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Supervised classification has already been the subject of numerous studies in the 
fields of Statistics, Pattern Recognition and Artificial Intelligence under various appel­
lations which include discriminant analysis, discrimination and concept learning. Many 
practical applications relating to this field have been developed. New methods have ap­
peared in recent years, due to developments concerning Neural Networks and Machine 
Learning. These "hybrid" approaches share one common factor in that they combine 
symbolic and numerical aspects. The former are characterized by the representation of 
knowledge, the latter by the introduction of frequencies and probabilistic criteria. In the 
present study, we shall present a certain number of hybrid methods, conceived (or im­
proved) by members of the SYMENU research .group. These methods issue mainly from 
Machine Learning and from research on Classification Trees done in Statistics, and they 
may also be qualified as "rule-based". They shall be compared with other more classical 
approaches. This comparison will be based on a. detailed description of each of the twelve 
methods envisaged, and on the results obtained concerning the "Waveform Recognition 
Problem" proposed by Breiman et al.,4 which is difficult for rule based approaches. 

Keywords: Supervised classification, statistical methods, discriminant analysis, neural 
networks, classification trees, machine learning approaches, hybrid methods, waveform 
recognition problem. 

1. INTRODUCTION

1.1. Survey Motivation and Outline 

Supervised Classification is the problem of learning a classification function from 
examples. If these examples are patients described through a certain number of 
symptoms or images of digits described by pixel values, a classification function 

tcorresponding author. E-mail: gascuel@lirmm.fr 
*The authors are members of the French research group SYMENU which is composed of fifty
participants from ten laboratories. SYMENU stands for "Numerical-Symbolic Discriminatio,n 
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must predict the class of these elements, in other words an illness or a digit. The 
goal is to construct these classification functions by using a set of previously clas­
sified examples a.s the only a priori knowledge. This is called the learning set. The 
subject is vast, involving numerous applications, and has already been extensively 
explored in the fields of statistics, pattern recognition and artificial intelligence. 
Depending on the field in question, supervised classification appears under differ­
ent names ranging from discriminant analysis, discrimination and concept learning. 

Over the last ten years, several new approaches have appeared, in particular due 
to developments in the domains of Neural Networks and Machine Learning. These 
approaches share one common factor in that they facilitate the coexistence of sym­
bolic aspects, such as those found in example representation or in the manner in 
which the learned classification function is expressed, and numerical aspects,  such 
as the introduction of frequencies and probabilistic criteria. 

The aim of this paper, written by the French research group SYMENU, is to 
study these hybrid approaches, which combine symbolic and numerical aspects. We 
shall present a certain number of methods conceived (or improved) by members 
of our group. These methods issue mainly from Machine Learning and from re­
search on Classification Trees done in Statistics. They may also be qualified as 
"rule-based" in that they all use, in some respects, typically AI rules for form IF
description THEN class. We shall provide a presentation of these methods, which
should be simple but sufficiently complete, thus demonstrating the various ways of 
combining both the symbolic and numerical aspects, as well as the advantages and 
the inconveniences of these combinations. Besides, numerous other supervised clas­
sification approaches exist, which are mainly numerical and derived from Statistics, 
Pattern Recognition and Neural Networks. We shall present the most frequently 
used and cited of these methods. This will enable us to illustrate the specifici­
ties of hybrid, rule-based approaches. Moreover, the mere principle as well as the 
properties and recent developments of these classical methods often seem not to be 
well known by the Machine Learning community, and this paper could serve as an 
introduction to these aspects. 

In the last few years, several systematic comparisons of various methods on data 
sets have been published.6135162. In particular, King et al. provide a confrontation
between 17 well-known methods (CART, CN2, C4.5, SMART, . . .  ) on 12 real­
word sized problems. Our purpose is somewhat different. Most of the methods we 
present are original, or very recent. Therefore, we decided in favour of a precise, 
explanatory description of these methods, rather than an extensive experimental 
comparison which could be seen as untimely. To illustrate the differences among 
the methods presented, we have evaluated them according to a classical problem 
of supervised classification, that of "Waveform Recognition"4 which is known to be 
difficult for rule-based approaches. Our objective was to show experimentally that 
our original hybrid algorithms have better performances (on this difficult problem) 
than classical symbolic methods such as, for example, CART, and that they are not 
very far from well established numerical methods such as, for example, Fischer's 
linear discriminant function. 
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This paper is organized as follows. First, we shall define more formally the 
subject of supervised classification and introduce the notation (Sec. 1.2). A brief 
history will allow the methods to be contextualized (Sec. 1.3). Then, we shall outline
the main points of the hybrid approaches (Sec. 1.4). The waveform recognition
problem is presented in Sec. 1.5. A comparison of methods is not that easy to
accomplish, even on a particular application. Thus, a certain number of criteria 
have been retained which are presented in Sec. 1. 6. 

Tihe remainder of the article is devoted to a description of the methods them­
selves . In order to provide a sufficiently large scope of supervised classification, we 
first describe several classical methods: Sec. 2 addresses the main statistical ap­
proaches with particular emphasis on four classical methods; Sec. 3 describes Neu­

ral Networks, and. more especially the Multi-Layer Perceptron; Sec. 4 presents the
CART Classification Tree approach of Breiman et al. 4 Remaining parts are devoted 
to original contributions. Section 5 proposes the combination of Classification Trees 
and Fuzzy Sets. Sections 6-8 present methods based on the use of Decision Rules, 
similar to the rules of an expert system: the first adopts a combinatorial approach; 
the second describes "Decision Committees" which are a simple and comprehensible 
way of combining rules; the third relies on the use of a Genetic Algorithm. The two 
following parts look at methods derived from the Version Space approach43: Sec. 9 
proposes the combination of this approach and of a Hierarchical Clustering based 
pre-processing; Sec. 10 is also related to the Star Algorithm41 and is based on the
use of "constraints". The fina] sections (11 and 12) provide a general discussion of 
our results and observations, and conclude the paper. 

1.2. Supervised Classification 

Let us assume that we have a set of examples E, called the learning set, of cardinal 
n. As a general rule, this set constitutes only a small part of the entire range of
possible examples which is often infinite. Each example, which we shall denote (x, c) 
represents a pair (description, class). The description x belongs to the description 
space X. In the case where the description is of the value-attribute type, the
description space is a product space X = X1 x X2 x · · · x Xp, in which each Xj 
is the set of values possible for the jth attribute. The value of this attribute for a 
given description x is denoted as Xj. The class c of an example is an element of the
classes {Ci, C2, . . .  , C9}. The set E is thus partitioned into g subsets E1, E2, . . .  , E9,
of cardinal ni, n2, .. . , n9, respectively. In the special case where there are only two
classes, these are denoted C+ and C_. In this case, one frequently refers to the 
learning of a concept, the positive examples being those of E+ and the negative 

examples or counter examples are those of E_. Note that each example is assigned 
to a single class. However, the same description may correspond to several examples 
belonging to different classes. Therefore, the link between the description and the 
class is not necessarily functional, or deterministic. In practice, this is almost never 
the case as the description is generally incomplete and partially erroneous. 
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Our goal is to build a classification function from these learning examples, thus 
allowing a class to be attributed to a new example whose class is unknown. The 
general principle consists in constructing a function which will enable a good reclas­
sification of the learning examples. However this principle does not suffice, since the 
goal is to achieve, above all, good performance on the new examples. In order to 
estimate it, a test set is used which is independent of the learning set. In practice, 
we have a finite set of examples that we divide into one (or several) learning sets 
and one (or several) test sets. Due to the nondeterministic nature of the problems 
processed, and because the learning set generally constitutes only a small subset 
of the possible examples, it must be admitted that the classification function cho­
sen does not provide a perfect reclassification of the learning examples. Excellent 
results on the .learning set do not necessarily yield excellent test results, therefore 
a compromise between learning performance and test performance must be found. 
Moreover, one often wishes the learning procedure to provide a classification func­
tion containing explanations on the class partition observed on the data. 

1.3. A Brief History 

Supervised classification has quite a long history; our purpose here therefore will be 
to provide a limited scope of the subject. We shall concentrate on a broad outline 
highlighting the specificity of the hybrid approaches. 

The discriminant function of Fisher1 7 was one of the first methods to appear. In 
this method, examples are represented by points of RP, and classes are separated
by linear or quadratic surfaces which are optimal when the classes are Gaussian 
(cf. Sec. 2). The Rosenblatt Perceptron56 also uses a representation in RP with
linear decision surfaces while enabling an adaptive, or incremental, learning, which 
means that it iis capable of taking examples into account consecutively as each one 
"arrives". Current Neural Network models, in quite a number of cases, are direct 
descendants of the Perceptron (cf. Sec. 3).

The 1960's saw the development of several studies in pattern recognition, notably 
statistical pattern recognition. Duda and Hart15 and Fukanaga21 provide a general 
presentation of that period. Among these studies, Sonquist and Morgan64 produced 
the first works to appear on Classification Trees whose methods are still considered 
today as the pivots of the hybrid approach. Tree-based approaches are interesting 
from two points of view. On the one hand, they naturally integrate qualitative or 
symbolic representations; on the other hand, they contain a very high explanation 
power (cf. Secs. 4 and 5). They also constitute a nonparametric method class
in that they do not presuppose a data. model. Other nonparametric approaches 
were also developed; notably Parzen's Kernel method49 and the k-Nearest-Neighbor 
technique.11 These approaches are not only simple to implement, they also contain
remarkable asymptotic properties (cf. Sec. 2). Concerning binary data processing 
(represented in {O, 1 }P), it is worth mentioning the works of Bongard3 and those 
of Quinqueton and Sallantin,52 who present an alternative to Classification Trees 
and who are primarily responsible for some of the methods which will be presented 
below (cf. Secs. 6 and 7). 
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In the field of Artificial Intelligence, the development of supervised classification 
methods dates essentially from the beginning of the 1970's, with the famous "Arch 
Concept Learning" problem as devised by Winston.75 These methods contributed 
to the capacity to learn from structural example descriptions, thus abandoning 
the value-attribute model used in all of the above-mentioned approaches. Several 
repres·entation modes were envisaged, notably those based on semantic networks75 
and on predicate logic. 70 Mitchell43 showed that in the AI methods, a more or 
less explicit solution, or version, space exists, partially ordered by a generalization 
relation. Moreover, Mitchell proposed an algorithm to search this space (cf. Secs. 9 
and 10). Other methods were proposed, notably the Star algorithm,41 (cf. Secs. 8 
and 10) while the notion of generalization was also explored, 14 particularly within 
the scope of Inductive Logic Programming. 45 

Neural networks have come to the forefront due to the work of Hopfield33 on 
associative memory models, inspired by statistical physics. In the field of supervised 
classification, a decisive step was reached with the development of the Multi-Layer 
Perceptron. 57 The MLP associates the notion of hidden cells40 with a learning al­
gorithm of the stochastic gradient type, such as the backpropagation of the error 
gradient, thus enabling a break-away from the linear framework. Large scale appli­
cations have been. handled successfully, notably in the domain of speech processing60 
and character recognition. 12 

1.4. Hybrid Approaches 

Hybrid approaches comprise both neural network methods and other more typical 
AI methods as mentioned above. Neural networks are close to numerical methods, 
and the symbolic aspect appears mainly in the network architecture which is sym­
bolic by nature, and which expresses a priori knowledge on the problem processed.
This symbolic aspect appears also in recent studies which aim at giving explanatory 
virtues to the networks, especially by implementing rule extraction mechanisms.62 
Concerning AI methods, although originally symbolic, it was soon obvious that 
an overly logical approach,41 aiming to construct perfect classification functions on 
the learning set, was not the best solution. Thus the idea emerged of construct­
ing classification functions with "good" learning performance, this being quantified 
by statistical numerical criteria. 9•22 More generally, the proximity of the problem 
lends itself to a more natural cooperation between the statistical approach, the neu­
ral network approach or that used in Al For example, validation methods, of the 
cross-validation or bootstrap type, 28•65 naturally apply to "nonstatistical" meth­
ods. This is also the case for certain fundamental results produced by Vapnik and 
Chervonenkis,68 which can prove the asymptotic consistency of numerous meth­
ods, notably neural24 and those based on classification trees.4 Finally, numerous 
statistical algorithms may be used, for example, to conduct data pre-processing47 
(Sec. 9).
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The hybrid approaches thus constitute a research domain, rather than a set of 
well defined methods. They take advantage of the tools and results from various 
fields - statistics, pattern recognition, neural networks and artificial intelligence. 
Among the main objectives pursued, the following may be mentioned: performance, 
whether in terms of calculation time or classification error rate; the explanatory 
nature of the learned classification function; the capacity to handle complex data, 
represented for example in predicate logic, which cannot be handled by conventional 
numerical methods. 

