the splitting ratio from e to j, is denoted R.; > 0. If j
does not follow e, then R;. = 0, and Zj€£ R.; <1, with
strict inequality at offramps. By definition of splitting ratios,
one has fén =3 jee R]‘e f]‘?“t, which, stacking inflows and
outflows into vectors f™ and f°U%, is written in matrix form

fin _ RTfout (2)

where the matrix R = [R.;| is the matrix of splitting ratios.
In this paper we assume that R is fixed and predetermined.

As a Godunov scheme for the LWR-PDE model, the
CTM and derived models postulate that the outflow fou*
on cell e depends on the density of vehicles on e and on
cells immediately following e. We adopt a different point of
view and renounce to explicitly determine the flow-density
relation. The sole assumption that we make is the standard

fsm = Peﬂe(P)ave €& (3)

namely that the outflow from a cell is the product of density
and average speed of vehicles on the same cell. While in

FCD segment s(e) = s(j) = s(k)

Fig. 1. A stretch of road partitioned in cells and FCD segments. Splitting
ratios are shown from a cell e to following cells, j and k. A FCD segment
including, among others, cells e, j and k, is also shown.

the CTM the speed is a function of the density of vehicles
around cell e, we will leave it unmodelled. The reason is that,
as it will be clarified in the following, we assume having
measurements of speed in each cell, so there is no need
to model its dependence on the state of the network. We
shall consider from now on the dynamics of the real system
to be dictated by Egs. (1)-(3), where v.(p), e € &, is an
unmodelled function of the local state of the network.

For data fusion and estimation purposes, we make a further
simplifying assumption, writing

Ve = Pe(pe),Ve € & )

where @, is the flow of vehicles at the sensor locations.
The graph of . (-) is called the Fundamental Diagram on
cell e, and it is usually supposed to be a concave function
with ©(0) = p(p*™) = 0, where p/*™ is the jam density
(standard values for p®™ varying from 200 to 300 veh/km).

A. Available measurements

As already mentioned, in this paper we consider a scenario
in which heterogeneous measurements are available.

1) Flow and density measurements: Measurements of
flows and of density are obtained via fixed sensors, which
count the number (flow) and estimate the density of vehicles
that, during a time slot, cross the section of road where
they are placed. Without loss of generality and for sake of
simplicity, we assume that a new set of flow and density
measurements is available at every time slot, so we can write

e (t) = fOU(t) Fwi(t), ec&™ )
P (t) = pe(t) +wl(t), e€&™

where €™ C & is the set of cells equipped with sensors,
@7 (t) and p*(t) are flow and density measures at time ¢, and
w?(t) and w?(t) are measurement errors whose stochastic
properties depend on the performance of the sensor as well
as on road and weather conditions, with sources of noise
ranging from temporary inability to detect changes of the
magnetic field, too fast or too slow vehicles, etc.

2) Speed measurements: As mentioned, vehicles equipped
with GPS devices can act as proves and communicate to I'TSs
Floating Car Data including their position and speed (traces).
Since for privacy reasons traces of private vehicles cannot be
used, roads are divided into segments, let S denote the set of
all segments, and data are aggregated as average speed per
segment s € S. Notice that the resulting measurement is an
average of the speed of a fraction of vehicles in the road.

Floating Car Data are obtained through existing com-
munication architecture, making them less expensive than



fixed sensors and available on great part of the major roads.
However, their precision is related to their penetration rate
and therefore is not as high as fixed sensors, and moreover
they cannot distinguish vehicles on different lanes. Finally,
FCD are usually averaged over a relatively long period of
time. For example, while the GTL sensor network provides
measurement every 15 seconds, FCDs are aggregated by
INRIX every minute, standard practice being around 5/10
minutes. We will assume that new speed aggregate data
is available every N time instants, i.e., at times N, 2N,
3N, ..., corresponding to the average speed in the periods
[0,N — 1],[N,2N — 1], etc., respectively. As such, speed
measurements can be formally written as'

vff| te[0,N —1]
e P(t) = { FeD

Vsoy (k), te€[kN,(k+1)N —1] ©

where
e vf > 0 is the freeflow speed on cell e, namely, the
speed of vehicles in low density regime;

