Reconstructing 3-Colored Grids from Horizontal and Vertical Projections is NP-Hard: A Solution to the 2-Atom Problem in Discrete Tomography

Christoph Dürr 1 Flavio Guíñez Martín Matamala
1 RO - Recherche Opérationnelle
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : We consider the problem of coloring a grid using k colors with the restriction that each row and each column has a specific number of cells of each color. This problem has been known as the $(k-1)$-atom problem in the discrete tomography community. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for $k\geqslant 7$ the problem is NP-hard. Afterward Chrobak and Dürr improved this result by proving that it remains NP-hard for $k\geqslant 4$. We close the gap by showing that for $k=3$ colors the problem is already NP-hard. In addition, we give some results on tiling tomography problems.
Type de document :
Article dans une revue
Siam Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2012, 26 (1), pp.330-352. 〈10.1137/100799733〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01185264
Contributeur : Lip6 Publications <>
Soumis le : mercredi 19 août 2015 - 16:19:11
Dernière modification le : jeudi 11 janvier 2018 - 06:27:16

Identifiants

Collections

Citation

Christoph Dürr, Flavio Guíñez, Martín Matamala. Reconstructing 3-Colored Grids from Horizontal and Vertical Projections is NP-Hard: A Solution to the 2-Atom Problem in Discrete Tomography. Siam Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2012, 26 (1), pp.330-352. 〈10.1137/100799733〉. 〈hal-01185264〉

Partager

Métriques

Consultations de la notice

50