1.5. The Waveform Recognition Problem 

Waveform recognition is an artificial problem which was introduced by Breiman 
et al. 4 in the study of classification trees. In their book, these authors used two
illustrative applications: the digit recognition problem, and the waveform problem. 
With the former, their classification tree program, CART, achieves excellent results, 
in terms of both classification accuracy and tree size. And they chose the waveform 
problem precisely because it is difficult for classification trees, thus providing a 
better illustration of program behavior. Moreover, the first rule-based programs 
issued from machine learning do not solve the problem better. For example, CN29 
obtains results which are not as good as those of CART, while the SDL5 which 
relies on a heavy, simulated annealing algorithm, only slightly improves the CART 
performance. Therefore, we chose this problem for the same reasons as Breiman 
et al., and because it appeared challenging for our approaches.

The problem is to discriminate between three classes of waveforms. Each wave­
form simulates a quantitative chronological phenomenon observed in 21 regularly 
spaced instants. It is an object characterized by a point of R21.

1.5.1. Analytical class definition 

The three classes are obtained by combining three basic waves two by two. The
latter, which we shall denote hi, h2, and h3 are represented in Fig. 1. They are
unimodal and dephased. They are associated by a random convex combination 
before being perturbed by a random Gaussian noise. Thus, considered analytically, 
class C1, C2 and C3 elements are respectively conceived through the expressions:

x = uh1 + (1 - u)h2 + e, 

x = uh1 + (1 - u)h3 + e, 

x = uh2 + (1 - u)h3 + e,
where u is a random variable of uniform density on the [O, 1] interval, and where c 
is a random Gaussian centred vector, with a variance-covariance matrix unity. We 
also consider the classes to be equiprobable. 
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Fig.. 1. The three basic waves. 

It may be noted that in the absence of the e Gaussian noise, the three classes 
would be represented in R 21 by the three sides of the hi, hz and h3 summit triangle, 
as shown in Fig. 2. In this case, the problem would be deterministic. A perfect 
assignment function (without classification error) should consist in assigning each 
description x to the corresponding class on the side to which x belongs. The random
Gaussian noise will perturb these considerations. The effect produced is that each 
point of R 21 is an acceptable description in terms of the three classes, and the
problem is no longer deterministic. 

Fig. 2. Schematic representation of the three classes. 

Given that the classes are equiprobable, we can demonstrate that the minimal 
error assignment rule, or Bayes rule (cf. Sec. 2.1), consists in assigning a description 
x to the class whose conditional probability density is maximum. The assignment
areas are now not so easy to define. Nevertheless, we can predict that the bound­
aries, points of equilibrium between the conditional densities, trace "quasilinear" 
surfaces. In fact, we know that for symmetrical reasons, at least one of these bound­
aries is perfectly linear. This boundary corresponds to the vertical axis passing by 
h3 in Fig. 2. The other boundaries, represented in the figure by a dotted line,
are not necessarily linear, however they are most likely to be quite regular. More­
over, in the regions which are near the summit h1 and h2 of the triangle, regions 
of high uncertainty and high density, these boundaries must be well approximated 
by hyperplanes passing by (or close to) hi, respectively h2. The quasi linearity of
the optimal boundaries explains, to an extent, the success of certain methods such 
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as the statistical parametric methods and neural networks. We shall discuss the 
subject at greater length in what follows. 

According to Breiman et al.4 the error rate of the Bayes rule is around 14% for
this problem. No classification function, even if it is learned on an infinite number 
of examples, can expect to beat this performance. As the learning sets which we 
manipulated were of limited size (n = 300), we cannot even expect to reach this 
optimal result due to the sampling noise. 

1. 5.2. Learning and test sets

Eleven learning sets, each of them under three different codings as described below, 
were distributed within the SYMENU group. The first set corresponds to data used 
by Breiman et al. to test the CART program performance. The other ten were
drawn at random, according to the process described above. Each set consists of 
300 examples drawn independently (note that the a priori probability of the classes
is 1/3). As it was possible to make use of several comparable learning sets, this 
enabled us to show quite precise averaged results, and to highlight the variability 
of these results. Using the same process, and independently of the learning sets, 
we drew a test sample of 5000 examples. The classification methods which we shall 
present in the following were validated using these test examples. 

1.5.3. Attribute discretization 

The attributes presented above are all continuous. We transformed the eleven
learning sets and the test sample, in order to evaluate the performance of the 
methods on discrete data which are nearer to symbolic. The initial quantitative 
attributes were split into 21 binary descriptors and 21 ternary descriptors. As a 
result, each of the files initially drawn for the quantitative attributes produced 
two discretized files. Boundary identification, essential in coding the quantitative 
attributes, was achieved through maximization of the link between the partition into 
classes and that obtained by discretization in intervals of the variable to be coded. 
This link was measured using the x2 criterion. The algorithm we used 18•37 is based
on dynamic programming, and it enables optimal coding according to this criterion. 
Let k be the number of desired intervals and n the number of examples. The 
complexity of this algorithm is O(kn2) when k f:. 2 (a very simple, linear algorithm
is sufficient when k = 2). Therefore, it may be seen as challenging, in comparison 
with Catlett's6 which has O(nlog(n)) complexity, but which is suboptimal. The 21 
descriptors were split in this manner on a base of 1500 examples which were drawn 
specifically. This coding was then applied to each o f  the files. 

1.6. Evaluation Criteria 

We selected a certain number of criteria to evaluate the methods, which are shown 
in Table 1. The first column describes the type of data processed: binary, ternary 
or continuous. The following columns give the average results obtained on the 11 
learning files. Each criterion shall now be examined in greater detail. 
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Table 1. Format of tables to be completed for the various methods (numbers are given only as 
illustration). 

Data 

Binary 

Train 

17.33 

(1.13) 

Test 

223 

(13) 

Test(l) 

28.9% 

1.6.1. Classification error rate 

Test(2) Test(3) CPU train CPU test Size 

18.63 18.63 0.3" l" 66 

The classification error rate is the proportion of cases where the example class is 

not identified by the learned classification function. This proportion is estimated 
by using the test sample described above. The Test column gives the average result 
obtained on the 1 1  learning files, as well as the standard deviation (number in 
brackets). A high standard deviation indicates that the method is unstable, and 
can sometimes yield bad results. The 3 Test(i) columns give the results obtained 
for the three subsets of the test set, corresponding to each of the 3 classes. When 
the results in the columns are unbalanced, this means that there is a "weakness" in 
the method. For example, in Table 1, it may be noticed that the method classes the 
examples of the first class poorly. The Train column gives the average results, and 
the standard deviation obtained on the learning sets. A low score in this column 
does not necessarily indicate that the method is good. What is important is that 
the difference between learning and test is not too high. If this is the case, the
method has a tendency towards rote learning. Most likely, it has too high a degree 
of freedom. 

1.6.2. Computing time 

It is possible to distinguish between two calculation times, the required learning 
time: CPUtrain, and the required time to decide on a new example class: CPUtest, 
which is the time required to classify the 5000 examples of the test set. Depending 
on the application in question, the relative importance of learning and test time will 
vary. If, for example, the data being processed is scientific data with a very long 
acquisition time, a learning time of several days is not always a drawback. However, 
if an exploratory procedure is adopted to try to "understand" the data, by varying 
the method parameters as well as the description mode, then the learning must be 
quick. The same applies to the decision: the waiting time for a medical diagnosis 
may be a few seconds; the decision must be "real-time" in the case of phoneme 
recognition for continuous speech processing. 

1.6.3. Explanation size and power 

The Size column shows the complexity of the learned classification function. Of 
course there is no unique measurement. In the case of numerical methods, we 
count the number of parameters. In the case of more symbolic (or logical) methods, 
it is possible to count for example, the number of literals used. Size is directly 
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linked to the explanation power of the method. The greater the size, the lower
the explanation power of the classification function. Moreover, for equal sizes, it
is usually easier to interpret a logical formula than a mathematical formula based 

on real parameters. Again, the results should be modulated in function of the 

application : a good explanation power is of little use for phoneme recognition, but

is indispensable in the medical field. Finally: it is worth pointing out that size and

decision time are mandatorily correlated. 

1.6.4. Finding a compromise 

Generally speaking, a compromise must be found between the qualities mentioned

above. For example, a low size associated with a high explanation power is usually

obtained at the expense of a high error r;ate. Nevertheless, we are also aware of

the fact that too high a size often corresponds to rote learning, and to an equally

high error rate. From another point of view, it is often more difficult to optimize

in the discrete space, and thus obtain logic:a.l formulae containing explanation, than 

to optimize in the continuous space, which yields numerical functions and few ex­

planations. Also, certain methods such as the k-Nearest-Neighbor, do not proceed

to any learning. However, this is balanced by a high decision time. It is an empty 
quest to hope for a perfect method , and depending on the application one quality

will be given preference over another. 

2. STATISTICAL METHODS

We consider here two approaches which are very classical in statistical pattern 

recognition: the pammetric approach, which we expound in the Gaussian frame­

work , and the nonparametric one. These two approaches are opposed in principle,
and reveal two distinct ways of treating the subject. However, first, we shall intro­

duce the Bayes Minimal Error Decision Rule w hich plays a central role in statistical

discrimination. 

2.1. Bayes Minimal Error Decision Rule 

As we have seen in Sec. 1.2, the problems treated are rarely deterministic, and ob­
jects from two different classes often adhere to the same description. Thus, Classifi­

cation which proceeds from example description is automatically subject to a degree

of incertainty. Bayes Decision Rule consists in assigning the object described by x to 

the class Ci such that Pr(Ci/x) is maximum. It is easy to demonstrate that this rule

is optimal, in the sense that it minimizes tbe misclassification probab ility. In reaJiity,
however, it is very rare to know the class probabilities given the description. On 
the contrary, it is much easier to find out, or to estimate, class probabilities and the
description distribution given the class. Using the Bayes theorem, an operational

expression may then be found: 

P (c·/ ) = Pr(Ci)f(x/Ci)
r , x 

f (x) , 
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where f(x) and f(x/Ci) represent, respectively the density and conditional density 
of x. The denominator of this expression being independent of Ci, the Bayes Deci­
sion Rule consists in assigning x to the class which maximizes Pr(Ci)f(x/Ci). Let 
us now consider the case where the c;lassification is binary (g = 2). By putting

(f(x/C+)) (Pr(C+))
>.(x) = ln f(x/C_) . + ln Pr(C_) ' (1) 

we find that the Bayes Decision Rule is expressed as 

Vx, If A(x) � 0 Then C+, Else C_.

From this expression, it results that the surface defined by the equation >.(x) = 0
is the boundary separating the two areas assigned to C+ and C_ in X.

It should be noted that precise knowledge of the probability laws ruling the 
descriptions of the objects to be classified is essential when implementing the Bayes 
Decision Rule. However, in most cases these laws are unknown. But they can be 
estimat�d by diverse methods, the most classical of which we are going to examine 
below. 

2.2. Parametric Methods; the Gaussian Case 

We shall assume in this section that the conditional probability laws of descriptions 
are elements of a known family defined by a vector (). More precisely, the generic an­
alytical expression f(x/8) is known, however, the ()i parameters, which characterize
the distribution of each class Ci remain unknown. The parametric approach uses
the Bayes Decision Rule after having estimated these unknown parameters from the 
learning examples. In the most general case, this estimation is often carried out 
through the maximum likelihood method. However, here we shall only discuss the 
Gaussian case, which is easier to process. 