. vg((g?(k) is given by

1
Uf(g?(k) = m Z

j€s(e), T€EL,

v; () + wiey (k)

where s(e) denotes the segment of which e is one of
the cells (see Fig. 1), wf(g?(k) is a measurement error
whose stochastic properties depend on the performance
of the sensor as well as on road and weather conditions,

andZ, = {7: |§£] - 1< % <&}

ITII. A NONLINEAR OBSERVER FOR TRAFFIC NETWORKS

Egs. (1)-(2) cannot be used as they are to observe the
system, as errors in flow measurement, unavoidable in real
systems, are integrated in the dynamics, therefore possi-
bly producing unbounded estimation errors. To overcome
this difficulty, we consider the following Luenberger-like
observer, in which ¢™(t) = [p™(t)]cce,, and vFCP(t) =
[vFCD(1)]cce are the stacked versions of the measurements,

pe(t+1) = pe(t) + - (F(1) = fore.(1))
+K(ﬁe(t) - pe(t))

(1) = fr(em (1) vees
() = For(em (1)
elt) = pe(™ (1), v™ (1))

(7

where

o pc(t) is the estimate of the density on cell e at time ¢;

o fin(t), fout(t) are estimates, based on the flow mea-
surements, of inflow and outflow in cell e at time ¢;

e pe(t) is an instantaneous estimate, based on flow and
speed measurements, of the density on cell e at time ¢;

e K is a tunable gain trading off between flow and instan-
taneous density estimates. Notice that it should not be
too large, as to avoid meaningless negative densities.

I'The choice to set the speed measurement to freeflow speed for the first
N samples, when no information is available, is done uniquely for the sake
of simplicity, and can be replaced by any other educated guess.

Our aim is to design the maps
fin — {f;n}eeg : Rim _ Rg
fout _ {fgut}eeg : Rim N RE
p~ = {ﬁe}eeg : Rim X Ri{ — Rg
in such a way that the observer provides a good estimate of
the real density of the system.

A. Proposed solution

The procedure consists of two steps, namely offline cali-
bration and online update.

1) Offline calibration: In this section we propose a simple
solution for calibrating the Fundamental Diagram, namely,
for estimating the function . (-) on the cells ¢ € E™. We
adopt a linear-quadratic Fundamental Diagram

,Uff
Pe(p) = { P

ae;02 +bep + Ce,

p < pe
P> pe
where

 p¢ is the critic density, which separates the freeflow low-
density region [0, p¢), in which vehicles do not influence
one each other, from the high-density congested region
(pS, pia™], in which speed decreases with density;

o Pl is the jam density, at which vehicles stop;

o vg > 0 is the freeflow speed on cell e;

o the flow in congested region is a convex quadratic

function of the density, where for for consistency

Qe (pg)2 + bepg +ce = ’ngg
Qe ( 'eam)Q + bepjeam +c.=0
ae >0

This choice is driven by the empirical observation that
the standard triangular Diagram tends to overestimate the
flow in congestion. Other solutions include the inverted-\
Fundamental Diagram [15], but the resulting model involves
hysteresis and becomes more complex.

Let e € £™ be a cell equipped with sensors, and denote
by {(pr, vr) ke, K =1,..., K, the set of K density and
flow measurements used as learning set. Calibration of the
Fundamental Diagram involves two steps (we write p¢ and
C instead of p¢ and C, for sake of notation)

o Gradient descent algorithm for estimation of p¢ and
C = v%p°: in the first step, we estimate the critical
density p¢ and the capacity C, namely, the nominal
maximum flow, by solving the non-linear and non-
convex minimization problem

mingpe oy Vipe,o) = 21 (06 = 0(pe,0) (P1))*

s.t. 0<p®<pm
Cc>0
@=lgt., "5
P(pe,c)\T) = jam _ .
(p ) %a T > pc
®)

To solve (8) we propose the following gradient descent
with diminishing stepsize algorithm



- Basic step: initialize p§j, Cp. A choice is p§ = 20
veh/km (vehicles start influencing each other when
their relative distance is less than 50 meters), and

Cop = vlimitpe where vi™it is the speed limit on
cell e normalized by the sampling time 7’;

- n-th step: let (p¢,C),) descend along the gradient

of the cost, namely
C C 6
Pn+1 = Pn + Evpc‘/(pc,(f)
)
Cn+1 = Cn + chVv(pcﬁc)

where the gradients V jc V(e oy and Vo V(e oy are
computed at (p°,C) = (pS_,,Cp—_1), and § > 0 is
a fixed initial step size;
o eriterion: | Pn Pr—1
— Stopping criterion: stop if || [CJ - [an || <e
for some small threshold € > 0.
« Calibration of the congested part: given (p¢, C), calibra-
tion of the quadratic function for the congested region
can be cast as the following quadratic problem

min (g p,c) ZkeIFF(pc)(Wc - (api + bpi, + ¢))?
s.t. a(p®)? +bp+ce=C
jam 2 jam (9)
a (p’ ) + b +¢c=0
a>0

which can be readily solved using off-the-shelf tools.