Let us assume that the description x of an object to be classified consists of p 
continuous attributes (x E RP), and that the set of descriptions of each class Ci is
randomly dispersed in RP according to a Gaussian distribution with mean vector
µi and variance-covariance matrix Ei. 

In this case, the conditional density of x is expressed as

The Bayes Decision Rule now consists in minimizing the expression 

(2) 

where �l (x, µi) is the Mahalanobis distance between x and the mean description
of the class Ci: 

D.�1 (x, µi) = (x - µi)tEi1(x - µi).
If we admit that a priori probabilities of classes are identical and that the variance­
covariance matrixes are equal (Vi, Ei = E), it derives from (2) that the Bayes 
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Decision Rule consists in minimizing �E(x, µi)- In this particular case, we then 
assign an object described by x, to class Ci whose mean description µi is the nearest 
to x. In a more general manner, we show that the equality of the variance-covariance 
matrices induces a linear discrimination. This is illustrated simply by examining 
the binary case (g = 2). By developing Eq. (1), one finds the linear expression 

t -1 ) 
(Pr(C+))

-X(x) = (x - µ)I: (µ+ - µ_ + ln Pr(C_)  
,

whereµ = 4(µ+ + µ_). The optimal separation surface between C+ and c_ is a
hyperplane of RP, of equation ..X(x) = 0, defined by p + 1 parameters.

In the general case, by developing expression (2), one easily finds that the bound­
ary is a surface of the second degree in x (Ref. 15, p. 30) and that it is defined by 
1 + p(p + 1) /2 parameters. Hence, the discrimination is said to be quadratic. The
Gaussian model, like all parametric models, requires an initial phase of parameter 
estimation (or learning). This consists in simply estimating the coordinates of the 
mean vectors /.ti and the matrix elements �i on the examples of the learning set. 

We applied the method described above to waveform data, by assuming, on one 
hand, the equality of the variance-covariance matrices (linear discrimination) and, 
on the other hand, the inequality of these matrices (quadratic discrimination) . The 
three types of data were processed using the DISRIM procedure of the SAS so�ware, 
running on a Spare 2. Results are given in Tables 2.1 and 2.2. What is noticeable 
is the robustness of the Gaussian approach. In fact, performance undergoes little 
degradation when we drop the Gaussian hypothesis by binarization or ternarization 
of the continuous descriptors. Moreover, this hypothesis appears to be extremely 
interesting on the level of ·Calculation time, due to the existence of an analytical 
solution (2). The learning time is the shortest among all the methods, if the pro­
cedures without learning are excluded (Sec. 2.3). We would also like to highlight 
the fa�t that the quadratic discrimination results are not as good as those for linear 
discrimination.. In fact, the overparameterization of the quadratic discrimination is 
not worthwhile in this case. It serves only to improve the discrimination of the ele­
ments of the learning set and not those of the test sample. This phenomenon occurs 
frequently, and is revelatory of the equilibrium to be found between the precision 
of the learning and the real test performance. 

Table 2.1. Parametric approach, linear discrimination. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 17.33 223 28.93 18.63 18.63 0.3" l" 66 

(l.13) (13) 

Ternary 15.93 19.93 28.83 15.53 15.53 0.3" l" 66 

(1.8%) (0.5%) 

Contin. 12.83 20.4% 23.53 19.83 17.93 0.311 1" 66 

(1.3%) (13) 
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Table 2.2. Parametric approach, quadratic discrimination. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 10.13 253 31.63 21.8% 21.53 0.611 5" 696 
(1 .23) (0.73) 

Ternary 7.83 21.93 28.63 18.2% 193 0.611 5" 696 
(0.8%) (0.73) 

Contin. 4.2% 21.43 21.5% 21.73 21% 0.611 5" 696 
(0.93) (13) 

2.3. Nonparametric Methods 

In statistical supervised classification, the nonparametric approaches are charac­
terized by the absence of an a priori hypothesis on the conditional distribution
of the examples in the description space. As above, we use the Bayes Decision 
Rule by trying to identify the class Ci which maximizes the a posteriori proba­
bility Pr(Ci/x). In order to achieve this, and assuming the class probabilities as 
a priori knowledge, we need to estimate the conditional densities f(x/Ci) of the
descriptions. Statistical nonparametric methods proceed through local estimation 
of these densities, the two most outstanding approaches being that of Parzen's 
Kernel49 and k-Nearest-Neighbor.11 

2.3.1. Parzen's Kernel method 

Let x be the description in RP to be classed. We denote then as Wh(x) the hyper­
cube (or window) centred on x of side h. For Ci fixed, let ki ( x) be the number of
examples of Ei included in Wn(x). We can easily demonstrate that 

where lwh (x) is the indicator function associated to the hypercube Wh(x) and where
Xe is the description of the example e. It seems only natural to take ki(x)/ni as
the estimation of the conditional probability of membership to the window W h ( x). 
By dividing this probability by the volume vh = hP of the window, we obtain the
estimation of the conditional density 

!�( /C·) = 
ki(x)/ni = ]_ " 2._ 1 (x - Xe)

X i ,,. L...J u W1(0) h · 
Vh ni eEEi Vh (3) 

Moreover, Hand27 has shown that this estimation converges towards the density 
f (x/Ci), if the dimension h of the window diminishes according to a law in 0(1/ foi),
when ni increases. 

Equation (3) defines f (x/Ci) as the sum of Boolean contributions of each learn­
ing example of class Ci, and the h parameter determines the "scope of action" of 
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these examples. The result is that f(x/Ci) is, by construction, a discontinuous
function even though f(x/C;,) usually is a continuous function. This is not very
satisfactory even when we know that the discontinuity tends to disappear as ni 
increases. In order to smooth f(x/Ci), we define a less contrasted contribution of 
examples by using a continuous function for characterizing the scope and intensity 
of the example influence. Expression (3) may then be generalized by 

where K is a positive function, called kernel, such as 

J J 1 (X - Xe)
K(u)du = 

Vii 
K 

h dx = 1 .

(4)

This latter expression, associated with (4), makes f(x/Ci)'s integrate equal to
one, and thus estimation ( 4) may be assimilated to a probability density. The
term h is called the smoothing factor. This parameter plays a determining role by 
defining both the amplitude and the scope of the influence of the learning examples. 
If too high, we would tend to level off the variations of f(x/Ci)· However, if too low 
the estimation of f (x/Ci) will become a "comb'' with multiple peaks localized at 
the points of the learning sample. For waveform data, we have chosen a Gaussian 
kernel, as is usually the case 

It has the advantage of defining a symmetric influence around examples as well 
as a progressive extinction of the contribution of these examples as one departs from 
the description to be classed. We tested the method for different values of h (0.5, 1 
and 2), using the Euclidean distance. The results are very stable. In Table 2.3, we 
provide only the statistics obtained for the case where h = 1. The CPU times are 
those provided by the SAS software running on a Spare 2. The size is that of the 
data, since there is no prior learning phase, i.e. 300 (examples) x 21 (descriptors). 

Table 2.3. Nonparametric approach, Parzen's Kernel method. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 3.3% 22.7% 47.8% 8.73 11.5% O" 893" 300 x 21  

(2.03} (1.5%) = 6300 

Ternary 0% 21.7% 35.5% 15.3% 14.2% O" 86611 300 x 21 

(0.6%) = 6300 

Contin. 0% 22.2% 26.4% 18.7% 21.4% O" 93311 300 x 21 

(1.2%) = 6300 
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2.3.2. k-nearest-neighbor method 

Let us reconsider the first part of Eq. (3) 

f (x/Ci) = 
ki(x)/ni .vh 

This relation encompasses two nondetermined terms, with a common structural 
link: ki(x) and Vh (the term ni is known from the learning set). Two attitudes
may be adopted for the calculation of f(x/Ci): either we fix the volume Vh and we
count the number ki(x) of examples belonging to this volume, or we fix the value
and then adapt the volume Vh so that it contains exactly ki(x) examples. The first
approach is that adopted above, the second is the base of the k-Nearest-Neighbor 
technique, or k-NN. This method implements an intuitive idea, which consists in 
assigning to x the most represented class among the k nearest neighbors of x. As h
above., the k parameter plays a very delicate role. Too weak a value for k induces a 
classification function which is too specific of the learning sample. Too high a value 
of k will tend to make the classification function uniform; this function will then 
retain the most frequent class. It should be pointed out that when the size of the 
learning sample increases indefinitely, and if we take a value of k in 0(1/ Jn), the
k-NN assignment rule converges towards the Bayes Decision Rule. 

In waveform processing, we applied the k-NN method for several values of k (1 ,  
30, 75 and 100), using the Euclidean distance. Best results were obtained when k 
is around 30, the value retained in Table 2.4. The CPU time is that of the SAS 
software on Spare 2. As in the previous case, the size is that of the data. 

Table 2.4. Nonparametric approach, k-nearest-neighbor method. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 03 23.33 46.03 10.63 13.23 O" 23211 300 x 21

(2.13) = 6300 

Ternary 03 20.43 42.53 9.93 8.93 O" 24511 300 x 21

(1.73) = 6300 

Contin. 03 18.33 31.83 10.33 12.9% O" 258" 300 x 21

(1 .73) = 6300 

2.4. Discussion 

The error rates of both nonparametric methods used are fairly close, and roughly 
equivalent to that of linear discrimination (Table 2.1) .  This may be explained by 
the characteristics of the problem in which the decision surfaces are quasilinear 
(Sec. 1.5), so that the Gaussian assumption does not appear as a handicap. Dif­
ferent results could be obtained with another problem. It has to be underlined 
that both nonparametric methods obtained unbalanced error rates among the three 
classes. Examples from the first class are often poorly predicted. In real-world 
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applications, such a characteristic would usually be considered a heavy flaw. More­
over, from a practical point of view, one important element of these methods is 
that they do not conduct a priori learning phase. Therefore, their learning time
and explanation power are null, yet the decision time is relatively long. Neverthe­
less, various pre-processing techniques can be performed to reduce the complexity 
of nearest neighbors based recognition.13 In this case, the learning time is not null
and the recognition time is cut down. The first solution consists in reducing the 
sample size while extracting prototype examples. 7•29 In this case, we speak of the 
"condensed" nearest neighbor rule. We performed experiments using the edition 
method74 which consists in removing from the learning sample the examples which
are poorly classified during a first application of the standard k-NN method. Our 
results with binary data show that the performance is slightly improved (23.0%) 
while the number of retained, prototype examples is greatly reduced (56 in aver­
age, instead of 300) as is the decision time. Other methods structure the learning 
sample and organize the search. Several solutions exist, which are usually based 
on trees20 and which make it possible, in some cases, to find nearest neighbors in
approximately constant average time. 71 However, the performance of these latter
methods degrades rapidly with the dimension of the representation space. They 
could hardly be used to deal with the waveform problem, unless preprocessing the 
data by reducing the representation space dimensionality (Ref. 15, pp. 246-248) . 

3. NEURAL NETWORKS

3. 1. The Multi-Layer Perceptron Model 

Neural Networks include a wide range of models which differ in functional form, 
the classes of functions approximated, the criteria optimized and the learning algo­
rithms. Generally, learning consists in estimating the value of numerical quantities, 
the weights, characterizing the model, from a learning set of patterns. Supervised
classification is one of the favourite applications of many of those models. We refer 
to Hertz et al.31 for a more detailed presentation of Neural Networks.

We used the Multi-Layer Perceptron (MLP) model57 for our tests. It is one of the
most common and simplest nonlinear network models. MLP's are nonparametric 
systems as defined in Sec. 2. Like all networks, an MLP is a combination of basic 
elements called cells. These are computational units which receive input data from 
RP, and produce a real output in R. The transfer function characterizing such a
unit has the following form: 

The parameters w = (w1 , . . . , wp) are the weights of the cell, w0 is the bias, x = 
( X1 , . . .  , Xp) is the input to the cell and y its computed output. In the basic MLP
model, the activation function f is usually defined as follows:

eKu _ e-Ku
f(u) = eKu + e-Ku .
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Layer: input hidden output 

Fig. 3. A three-layer perceptron. 

This function was initially inspired by McCulloch and Pitts'40 formal model of the
neuron. 

In a basic MLP, the units are arranged in successive layers with connections 
between layers. Data is sent to the input layer for a copy and is afterwards processed 
sequentially by the successive hidden layers. Cells belonging to the same layer
compute in parallel, the outputs of the cells of layer m being the input to layer 
m + 1 .  The last layer provides the answer of the system and is called the output
layer. We only consider systems with a single hidden layer. Figure 3 depicts a three­
layers MLP. A bias cell (index 0) enables the bias terms Wio to be introduced. It 
is permanently set to 1 and is connected to all cells in the subsequent layers. The 
composition of elementary transfer functions of the different cells is called the global 
transition function of the network. This function, </>, is defined from RP to Rq and
can be written for the ith output by combining the local activation functions of the 
different units: 

Yi = </>i(x) = f ( ww + � Wijf(wjo + r;kWjkXk)) ,
J 

where j indexes the hidden units and k the input units. </> being a combination
of elementary nonlinear functions, its complexity may be adjusted by varying the 
number of hidden cells. 

3.2. The Learning Algorithm 
Let us consider a network with a fixed architecture. Its transition function is then 
defined by the value of the connection weights. The difference between the desired 
outputs and the outputs computed by this model, or the matching of the model to 
the data, is characterized by a cost function Q. Learning consists in minimizing 
this function by adjusting parameters of the model. One of the most common cost 
functions is the quadratic error, i.e. the square of the Euclidean distance between 
desired and computed outputs. This is the function we have used here. Usually, 
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the desired outputs for a classification task are indicators of classes (i.e. if x E Ci,
all components of y are equal to 0 except the ith which is equal to 1).

Classic algorithms for MLP are based on gradient techniques. The basic version 
described below is known as the steepest descent method. Let us consider a given 
network. Starting from an initial configuration, a gradient algorithm will modify 
the values of the parameters by successive adjustments which aim at minimizing 
the error criterion Q according to the rule: 

W = W - E8Q/8w , 

where c is the learning rate. It monitors the amplitude of the modifications and 
can be fixed or variable during the algorithm. It is set to 0.01 in the experi­
ments described below. The classical learning algorithm for MLP is called back­
propagation. 57 It constitutes an implementation of an adaptive gradient algorithm 
on a MLP. 73 Other, more sophisticated learning algorithms were proposed67 which 
are mainly based on second order minimization techniques,2 or on the conjugate gra­
dient principle.44 These algorithms tend to converge faster than the back­
propagation, and usually find apparently better parameter values, according to 
the cost function Q measured on the learning set. Impressive differences between 
the back-propagation and a quasi-Newton approach have been reported by Chung 
and Setiono8 using artificial data. However, this type of result is generally not
observed with real world problems, and the improvement obtained on the learning 
set is rarely confirmed on the test set. Moreover, the convergence speed of these 
algorithms often makes it difficult to use early-stopping which consists in stopping 
the algorithm before convergence, and which is one of the most efficient procedures 
to avoid overfitting with neural methods. For example, with waveforms, we have 
tested the conjugate gradient procedure44; the computation time was divided by 
between 2 and 5 depending on the number of iterations, but we were unable to 
reach the same level of classification accuracy. 

3.3. The Classification Rule 

The Classification Rule used for MLP consists in assigning a description to the class 
identified by the maximal computed output. The ith output of the MLP is, in some 
respects, an estimate of Pr(Ci/x). This quantity is thus directly estimated here, 
unlike the statistical methods introduced in Sec. 2 which estimate the conditional 
densities of the data. 

3.4. Results 

Data were normalized per component for each training and test set. Two series of 
experiments were run, the first on a network without hidden layer, the second on a 
network having an hidden layer of five units. Invariably, the output cells are sigmoi'd 
transfer functions. The Bayes Decision Rule being quasi-linear (refer to Sec. 1.5), 
we did not test more complex networks. Moreover, we tested two algorithms, the 
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standard backpropagation and Moller's44 conjugate gradient. The results obtained
with backpropagation for both networks are given in Tables 3.1 and 3.2. In the size
column, we indicate the number of weights of the corresponding network. The CPU 
time is approximate and was measured on a Spare 10. The performance obtained 
for continuous data is almost optimal (i.e. close to 14%). The results obtained for 
ternary data are also similar. Note that whatever the data set, both systems give 
equivalent performances, despite a slight overparameterization of the second. When 
using the conjugate gradient algorithm with five hidden units, the performance is 
a little wor�e (18.23 with continuous data) which indica,tes a slight overfitting, but 
the running time is about 6 times faster. Besides, early stopping appears necessary 
with this learning algorithm, but it necessitates a fine tuning which is not that easy 
to achieve when disposing of only 300 learning examples. 

Table 3.1. Two-layer perceptron. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 14.933 20.873 25.423 18.273 18.863 240" 2011 66 

(1.593) (0.613) 

Ternary 12.233 18.093 23.713 15.313 15.173 24011 2011 66 

(1.553) (0.683) 

Contin. 10.83 17.313 20.493 16.353 15.063 240" 2011 66 

(1.053) (0.823) 

Table 3.2. Three-layer perceptron with five hidden units. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 12.53 21.263 25.61% 18.523 19.603 300" 2011 128 

(1.383) (0.903) 

Ternary 9.63 18.793 23.213 17.133 18.793 30011 2011 128 

(1 .093) (0.873) 

Contin.  7.83 17.153 :21.83 14.163 15.443 30011 2011 128 

(1.333) (0.923) 

Network performance is among the best we obtained in this study. This might 
be a little surprising, since these methods have not used their nonlinear potential 
here. The comparison with statistical methods is particularly interesting (refer to 
Sec. 2). Although the optimal surfaces are quasi-linear, linear discriminant analysis 
leads to poorer results. The explanation might lie in the fact that data significantly 
deviate from the Gaussian model, and the quasi-linear optimal surfaces are only 
imperfectly approximated by the analytical solution (2) derived from the Gaussian 
hypothesis. Moreover, the sigmoid shape of the transfer function used on the output 
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units enables us to concentrate on the descriptions located near the boundaries, thus 
allowing more precise learning of the latter. 

4. TREE-BASED CLASSIFICATION, THE CART METHOD

4.1. Overview 

Tree-based methods are used to construct classification functions which can be 
represented by a decision tree. These methods are well-known and widely employed 
in both statistical Pattern Recognition and Machine Learning. Since the seminal 
article of Sonquist and Morgan,64 an impressive amount of research on tree-based 
classification has been conducted in both fields, among which we shall only cite here 
those of Breiman et al. 4 and Quinlan. 50

Classification trees are usually binary, and can be represented as shown in Fig. 4. 
The circular nodes are decision nodes and the square nodes are terminal nodes. Each 
decision node has a binary question associated with it, and each terminal node has
a class Ci associated with it. In our example of Fig. 4, there are two classes which 
are respectively Ill and Well, while the binary questions are based on the attributes
Temperature which is continuous, Throat-irritation which is binary and Cough ( E
{none, dry, loose}) which is qualitative. The tree classifies a description x through
a chain of binary decisions. Starting at the root node and proceeding down the 
tree, tests are conducted using questions to determine whether the description goes 
to the left or right descend.ant. The description is then assigned to the class of the 
terminal node in which it lands. 

Fig. 4. A binary classification tree. 

A tree path from root to leaf constitutes a production (or decision) rule similar
to those of expert-systems of the MYCIN type.63 For instance, the following rule 
may be extracted from the tree of Fig. 4 

[Temperature < 38] and [ Throat-irritation = Yes] -t fll. 
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This demonstrates the explanation power of the approach, thus the reasons for its 
success in Artificial Intelligence. The rules conceived are easy to interpret as they 
are written using description language that the user has defined to describe data. 

Given a learning set, most approaches to classification tree design determine the 
binary questions in a stepwise top-down fashion: the training set E is associated
to the root of the tree; a binary question is chosen which splits E into two subsets;
this splitting process is repeated for both subsets, for their descendants and so on. 
Now, there are three basic issues in classification tree design: 

(1) selecting an appropriate binary question for each decision node; 
(2) determining an appropriate set of terminal node; and 
(3) selecting an appropriate class for each terminal node. 

For each decision node, the binary question is usually selected by optimizing a 
splitting criterion among a set of possible questions. Frequently, these questions 
are based on the use of a single description attribute, as in Fig. 4, but they may 
also be based on linear4 or neural net26 combinations of these attributes. The
terminal node set is usually determined by halting the splitting by subject to some 
stopping criterion, or by continuing the splitting until all terminal nodes have pure 
class membership and then pruning back. Pruning is the more recent approach and 
has better properties. Finally, the class for the terminal nodes is obtained using the 
majority rule, or a weighted majority rule in the case of nonuniform misclassification 
cost. In the following, we shall briefly describe the popular CART method which 
was the first to propose the pruning approach. More details are given in the book 
of Breiman et al. 4 

4.2. The CART Method

4.2.1. The set of possible binary questions 

In the standard use of CART, each question is based on a single attribute, and 
not on some (e.g. linear) combination of the initial attributes. The form of these 
binary questions depends on the type of associated attributes. A binary attribute 
obviously generates a single binary question. A qualitative attribute taking m 
values generates 2m-l - 1 binary questions which correspond to the nonempty 
bipartitions of its values, e.g. the attribute Cough defined above generates the 
questio_ns: "Cough := None", "Gough = Dry?" and "Cough = Loose" which 
correspond to the bipartitions: {None} I {Dry, Loose}, {Dry} I {None, Loose} and 
{Loose}l {None, Dry}. A continuous attribute Xj generates questions having the
shape "xJ < v?". There is a priori an infinite number of possible values for v, and 
CART only considers those defined by the equation v = (v1 +vi+1)/2, where the ViS 
are the consecutive values taken by the attribute on the examples attached to the 
node to be split. Thus, if this node contains m examples, ( m - 1) binary questions
are envisaged for each continuous attribute. Finally, ordered attributes, such as 
size E {small, medium, big}, are dealt with in the same way as continuous ones. 
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4.2.2. Tree growing and splitting criterion

In the tree growing phase, a large tree, T, is grown by recursively finding binary 
questions until all terminal nodes have a pure or nearly pure class membership or 
cannot be split further. Questions are chosen among the set of possible questions 
by optimizing a splitting criterion. The criterion retained by CART is based on the 
Gini index. Let t be the node to be split, E be the set of training examples attached 
to t, and Pr( Ci/ E) be the proportion of examples from E which belong to class Ci. 
The Gini index defines the impurity of E as 

i(E) = L: Pr(Ci/E)Pr(Ci /E) .
i=f:j 

This impurity is maximum when for every index i we have Pr(Ci/E) = 1/g (g is 
the number of classes), and is minimum (= 0) when all examples from E are in the 
same class. The aim is to find the binary question which most reduces the impurity 
of E. Let us consider a given binary question B, Ef the subset of E corresponding 
to the answer Yes to B,  and E� the subset corresponding to No ( L stands for left 
and R for right). The reduction of impurity brought by B is defined by 

f}.(E, B) = i(E) - Pr(Ef / E)i(Ef) - Pr( EN/ E)i(EN) , 

where Pr(Ef / E) and Pr(E�/ E) are the proportions of examples from E which are 
respectively in Ef, and in EN_. Finally, the binary question chosen for splitting t 
is the one which maximizes this criterion. 