The Fundamental Diagrams can be extended on cells e €
&\ &, by convex interpolation of the parameters p¢, C, a,
b and ¢, using those calibrated in the closest cells e € &,,,
with weights proportional to the relative distance.
2) Online density reconstruction algorithm: The online
algorithm proceeds as follows
« at the beginning of the ¢-th time slot
— receive the measurements {¢}"(t)}cesm. The vec-
tor of estimate of the outflows f°U*(¢) is computed
as solution of the following minimization problem

Iz — BT for)2
7 S (F2 = @7 (1)

(10)
which aims both to match outflows and measure-
ments and to balance the outflows according to the
splitting ratios, as if the network were at steady
state. The parameter  trades off between the two:
the higher, the more flows on cells in £™ will be
forced to match the measurements, the lower, the
more the solution will be as if the system were at
steady state. Finally, f(¢) = RT fout(t).

— receive the measurements {v!*(¢)}.cs when avail-
able, or hold the previous measurements;

— For each cell e, assume that the outflow can be
approximated by the local flow ¢. = @c(pe)
determined by the Fundamental Diagram. Compute
the two possible densities pl (freeflow) and p?

(congested) corresponding to flow foU(t);

min fout

s.t. feut >0

— For each cell e, compute the two corresponding

f()ut 9 o fout .
;1 and Ue(pe) = ;2 5

- Set pe(t) = argmin;—q2{|ve(pl) — v*(t)|} as
a pseudo-measurement of the density, Since it is
solely based on latest measurements of flows and
speed, it is very noisy, especially in congestion
regime. Therefore, we don’t use it directly;

— For each cell e € &, let the density estimate evolve
according to the observer equation (7).

velocities v, (pl) =

IV. DENSITY RECONSTRUCTION - EXPERIMENTAL
RESULTS

Our experimental setting is the Grenoble Traffic Lab
(GTL) [14], a network of sensors deployed for monitoring
and research purposes along the “Rocade Sud”, a 12 km long
freeway encircling the town of Grenoble, France (Fig. 2,
upper panel). The network consists of 135 magnetometers
buried in the asphalt on both lanes of the main line and
on each onramp and offramp, totalling 68 sensing locations.
Fig. 2, upper panel, shows the position of the 22 sections
of the main line equipped with sensors. With few excep-
tions, each sensing location consists of two magnetometers
deployed in pairs at a known distance. On each sensing
location and every T' = 15 seconds, the system provides
flow, occupancy and speed measurements. Occupancy o,
is defined as the percentage of the last period of T' =
15 seconds a vehicle was sitting over the sensor, and is
approximatively related to the density as p. ~ logﬁ, where
lave 1s the average length of a vehicle (in km). Therefore,
we assume that density is measured directly. Fig. 2, lower
panel, shows a stylized representation of the Rocade Sud,
the positions of the 68 sensing locations, and the distance
between consecutive measurement sections along the main
line. For a detailed report on the GTL, we refer to [14].

We partition the network in cells in such a way that each
cell comprises the space between two consecutive sensing lo-
cations. As such, the numbered circles in Fig. 2 also represent
cells. We use Floating Car Data provided by INRIX, one of
the main navigation and traffic monitoring companies. The
Rocade has been partitioned into FCD segments, and average
speed is computed in each FCD segment every 1 minute.
FCD segments cover the whole main line of the Rocade and
most onramps and offramps, but lanes are not distinguished
along the main line. FCD segments are represented in Fig. 2
as rectangles encircling several sensing locations/cells.

For our experiments, and to prove that the method per-
forms well even with sparse equipment, we consider a very
limited subset of he available sensors. In particular, we only
use the sensors on the 9 sections shown in light blue in Fig. 2,
of which 8 correspond to positions in which loops inductors
have been deployed by the Government Agency Centre
national d’information routiere (CNIR) [16] for monitoring
purposes. No information from ramps is used.

We calibrate the Fundamental Diagrams employing data
from April 10th, 2014, a working day (a Thursday) exhibiting
standard traffic pattern:

o very limited night time traffic;
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Fig. 2. The experimental setting: the town of Grenoble and the Rocade
Sud (upper panel), and a stylized version of the freeway (lower panel). The
positions along the main line of the 22 sections of the main line in which
sensors have been placed is shown as red pins. The positions of the 68 fixed
sensing locations are shown in the stylized map. Each sensing location also
corresponds to a cell. Light blue circles denote fixed sensors that are used
in our implementation. Each rectangle represents one FCD segment, often
providing average speed measurements over more than one cell.

e a peak of congestion in the morning (8:00 - 10:00),
triggered by vehicles exiting the Rocade at the offramp
of Eybens (cells 37/38) and spilling back until Meylan;

« a second congestion triggered by vehicles entering in
A480 at Rondeau (unable to do so due to the high traffic
on A480), and spilling back until around Libération;

« a third, smaller, congestion triggered at Eybens around
14:00-15:00;

o medium/heavy but fluid traffic from 10:00 to 16:00

« a second peak of congestion in the afternoon, again
triggered by congestion at Rondeau at around 16:00,
spilling back on the whole freeway in around 60 min-
utes, and lasting around two hours.