4.2.3. Tree pruning 

In the tree pruning phase the large tree, T, is pruned back to avoid overfitting the
training data. This process consists in removing some branches of T which do not 
significantly improve the error rate, but which make its size (or complexity) high. 
A pruned subtree is selected by minimizing an error rate estimate over a parametric 
family of pruned subtrees. This family is generated as follows. Suppose each node 
in T is assigned a class Ci based on majority vote. Then we may compute the 
error rate on the training sample of any pruned subtree S of T. Let R(S) be this 
resubstitution error estimate. Now define the error-complexity of a pruned subtree 
S(c T) by 

Ra(S) = R(S) + alSI ,

where a � 0 and ISi is the number of terminal nodes in S. The desired family of 
pruned subtrees T0(a � 0) is obtained by minimizing the error-complexity crite­
rion for each fixed value of a: R0(Ta) = minscT Ra(S). Note that To = T and 
Ta = root(T) when a is large enough. From a computational stand point, it is not 
easy to obtain Ta for any given value of a, so that CART uses an algorithm which 
starts from To(= T) and, by iterative pruning of "weak" branches, produces a se­
quence of smaller and smaller subtrees until root(T) is reached. Moreover, it may be 
shown that this sequence, (Ta.), is a subset of the family (T0). From this sequence, 
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a pruned subtree, Ta• ,  is then selected by minimizing and "honest" estimate, R, of
the probability of error 

CART can use several methods to obtain honest estimates of the error probability. 
The simplest approach is to use an independent test sample. But this approach 
does not allow all of the training data to be used for both growing and pruning 
the tree, so that it is precluded when the number of training examples is low. In 
this case, the usual approach employed in this study is based on a cross-validation 
estimate of the error probability. 

4.3. Results 

Results obtained by CART 1.1 using the default options are displayed in Table 4. 
The (average) tree size is measured by the number of edges, and the CPU time is 
obtained on a Spare 2. Among the methods experimented in this study, classifica­
tion trees have one of the best explanation powers. These classification functions, 
however, are also endowed with one of the poorest discrimination powers, which 
illustrates the dilemma explanation/discrimination power. It is a recognized fact 
that the waveform problem is difficult for classification trees. The use of a more 
appropriate coding such as that used in (Sec. 9), enables tree results to come very 
close to those obtained by other methods. Moreover, analogous results may be 
obtained by using linear combination of attributes in the decision nodes, instead 
of single attributes (for more details see Ref. 4). The results obtained here do not 
therefore prejudice classification tree results on other applications. 

Table 4. Tree-based approach, the CART method. 

Data Thain Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 22.93 29.9% 34.63 29.13 26.0% 29" 26" 17.6 

(1 .03) (2.23) 

Ternary 22.53 30.53 33.373 31.223 26.74% 33" 17" 12.6 

(0.73) (1.633) 

Con tin. 19.83 31.13 29.73 32.13 31.5% 60" 34" 7.4 

(1.13) (1.23) 

5. FUZZY CLASSIFICATION TREES

5.1. Overview 

We are primarily concerned here with the problem of the construction of classifica­
tion trees when (some) attributes are continuous. With such data, usual symbolic 
classification trees do not give excellent results. The key point is the discretization 
of these attributes, i.e. the partitioning of an infinite number of values into a fini1te 
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number of subsets of their domain. Most of the known methods to discretiz-e con­
tinuous attributes are used prior to the construction of the tree.6116 This may be
done for several reasons, e.g. to reduce the running time. Our method, like CART 
described above (Sec. 4), proceeds dynamically by adjusting the thresholds at each 
tree's node according to the attached examples. However, we have observed that, 
if we split the domain of an attribute into two subsets at a given threshold, we 
obtain imprecise tested values near this threshold, because all possible values of the 
attribute are not present in the training examples. The solution we propose is to 
use membership degrees for examples with values near the threshold, establishing a 
gradual split of the values. During tree construction, we employ a fuzzy measure of 
information53 to discretize and to compare the continuous attributes. To classify a
new example, we aggregate membership degrees obtained by a given example on a 
path of the tree, using the fuzzy set theory. 76 

5.2. A Dynamically and Fuzzy Entropy-Driven Discretization 

5 .. 2.1. Splitting criterion 

We must choose the best attribute that will be used to split into subsets the set 
of training examples E attached to a given node t. A cost function is used to
determine this choice, which is based on a fuzzy measure of entropy. Let us use the 
same notation as in Sec. 4.2. The classical Shannon entropy has, in some respects, 
a meaning similar to that of the Gini index (Sec. 4.2), and is defined by 

e(E) = L -Pr(Ci/ E) log(Pr(Ci/ E)) .
i 

In our model, classical sets are replaced by fuzzy sets and we have to define a fuzzy 
probability. Let n = { w1, . . .  , Wr} be a set of events, each one associated with a
probability Pr(wi)· Let F be a fuzzy set defined on n with membership function
f F .  The fuzzy probability of the fuzzy set F is 

r
Pr*(F) = L f F(wi) · Pr(wi) . 

i=l 

Using this notion, the classical entropy can be extended to a fuzzy measure of 
entropy 

e*(E) = L -Pr*(Ci/E) log(Pr*(Ci/E)) . 
i 

Let us now consider a. noncontinuous attribute j, associated with the sparse 
domain Xj = {v1 , v2, . . .  , vk}· This attribute splits E into k subsets El whose
conditional probabilities are denoted as Pr( Et/ E). The classical information of this
split (or the measure of conditional entropy) is defined as 

J(j) = L Pr( Et/ E)e(Ei) .
i 
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A fuzzy measure of information, the entropy-star measure, can also be defined in 
the same way. If F1 , F2, . . .  , Fk are fuzzy sets of E, we now have 

k 
!* (Fi , F2, . . .  , Fk) = l: Pr* (F1)e*{F1) .

l=l 
When splitting E by means of the attribute j, the information gain represents 

the decrease of uncertainty on the classes Ci entailed by the use of j 

.6.(j) = e(E) - J(j) 

or, with the fuzzy quantities 

� *(j) = e*(E) - J*(j) .

To split the training set, we look for convenient fuzzy sets Fi , F2, . . .  , Fk for each 
continuous attribute j, and this search will be explained in the next section. To 
construct the tree, we choose the attribute with the highest fuzzy information gain 
/:i*(j). Then, the best attribute corresponds to the minimum of J* (j). 

5.2.2. Fuzzy set determination and threshold computation 

To construct the fuzzy subsets of E attached to a given continuous attribute j, we 
build a partition of xj into fuzzy sets which is satisfying for the identification of
classes. In order to define these fuzzy sets, we search for relatively homogeneous 
clusters of Xi with respect to the distribution of classes. Each of these clusters will
represent the kernel of a fuzzy subset of the partition. 

To find such clusters, we use a technique from the mathematical morphology 
theory. 10•39•61 This technique is generally used in image analysis to smooth and to 
filter spot noise. It lies on two operators: erosion and dilatation. Erosion enables 
the destruction of small heterogeneous regions, while dilation enlarges and brings 
together homogeneous zones. Here, the training set E defines a two-dimensional 
shape for each attribute. The first dimension is the set S1(c Xj) of values occurring 
in E, and the second dimension is the set of classes. For a given attribute, E may be 
transformed into a word whose alphabet is the set of classes. For example, when E 
equals {(1.7, C1), (2.4, C2), (2.9, C1), (3.3, C1), (3.7, C2) ,  (3.8, C3), (4.0, C1), (4.2,
C2), (4.3, C2)}, the corresponding word is C1C2C1C1C2C3C1C2C2. Dilatation and 
erosion are applied to this word to obtain a clustered form. Each of these operators 
is implemented as a transducer which expresses rewriting rules, such as: change 
a letter L into U when it is surrounded by two letters different from L. In this 
case, the special letter U means "uncertainty" and indicates the places where the 
classes are highly mixed. For instance, with the previous word we would obtain 
C1C1C1UUUC2Cz. 

Except the uncertain one, each of these clusters represents a collection of values 
from Sj which, in the majority of cases, belong to the same class. Let the two 
biggest clusters, other than the uncertain one, be expressed as 

[£, n and [b, Ii] with l < .a .
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From these clusters, we may now define the two fuzzy sets Fi and Fh whose ker­
nels are Ki = [-oo,l} and Kh = [h, +oo}, and whose supports are respectively
!-oo,h:} and [f, +oo]. To define the membership function of Fi. and Fh , we compute
a threshold, denoted as Vj 1 using the barycentric expression

The membership functions of Fi and Fh are then defined as shown in Fig. 5. Finally,
we can compute r(FL Fn) to find the most relevant attribute. Moreover, two 
training subsets of E are obtained from the split induced by Vj, and used for further
tree expansion. This expansion is performed by adding new attributes until the 
measure of entropy of the local training subset is below a fixed value. 

y 
0,5 
1-y 

0 
v. .hJ 

(a) 

j, l. t] . h 

(b) 
Fig. 5. (a.) Membership functions associated with the fuzzy events {xi < Vj} and {xi > Vj };  (b) 
Use of these functions in a tree node. 

The dilatation and erosion operators are used a fixed number of times, so that 
the discretization's complexity remains linear (once the attribute values have been 
sorted). It follows that the complexity of the whole algorithm is the same as CART's 
or ID3's, i.e. O(pnd) where d is the depth of the tree.66 If the tree is well-balanced,
we have d = O(log(n)), and the time complexity is O(pnlog(n)). This is also the
complexity needed for sorting the attribute values, prior to the algorithm runs. 

5.3. Classification Function 

Generally, when a classification tree is used to classify a new example, the values 
of this example are compared with the computed thresholds. However, a threshold 
is not generally a value which really occurs in the training set. It is imprecise in
nature because there is no precise information about the values between [ and b_.
Restricting the descent to a single branch of the tree for these values may not be very 
efficient. It is better to enlarge the threshold to an interval. An estimate probability 
may then be associated with the outcome of this test. 51 In our approach, we use
the values found during discretization as boundaries for the imprecise interval, and 
a graduality of membership to a path for the values near the threshold. At a given 
tree node, the description to be classified is associated with each of the edges issuing 
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from the node, with a degree equal to its degree of membership to the fuzzy subsets 
associated with that edge, as defined in Fig. 5. A path to a leaf is then associated 
with a collection of degrees and we can aggregate these membership degrees by 
means of fuzzy aggregation operators. 

A path from the root to a leaf is equivalent to a rule "If (and P1 P2 . . .  Pk) 
Then Ci'' , where the premises correspond to the fuzzy events associated with the 
edges of the path, and where the conclusion is the class attached to the leaf. In 
order to aggregate the premises, we use a conjunctive operator, and to aggregate 
the conclusions of all the rules corresponding to a given class, we use a disjunctive 
operator from fuzzy set theory. More specifically, in order to achieve the intersection 
of the premises, we use the usual operator known as triangular norm (t-norm for 
short), and to achieve the union of the conclusions, we use a triangular conorm 
(t-conorm for short). In this study, we employed the t-norm and the t-conorm
defined by Zadeh,76 which are respectively the minimum and the maximum. The 
final decision is the class which has the highest membership degree. We can foresee 
other uses for these membership degrees which take into account all the degrees 
found on the paths. For example, a classification into continuous classes can be 
made by computation of a barycentric value from all the obtained classes, or, in a 
fuzzy framework, it would be useful to preserve the decision as a fuzzy subset of 
the set of classes, with the obtained degree. 

5.4. Results 

Our approach is essentially concerned with the problem of the construction of clas­
sification trees when continuous values occur, and we present here our results on 
the continuous data sets only (Table 5). The average size of the trees is the number 
of edges. The CPU time is indicated for a program written in C,  running on a 
Sun station Spare 10. We observe that the results are slightly enhanced by the use
of fuzzy trees compared to results obtained by CART which considers crisp (non 
fuzzy) tests for the thresholds. However, the average sizes of CART trees and fuzzy 
trees are not the same, so that further studies would be needed to obtain a more 
precise comparison. 

Data Train 

Contin. 13.13 
(1.563) 

Table 5. Fuzzy classification trees. 

Test Test{l) Test{2) Test(3) CPUtrain CPUtest Size 

29.963 34.73 25.9% 27.13 5" 54" 26.4 
(1.253) 

6. EMPTY MONOMIALS

6.1. Method Overview 

This method builds discriminant functions between classes, the elements of which 
are described with binary attributes. These functions are conjunctions of Boolean 
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variables. The conjunctions that we use are selected because they never appear in 
one specific class, but are attested in the other classes a minimum number of times. 
So these conjunctions are characteristic elements of non-membership of a given class 
Ci, i.e. characteristic of "not-Ci'' . 

We shall first describe our method for a problem with only two classes C+ and 
c_, represented by positive and negative examples. These belong to the sets E+ and
E_ whose union constitutes the learning set E. A new description is classified into 
C+ (resp. C_) according to the number of characteristic rules of not-C_ (resp. not­
C+ ) it satisfies. We can measure two error rates, one on the learning set, the other 
on the test set. On the learning set, there may be no error, but there might be 
indecision, since it is possible to find an element of E that satisfies no rules. On 
the test set, errors are obviously possible. Moreover, some uncertainty may occur, 
either because an example does not satisfy any characteristic features of C+ and 
c_, or because it possesses the same quantity of both. 

In the Boolean framework, a conjunction of attributes (generators of Boolean 
algebra) with values 0 or 1 is a monomial, and monomials are conjunctions of liter­
als. On the set E, a monomial covers some elements, those having the same values
as those of the monomial attributes. If there is no element of E to present this 
conjunction of literals, this monomial is said to be empty on E. The empty mono­
mials of E+ (resp. E_) indicate not-C+ (resp. not-C_). To build our discriminant 
functions, we first enumerate all the empty monomials of E+, then those of E _ ,  and 
we only keep monomials that cover at least q elements of E_ (resp. E+), q being
a parameter. Moreover, we only consider empty monomials with a minimal length, 
since an empty conjunction lengthened with other literals stays empty. 

The building of empty monomials has been studied for a long time, because 
it is connected with the minimization of Boolean function problems. Let F be a
Boolean function given as a disjunction of complete monomials (disjunctive normal 
form), or equivalently as a T Boolean array (with p attributes, T has p columns).
To minimize F we look for all its prime implicants that are the empty monomials
of the complementary function F. To solve this very important problem for cir­
cuit design,72 numerous algorithms have been proposed (Karnaugh, Mc Cluskeyand 
Quine, cf. Ref. 19) that start from f'. This is not very practical in our framework,
since f' is the complementary array of T in {O, l}P. Therefore, we have chosen
Kuntzmann's36 algorithm, which works directly on T and can be adapted, particu­
larly when the number of literals must be bounded, or when only positive forms of 
attributes are required. 

Let us suppose that we: are building the empty monomials of E+ (the procedure 
is the same for E-). The algorithm is sequential, and it builds the successive lists 
of empty monomials. After examining the i first elements of E+ the resulting list is 
denoted as Li. Let ei be an element of E+ and Si be the set of the complementary
forms of its literals. For instance, if ei = x1x2x3x4 we have Si = {x1 ,x2, x3, x4}. 
The first list L1 is initialized with S1. Each step corresponds to the examination of 
a new element ei and produces the list Li from list Li-l· When the whole set E+ 
has been check, the resulting list contains all the empty monomials of E+. 
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This algorithm is based on the following proposition: 

Let >. E Si and µ E Li-11
(1) If µ contains .\ then µ E Li; 
(2) If µ does not contain >., then the conjunction µ>. belongs to Li.

The proof is easy. If µ is an empty monomial that contains >., as >.( E Si) is
not in ei, µ is still empty. If µ contains �' µ>. contains >..X, and it is useless to add
it to Li. Finally, if µ contains neither >. nor >., µ').. is empty since µ was empty
and >. is not in Ci· The Kuntzmann's algorithm is the iterative application of this 
proposition, using the rules (1) and (2) in a specific order: 

L1 is initialized with S 1 
For i = 2 to IE+ I 

For each literal >. E Si 
{ Copy in Li all the monomials of Li-1 that contain >.

and delete them from Li-1; 
If one of them is equal to .\, .\ is removed from Si } 

For each literal >. E Si and any monomial µ E Li-l
{ When A 1. µ and µ>. ¢ Li, add µ>. to Li }

End of For i 

The complexity of this algorithm depends on the length of empty monomial lists, 
that cannot be predicted. In the worst case, this length is exponential in the number 
of attributes, so it cannot be used for large size problems. To get Li from list Li-l ,  
either we copy monomials remaining empty or we enlarge them with one literal in 
Si. So it is very simple to generate only monomials having a bounded number of 
literals, which is attractive in our context. Moreover, the number of monomials 
having a bounded length lmax is polynomial, and consequently the enumeration
procedure has a worst case complexity O(plmax ) .

6.2. Application to the Waveform Problem 

We applied the method described above to the binary description of the waveforms. 
We shall now explain how we adapted this method, and how we choose the param­
eter values using the original data of Breiman et al. 4 

For each class of the learning set compared to the union of the others, we enu­
merate its empty monomials having at most k literals, or k-monomials. Then, for 
any description to be classified, we count the number of monomials of each class 
covering this example. The greater the quantity for a class, the smaller the chance 
of belonging to it. Thus, we have three scores corresponding to the classes, and we 
assign a description to the one which has the smallest score, i.e. the class having the 
minimum number of empty monomials covering this example. When considering a 
learning example, there is at least one class with a score equal to 0, but there may 
be several. In that case, there is indecision. For a test example, there may be two 
or three scores obtaining the minimum value. If the actual class does not give a 
minimum score, we count an error, and so indecisions are only between alternatives, 
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one of them being the correct class. If there are two tied classes, the third one is 
discarded, and this becomes a double indecision; if there are three, we have a triple 
indecision. 

First, we tried empty 2-monomials. Among the 300 instances of the learning 
set, there are 162 double indecisions and 2 triples. This means that there are only 
136 elements that are (correctly) classified. This great rate of uncertainty (553) 
led us to consider empty monomials with length 3. There are respectively 567, 604, 
564 for the three classes. Now, 48 double indecisions and no triple remain, which 
corresponds to 843 of correctly classified elements. Then, we discarded monomials 
covering less than 103 of the negative examples, i.e. less than about 20 examples. 
This selection criterion gives 265 monomials for class C1 , and we took the same 
number for the other classes, retaining monomials with the best covering rate. For 
the learning set, there are now 56 double indecisions, no triple and 244 waveforms 
correctly classified. For the test set that contains 5000 waveforms, the number of 
double indecisions is 858, corresponding to 173 and there is no triple. The number 
of errors is 681, and the number of elements correctly classified is 3461. Uncertainty 
can be treated according to two options: 

- Either we do not take a decision, and then there are only 4142 classified elements. 
Consequently, the error rate is 16.5%; 

- Or we toss up to decide the class when there is indecision, and the decision will 
be correct one time out of two. In that case, there will be 681 + 429 errors,
corresponding to an error rate of 22%. 

6.3. Results 

For the 1 1  learning sets, we limited the number of selected monomials to 250. 
Sometimes, all of them do not cover 103 of the elements of the other classes, and 
often there are less than 250. When there are more than 250, we keep those having 
the greatest covering rate. The average number of selected monomials is 225 per 
class, most of them having length 3. On average, there are 1094 double indecisions, 
that is 223, which are not uniformly distributed; there are less for class C2 than for 
class C1 or C3 . The average number of errors is 625 corresponding to 133 of the
waveforms. If we insist on classifying the whole test set, tossing up for a decision, 
there will be 547 new errors which will give 23.43 on the whole set. The CPU time 
corresponds to a program written in Basic and running on a Macintosh Power Book 
165. The size is the number of monomials multiplied by their length. Results are 
given in Table 6. 

Data Train 

Binary 113 

(0.73) 

Test 

23.4% 

(0.33) 

Table 6. Empty monomials. 

Test(l) Test(2) 

25% 21% 

Test(3) CPUtrain CPUtest 

24 3 330" 444" 

Size 

2025 

30



____ , _ ___ _ _ 

It seems clear that the quality of the decisions depends on the number of selected 
empty monomials; we use a large number, be cause b e low the threshold of 100 the 
uncertainty numbe r  increases very fast (greater than 1500). So, conside ring the size 
of the classification function, it is a poor method. Even if we were to design a selec­
tion strategy to reduce the number of monomials, keeping the same covering rat e ,  
we would never reach the efficiency of the Decision Committees method (Sec. 7), 
for example. Finally, the way the empty monomials are built seems to be the most 
interesting point. It is more efficient than the enume ration of all the monomials 
which come first, and then selecting those having a large covering rate in one class 
and a small value in the others. But, in doing so, monomials that cover only a 
few elements in a class and that occur frequently in another, are missing, although 
these monomials could b e  good indicators of class membership. 

7. DECISION COMMITTEES 

7 .1. Introduction 

Decision committees use expert-syste m-like rules. They try to associate the ex­
planatory character of classification trees with an additive combination of the rule ,  
in the same way as MYCIN-like expert systems.63 The decision is taken on the basis 
of a set of fired rules, and not on the basis of a single rule (or a path from the root 
to a leaf) as in classification trees. This additivity exists in linear discrimination 
and in neural networks, and partially explains the performance of these approaches 
which are often better than those based on classification trees. Our aim is to find 
small-sized decision. committees. Even though they do not constitute a radically new 
type of classification procedure (Refs. 3 and 52, Sec. 6), decision committees have 
given rise to few studies, especially in the form presented here.  For more details,
further theoretical and expe rimental results, the reader shall refer to Ref. 48. 

7.1.l. Notations and definitions 

We shall consider here that examples are described by binary attributes, these 
being possibly derived from nonbinary ones (qualitative , ordinal, . . .  ) by following 
a classical discretization procedure (Ref. 4, Secs. 1.5 and 4.2). Literals associated
with variables are denoted as x i ,  x 1 ,  x2, x2, • . .  , Xp and x.v· 

A decision committee consists of a set of rules {(ti, vi)} where each ti (the 
condition part) is a. monomial (or conjunction of lite rals) and each Vi (the conclusion 
part) is a g component-vector, Vij taking its values in { - 1 ,  0, 1}.  These values
express that the ith rule is respectively in favour, neutral and in disfavour of the 
class C1 . A default rule is added to this set of rules: in a way, it expresses the 
a prfori distribution of classes, and it is used in case of indecision. To classify an 
example ,  we calculate for each class C1 the sum v.1 of the jth components of the 
fired rules. After that, the sums v.1 are compared. When one of these is strictly
greater than the others, it designs the selected class. In the other case ,  we use the 
default class to choose among the classes having the highest scores. An example 
is given in Fig. 6. In (a) we give the decision committee itself, in (b) the result of
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this decision committee for the example x1x2X3X4X5, and in (c) the result of this
decision committee for the example x1 X2X3X4 X5. In both cases, two rules are fired.
In case (b), the chosen class is C1, and in case (c), the decision is given by the 
default class, and is 02. 

(a) (b) (c) 
Conditions Conclusions 

XJ X-i I 0 -1 

�X3 0 l 0 

X4 0 0 I 
- I 0 0 X5 X5 0 0 

Total Total I 0 0 Total 0 

Default 0.2 0.3 0.5 Def au II 0.2 0.3 o.s Default 0.2 0.3 0.5 

C 1  C2 C3 C 1  C2 C3 

Fig. 6. (a) A decision committee; (b) Result for the example x1x2x3x4x5; (c) Result for the
example x1 :f'2x3x4 xs. 

Small-sized decision committees, such as the one above, are easy to interpret, 
and they need only a pencil to be used, like classification trees, or Rivest's decision 
lists. 55 The difference is that rules are neither ordered (as in decision lists) nor
organized in a dichotomic way (as in classification trees). Decision committees 
might also be viewed as linear discriminators whose coefficients belong to { -1 ;  O; 1} ,  
and are able to use conjunctions of literals. Finally, note that when there are two 
classes, it is convenient to state that a rule in favor of one class be in disfavor of the 
other. We can then state that the conclusion has one value belonging to { -1 ,  1}  
which indicates that the rule is respectively in disfavor and in favor of class 01 or, 
equivalently, respectively in favor and in disfavor of class C2 (an example is given
in Fig. 7).