The matrix of splitting ratios is set according to the
following rule of thumb:

e let e be a fast lane cell, and j and k be the following
fast and slow lane cells. Then R.; = Rc;, = 0.5;

o let e be a slow lane cell, and j and k be the following
fast and slow lane cells. If among the cells that follow
e there is not an offramp, then R.; = R, = 0.5.

Cell 37 — Fundamental Diagram

Flow [#/T]
f=2
I~

0 50

100
Density [#/km]

Fig. 3. Calibration of the Fundamental Diagram on the cell Eybens exit
- slow lane. The linear-convex Fundamental Diagram, calibrated using data
from April 10th, 2014, is shown in thick line. Dashed thick line represents
the corresponding linear Fundamental Diagram in congested regime. Each
cross is a (flow, density) pair measured on April 24th, 2014, one for each
time slot of 7" = 15 seconds during the whole day.

Otherwise, R.; = R, = 0.4 and R, = 0.2, where
r is the offramp cell that follows e;

o if e is an onramp cell and j is the following slow ramp
cell, then R.; = 1.

A. Validation

Our method was validated over a another Thursday work-
ing day, April 24th 2014. Calibration of the Fundamental
Diagram at sensing locations is illustrated in Fig. 3, which
shows in thick black the linear-quadratic Fundamental Dia-
gram, in dashed thick black the standard linear Fundamental
Digram in congestion regime, and as crosses the pairs
(density, flow) measured on April 24th, 2014. As standard,
data in freeflow are in good accordance with the linear part,
while data in congested regime are much more scattered.
As it can be observed, a standard triangular Fundamental
Diagram would overestimate the flows in congested regime
(dashed think line), while the convex quadratic curve better
captures the average flow-density relation.

The algorithm was implemented in Matlab on a com-
mercial laptop with 2.1 GHz i7-4600U CPU and 8 GB
RAM. The optimization problems were solved using Matlab
functions and the optimization system CVX [17], [18].

The results are reported in Fig. 4. For validation purposes
only, density measurements from all GTL fixed sensors are
considered ground truth. As such, the upper panel shows the
evolution of the “true” measured density in all the cells on
the main line, over the whole day. On the x-axis, the 46
sensing locations along the main line (numbers correspond
to the labels in Fig. 2), on the y-axis, the 5760 time slots
over the whole validation day (one slot every T = 15
seconds). Colors vary from green to yellow to red as density
increases, with a minimum of 0 vehicles per km (green) to
a maximum of p'¥™ = 200 vehicles per km (red). In the
lower panel, we show, in the same format, the results of
the density reconstruction. The estimation algorithm captures
the four congestions described above in a reasonably good
way, given the limited amount of information employed;
in particular, the two small congestions at Rondeau during
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Fig. 4. Numerical results of density estimation on all cells: measured
densities (upper panel) and estimated densities (lower panel).

the morning and at Eybens during early afternoon are both
detected. The biggest discrepancy between estimates and
measured data is around Eybens (cells 37-38) and can be
explained as follows: The offramp of Eybens is a critical
point at which many vehicles exit the Rocade, thus causing
congestion before it. However, that point belongs to a long
FCD segment running from Saint-Martin-d’Heres (cells 32-
33) to Eybens entrance (cells 41-42), which thus provides
a unique, rather low speed measurement, in turn yielding
a high density estimate over the whole segment. A second
obvious discrepancy is the smoothness of the reconstructed
densities in congested regime compared with more scattered
density measurements. While the former is related to the
smoothing effect of the first-order observer, the latter is due
to the high measurement rate of sensors, which well captures
stop-and-go phenomena on the Rocade.

V. CONCLUSIONS

This formalizes the problem of data fusion of hetero-
geneous sources of information for density reconstruction,
and proposes an easily implementable solution that employs
sparse fixed sensor measurements and ubiquitous Floating
Car Data. Calibration algorithms for the Fundamental Dia-
gram are discussed. Future research directions include and
are not limited to estimation of statistical properties of

measurement noises, development of theoretical guarantees
on maximum mean-square reconstruction error, calibration of
the matrix of splitting ratios, and extension of the considered
numerical scenario to part of the town of Grenoble.
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