XI ..t2 -1 
Xt ..t2 1 XI � -1

-X1 �X4 I X1 X3X4 -I
Total Total 
Default 0 Default 1 

C 1 

(a) (b) (c) 

Fig. 7. Two ways (b) and (c) of coding a decision tree (a) by a decision committee. 
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7 .1 .  2. Comparison with other classification functions 

Let us consider first the Boolean case (g = 2). Classes C1 and C2 represent truth val­
ues True and False, and the truth table of any Boolean function can be transcribed 
directly under the form of a decision committee whose monomials are composed 
of p literals. This means that by multiplying the number of rules and the number
of literals, we can represent every Boolean function by a decision committee. This 
result can be extrapolated to a greater number of classes. 

However, in supervised da.ssification we only consider functions whose size 
(number of literals) is limited. The result given above demonstrates that if we 
take a decision committee with sufficiently high size k', we can represent any func­
tion whose size is k. In order to compare decision committees with other classes 
of functions, we therefore need to establish a link between k and k'. Take the case 
of classification trees and consider Fig. 7, in which we show two ways of coding a 
classification tree by a decision committee. On the basis of this figure, it is clear 
that classification trees whose depth is k can be coded by decision committees whose 
monomials have a length of k at most. If we define the size of a classification tree 
more naturally to be the number of its edge,,,<; (8 in the previous example), and 
the size of a decision committee to be its number of literals ( 5 and 8 before), we 
can show that any tree of size k can be coded by a decision committee whose size
is at most (k2 + 6k)(g - 1)/8g. To give a concrete example, let us consider the
classification tree found by CART ,4 for the waveform recognition problem. It is
composed of 20 edges. The preceding result shows us that by exploring the set of 
decision committees whose size is no more than 44, we explore a set of functions 
that -contains any classification tree of size 20, and thus the one found by CART. 

Other results of the same type can be derived for other classes of functions. Let 
us mention however that the possibility to duplicate a rule allows us to come as close 
as desired to linear separators having real coefficients, and allows us to simulate the 
ordering of monomials in a decision list (the first rules are duplicated in order to 
make the decision when they are fired). 

7.2. The Learning Algorithm 

We can demonstrate that finding the decision committee whose size is bounded and 
which makes the fewest number of errors is an NP-Ha.rd problem. We are therefore 
obliged to use approximate methods. We tested numerous algorithms among which 
some were based on simulated annealing, as in Ref. 5. The algorithm we retained 
proceeds in two stages ; it begins by extracting a certain number of "good" rules 
and then puts them in a decision committee having a "good,, performance on the
training sample. We are now going to examine these two procedures separately. 

7.2.L Extracting good rules 

The algorithm us€d is a version of PLAGE restricted to Boolean representations.23 
The aim is to find all of the most general rules satisfying certain numerical criteria. 

The principle is to make a breadth-first search of the set of monomials, organized
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according to the generalization relationship. This search is top-down and starts 
with the most general monomials, i.e. those having only 1 literal. A monomial m 
is evaluated by two numerical criteria: (1) we impose that it covers a sufficiently 
high number of examples N of the learning sample; (2) we impose that it has a 
sufficiently high discriminant power. This power is measured by the x2 criterion,
used here as an heuristic, rather than for its statistical properties. For each class 
Ci, we calculate the quantity Qi using the x2, as indicated below

m True False 

a c
b d

(a + b + c + d) (ad - be )2Qi = (a + b)(a + c)(d + b)(d + c) · 

When condition (1) is satisfied, and when the maximum of the Qis is greater than
a threshold T,  we construct a rule having m as  condition. For any i, if (Qi < T)
then the ith component of the rule is O; otherwise if (ad - be > 0) this component
equals 1, and it is - 1  otherwise. When a monomial is retained to form a rule, all of 
its specializations are pruned. If m is not retained, we calculate a promise function 
that gives the best score that could be reached by a specialization of m. If this
promise is lower than T, all the specializations of m are also pruned. Finally, the
algorithm stops when all monomials have been pruned or evaluated. 

The worst case complexity of this algorithm is exponential in the number of 
attributes. In practice, the computation time depends on the chosen thresholds. If 
they are badly adjusted the algorithm will explore the whole space of all monomials, 
and this time will be prohibitive. Inversely, the case might occur where only the 
monomials having a single literal are produced, and the rest of the space is pruned. 
Experimentally, this algorithm allows us to find rules having 3 literals, from de­
scriptions based on more than 100 binary attributes, in less than one hour of CPU 
on Spare 10. 

7.2.2. Rule aggregation to form a good decision committee 

The objective of this algorithm is to extract from the set of rules previously cho­
sen, a subset that, when assembled, constitutes a decision committee having a low 
error rate on the training set. The general principle is analogous to that used in 
agglomerative methods of hierarchical classification. First, we partition the rules 
into singletons reduced to single rules. At each step, the algorithm achieves the 
union of two subsets belonging to this partition, and the number of elements of this 
partition diminishes by one element. These two subsets are chosen by maximizing a 
gain criterion R among the set of pairs of elements of the partition. The algorithm 
stops when the best union of pairs of elements of the partition leads to negative or 
null value of R. We then extract from the partition the subset of rules which forms 
the decision committee having the lowest error rate. 

Let L be a set of rules. We define its error rate, eL, to be that of the Decision
Committee formed by these rules and completed by the best possible default rule 
(according to the error rate computed on the learning set). The criterion RL,L' 
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measures the gain expected from the union of the two sets L and L'. It is defined
by the equation 

When this criterion is positive, the Decision Committee formed by the union of 
L and L' has a lower error rate than that of the two Decision Committees taken
in isolation. All along the algorithm, we therefore try to group rules representing a 
high gain rather than a low error rate. This enables us not to forget rules that could, 
once reunited in a Decision Committee, constitute a good classification procedure. 
Let us point out the fact that the results obtained using this algorithm are much 
better than those of the greedy approach which consists in choosing the best rule and 
adding rules one by one, while minimizing the error rate, until no gain is possible. 
Finally, the complexity of this algorithm is in O(nr3), where r is the number of
rules found by the preceding procedure, and n the number of examples. 

7.3. Results 

The learning algorithm described above has been evaluated on binary and ternary 
data. The CPU time corresponds to a nonoptimized program written in C, running 
on a Sun Spare 10. The size of the decision committees obtained is the number of 
literals. Results are given in Table 7. We notice that the performance of decision 
committees is not so far from that of neural networks and much better than that of 
classification trees. The size of the resulting decision committee is always small, and 
thus achieves one of the objectives of symbolic methods, which is to produce dis­
criminant functions with a good explanatory power. The rules found generally have 
only one literal. This explains the small amount of time needed for computation. 
When different thresholds are chosen (smaller for N and higher for T), computation 
time and rule size increase, but results are not better. 

Table 7. Decision committees. 

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 20.53 23.03 32.83 20.73 15.93 25" 3" 20 

(1.53) (0.8%) 

Ternary 16.63 20.53 33.0% 14.83 13.6% 23" 5" 28 

(1.8%) (1.43) 

8. LEARNING RULES WITH A GENETIC ALGORITHM

8.1. The Genetic Algorithm Principles 

Genetic algorithms are optimization procedures inspired from the mechanisms of 
natural selection. 32 In order to solve an optimization problem, these algorithms use a 
population where each individual represents a possible solution to the problem. Such 
an individual is evaluated using an evaluation function that measures how well the 
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individual is adapted to the problem. Starting initially with a randomly generated 
population where each individual has been evaluated, the genetic algorithm selects 
a subset of individuals by choosing the best individuals of the population with a 
high probability. Then, these selected individuals are used as parents in order to 
produce the next generation. To achieve this, an individual must be represented as 
a string of genes in order to be able to use genetic operators such as crossover or 
mutation. The crossover operator selects two parents and randomly exchanges two 
substrings of genes in order to create two new individuals. The mutation operator 
randomly modifies some genes of an individual and aims at introducing new or 
forgotten genes in the population. These operators aim to create better and better 
individuals by combining useful genes of their parents. A new population of the 
same size as the preceding one is created using these operators, and the algorithm 
will continue such evaluation-selection-crossover-mutation cycles until a stopping 
criterion is fulfilled. 

Genetic algorithms can be applied to machine learning problems.34•69 In this
case, each individual represents knowledge such as rules, neural networks or Lisp 
functions. The evaluation function is computed using a learning set and may mea­
sure, for instance, whether or not an individual correctly classifies the examples 
in this set. The aim of the algorithm is then to find the individual that correctly
classifies the greatest number of examples. The algorithm we shall present, called 
SIA, follows this line of approach. 

8.2. Input-Output Model 

SIA takes as input: 

- Examples. Each example is described with attributes. For instance, these at­
tributes can be Colour or Size. Each example has a special attribute that rep­
resents its class and that takes discrete values. For instance, the Fly attribute 
that may take the values yes or no can be the class attribute to be predicted 
using the two other attributes. The attribute values can be missing, indifferent 
or undefined. SIA can also deal with tree-structured values. For instance, the 
Colour attribute may ta.ke the specific values red or orange, and a more general 
value red-like. 

- Biases. These biases are preference given by the user who may like .to favor some 
rules. For instance, the user may ask for specific rules that take into account 
many attributes, or for general rules. This aspect is expressed using a parameter 
which is denoted as f3 in the following. In order to handle noise, the user may 
also give a maximum allowed error rate for each learned rule, denoted as a. 

- Search intensity. The user can let the genetic algorithm spend more or less time 
for learning rules, by modifying the stopping criterion. This intensity is denoted 
by Nbmax and its use is detailed in the following. 

Finally, SIA outputs rules of the following form: 

If (Colour = red-like) and (Size E [4.3, 7.8]) Then Fly = yes .
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These rules can be used by SIA to predict the class of an unclassified example, or to 
analyze the database by providing the user with symbolic and thus understandable
results. 

8.3. The Learning Algorithm 

SIA is a covering algorithm inspired from AQ42 which uses a genetic algorithm as 
search algorithm: an example of the learning set is chosen as a seed, and then 
the genetic algorithm tries to find the best rule that covers this example; another 
uncovered example is then chosen to learn another rule, until all examples are 
covered. For instance, let us suppose that the chosen example is: 

(Colour = red) and (Size = 5.4) and (Fly = yes) . 

The genetic algorithm is going to generalize this example into a rule. This example 
is initially translated into a very specific rule, denoted by Rinit in the following, 
that would be in our example: 

If (Colour = red) and (Size E [5.4, 5.4]) Then (Fly = yes) .

Then, the genetic algorithm uses a population of rules that are all at least as general 
as this initial rule. Its aim is to find a rule that maximizes the criterion which is 
defined by the user, like for instance "the most general rules with less than 103 
classification errors" . This population of rules evolves using the principles described 
earlier and using genetic operators adapted to the high level representation of the 
rules. 

The mutation operator randomly generalizes a rule by performing one or more 
of the following operations: 

- Enlarging an interval. For instance, the (5.4, 5.4] interval can be changed to [4 .7 ,
5.6], where 4. 7 and 5.6 are other values of the Size attribute that are observed in 
the learning set. 

- Generalizing a tree-structured attribute. For instance, in the previous rule, the 
value red can be changed to red-like. 

- Dropping a condition. For instance, the condition over the Size attribute in the 
previous rule can be dropped, which generates the rule "If (Colour = red) Then 
(Fly = yes)" . 

The crossover operator exchanges conditions between two parent rules. For 
instance, with the following two parent rules: 

If (Colour = blue) and (Size E [4.4, 7.84]) Then (Fly = yes),

If (Colour = red) and (Size E [3.5, 5.6]) Then (Fly = yes), 

the following rules can be generated by exchanging the condition over the Colour 
attribute: 

If (Colour == red) and (Size E [4.4, 7.84]) Then (Fly = yes),

If (Colour = blue) and (Size E [3.5, 5.6]) Then (Fly = yes) .
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Each generated rule is evaluated through the evaluation function. For a given rule 
R, this function equals: 

f(R) = c(R) - anc(R) + {3g(R)
c(R) + nc(R) 

where c( R) is the number of examples that R classifies correctly, nc( R) is the number 
of examples that R misclassifies and where g(R) is the generality of R, measured 
by the proportion of dropped attributes in R condition part. Having f3 < 1 ,  this 
function ensures that the accuracy of learned rules, i.e. c(R)/c(R) + nc(R), is above 
a/1 + a. This is due to the fact that the initial rule satisfies f (Rinit) 2 0, and that
the algorithm may only improve this rule. The higher f3 is, the greater importance 
given to generality. Usually, we choose 0 < {3 < 1. In this case, first importance is
given to the accuracy of rules, and among the rules having the same accuracy, the 
most general is prefered. 

The genetic algorithm stops when more than Nbmax rules have been generated 
without improving the best rule of the population. The best rule found is then 
added to the list of rules that will be output. SIA then chooses another example 
which is not covered by any learned rules, and uses this example as a new seed for 
learning another rule. The genetic algorithm is called up several times until all the
examples in the learning set are covered. The overall algorithm :is the following: 

1 Let x be an uncovered example 
2 Generalize x into a rule R* using the GA: 

2a Translate x into a specific rule Rinit and 
Initialize the rule population P to Rinit 

2b Randomly select one or two parent rules in P, 
Generate one offspring R using genetic operators and 
Evaluate R using f. 

2c Add R to P if P contains less than 50 rules or 
replace the worst rule R- of P with R if f(R) > f(R-) .

2d Repeat steps 2b and 2c until the best generated rule R* 
has not been improved for more than Nbmax generations. 

3 Output R* and Go to 1 if some examples are still uncovered. 

Let p denote the number of attributes. For the sake of simplicity1 let us suppose
that these attributes are binary. In the worst case, the genetic algorithm generates 
all possible rules, that is 0(2P), and this for every search it performs. This yields
an exponential worst case complexity of the whole algorithm. Of course, this worst 
case complexity is never reached in practice. For instance, in the waveform learning
problem, the maximal number of rule evaluations would be in the order of 1011, but
SIA evaluates only 105 rules in practice.

8.4. Classification Procedure

Given a set of rules and a description z to be classified, SIA looks for the rule which 
is the closest to z, and chooses the dass that appears in the conclusion part of 
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this rule. This technique is similar, in a way, to the Nearest Neighbor algorithm 
(Sec. 2.3). The distance used takes into account the quality of the matching between 
the rule and the example. Let us consider a rule R. The distance d(R, z) equals 0
when R matches z exactly. Or else, the distance is equal to the proportion of R's 
conditions which do not match z. When several rules are at the same distance from 
z, the rule with the best performance on the learning set is chosen, according to the 
evaluation function described previously. 

8.5. Results 

Results on the waveform problem are given in Table 8. The CPU time corresponds 
to a Pascal program running on a Sun Spare 10 workstation. The Size column 
corresponds to the number of rules (80) multiplied by the mean number of conditions 
in the learned rules ( 4). In this test, SIA tries to find the most general rules with 
a maximum error rate of 103 on the learning set (a = 9 and f3 = 0.1). Thus, 
SIA performance on the learning set is good. This also explains why the number 
of learned rules is high. While SIA is a stochastic algorithm which does not always 
learn the same rules on two different runs with the same learning set, the standard 
deviations obtained are quite low. SIA has been successfully applied to several 
databases, but SIA does not get a better performance on the waveform problem 
compared to the other methods. This may be due to the fact that noise is not 
handled very well either in the learning or classification procedures. 

Table 8. SIA genetic algorithm. 

Data Train 

Binary 43 

(0.73) 

Test Test(l) 

24.33 27.73 

(0.73)

Test(2) Test(3) CPUtrain CPUtest Size 

20.83 24.3% 30011 30" 4 x 80 = 320 

However, one should note that this learning task is rather "simple" for SIA
because there are no unknown or tree-structured attributes in the data. The genetic 
algorithm is also more flexible than other heuristic based search. For instance, the 
criteria to be optimized can be easily modified by the user, without any modification 
of the search algorithm. This may allow SIA to take into account user preferences for 
some attributes over some others, or to use any, e.g. nonuniform, misclassification 
cost functions. The flexibility of genetic algorithms also allows SIA to be enhanced 
in order to deal with first order logic representation, 1 without changing its main 
principles. 

9. VERSION SPACES

9.1. The Version Space Framework 

Version spaces were developed by Mitchell43 as a general framework of combinatorial 
learning algorithms for the discrimination between two classes, C+ and C_ (positive 
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and negative instances) .  The goal is to represent the set of solutions discriminating 
C + from C _ , in a given characterization language. For this purpose, one structures 
the space of all sentences of the language with a partial ordering called generalization 
relation. This relation is such that a sentence s is more general than another 
sentence s' if it covers a superset of examples, and this is denoted as s � s'. One 
then builds two sets, the set S of all more specific solutions (minimal w.r.t. this 
order) and the set G of all more general solutions (maximal w.r.t. this order) . This 
is done incrementally on the set of instances. Initially, S = { .l} (solution rejecting 
all instances) and S = {T} (solution accepting all instances). At each step, if 
the new instance i is positive (resp. negative), the elements of S (resp. G) are 
minimally generalized (resp. specialized) in order to cover (resp. reject) i, with a 
set of operators depending on the chosen language. In case of Boolean descriptions, 
which we used for the waveform problem, a convenient representation of the G set 
allows an O(n2) time complexity, where n is the number of instances.46 

The decision dvs of the membership class of a new description x is taken on the 
basis of the version space VS = ( S, G) following the rule: 

dvs(x) = C+ If '<:/s E S, x $ s, i.e. x belongs to the class of examples ;

dvs(x) = C_ If '<lg E G, -.(x � g), i.e. x belongs to the class of counter-examples; 

dvs(x) =? Or else, i.e. x can be classified in either two classes indifferently .

This approach presents some important characteristics from the point of view of 
supervised classification. First of all, this method is primarily intended to find the 
set of solutions which perfectly discriminate the learning examples. When no such 
solution exists, the version space approach is faced with a difficulty, the treatment of 
which constitutes the main subject of this section. On the other hand, the fact that 
all solutions are retained makes the method relatively insensitive to the presence 
of irrelevant or redundant attributes. Finally, in common with most generalization 
methods, the language of characterization is part of the data. This language may 
then be adapted to the application, without changing the method. 

9.2. Version Spaces and the Waveform Problem 

We considered that the examples were described with binary attributes. In this case, 
a natural characterization language is the set of monomials that one may build from 
these attributes. Generalization ordering corresponds to the cover relation between 
monomials (m1 � m2 iff m2 ::::} m1). Note that in this case, the set S is always 
reduced to a singleton. 

We tried to characterize the examples corresponding to each class proposed by 
Breiman et al.4 with respect to its complementary set, e.g. C1 w.r.t. C2 U C3. The 
opposite is also possible, and one may choose C2 U C3 for the class of examples 
and C1 for the class of counter-examples. In the second case, the problem comes 
down to the characterization by empty monomials, as carried out in Sec. 6, but the 
results are clearly inferior. On the other hand, using both characterizations slightly 

40



___ , ______ --

improved the results, at the expense of a doubling of the number of literals in each 
characterization. 

This being stated, the waveform problem is difficult for Version Spaces. Results 
clearly show that it is not a good method for this problem. The main reasons are: 

- First of all, it is a problem with more than two classes and consequently, not 
directly within reach of this method. As already outlined before, the solution 
is to produce as many version spaces as the number of classes. However, this 
requires a new decision rule to be built, combining the individual decisions of 
each version space. 

- Second, the chosen description language is insufficient to characterize each class. 
The "sequential" nature of the data is not taken into account. Characterizations 
are particularly sensitive to a. translation factor, and this is clearly not desirable. 

- Finally, a certain degree of covering between classes exists (the problem is not 
deterministic). One is not always guaranteed of being able to discriminate per­
fect]y, even between the training examples. 

Therefore, we are not looking for a method to challenge the results of classical 
methods such as linear discrimination (Sec. 2.2), largely more suited for this par­
ticular application. We would prefer to sho,w how the results of the basic method 
may be improved in a symbolic-numerical framework. 

9.3. Description Language 

We experimented with the binary coding described in Sec. 1.5. This language be­
ing particularly poor, we tried several alternative codings of the continuous data, 
in order to enrich the basic descriptions while remaining in a domain of binary 
attributes. The most interesting results were obtained with a coding scheme sug­
gested by Breiman et al.,4 based on a moving average calculation on raw data. 
More precisely, we computed the moving average for windows of size 1, 3 and 5, 
and coded the result with 2 Boolean threshold attributes (xi < 3 and Xi > 6),
that leads to a coding of length p = 126 bits. On average, this coding allows us to 
"reduce" the noise attached to these contiguous attributes whose values, before the 
noise has been added, are necessarily very close. It includes therefore a considerable 
knowledge of the data generation model. For instance, in the case of classification 
trees, it provide an increase of about 83 of the recognition rate.4 

9.4. Training Example Selection 

The search algorithm in the version space is initialized with a set S reduced to 
the element 1- (recognizing no description) and a set G reduced to element T
(recognizing all the descriptions). S and G are then refined, taking into account 
the examples of the learning set incrementally. 

When the language is not sufficient to describe the data (this is in fact the case 
for the waveform problem), the algorithm may stop in two different states. Either 
it converges on a single solution before having treated all training examples, or 
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it detects that no solution exists. The simplest way, retained here, that always 
guarantees the existence of at least one solution, is to reject all examples producing 
an empty version space. It must be clear that this process can lead to an acceptable 
solution only if training examples have been adeptly selected for their presentation. 
Furthermore, a good scheduling of these examples reduces the complexity of the 
calculation by allowing a faster convergence of the algorithm. 

The goal is to produce this ordering by means of a hierarchical classification of 
the training examples. One selects the higher nodes in the tree, corresponding to a 
cluster in which all examples belong to the same class, and represented by circled 
nodes in Fig. 8. In this way, one builds a partition of the examples in homogeneous 
clusters, that are then sorted in decreasing order of size. While learning class Ci, one 
alternates, in decreasing order of size, the presentation of a group of Ci and the pre­
sentation of a group of another class. Thus if classification is correct , one learns as a 
priority the most relevant aspects of the characterization, covering the largest set of
examples. Thus, the tree in Fig. 8, where leaves are labeled with the name and the 
class of the examples, leads to the following presentation if one tries to learn class C1 
( + for example and - for counter-example): (et, et , et, e1, e;, et, et, e;, e;).

Furthermore, note that the very same tree may serve to produce disjunctive for­
mulae by learning monomials for each group of a partition of the tree. For instance, 
if one cuts the tree just below the root, one obtains a partition of the examples in 2 
groups that gives the 2 following presentations for class C1: (et , et, et, e1, e;: , 
e;, e7) and (et, et, e}, e2, ej", e7). One may alternatively choose the counter­
examples only in the cluster containing the examples, but this generally leads to 
significantly lower results. In the case of waveforms, this possibility of introducing 
disjunctions has not brought a noticeable gain in recognition. 

Ct 

C3 C3 
I I 

el e2 e3 e4 es e6 e1 es e9 
Fig. 8. Hierarchical clustering of the examples e1, e2, . . .  , e9, the class being indicated on the 

internal nodes, or on the edges. 

We used a hierarchical ascending clustering algorithm (CHAVL) ,  based on the 
Likelihood Linkage Analysis method. 38 We start with the calculation of the raw 
similarity between any two examples. This raw measurement is standardized with 
respect to its theoretical mean and standard deviation, calculated on an indepen­
dence assumption basis, and the final index corresponds to the likelihood of the 
similarity. The hierarchy is then built step by step, following the maximum likeli-
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hood criterion. First, we measured the raw similarity with the number of attributes 
simultaneously true in both examples. The results, while noticeably improving 
the results of a random partition (approximately 10%), presented a relatively high
standard deviation ( 4 % ) . The best classification results were obtained for a raw sim­
ilarity measuring the number of identical windows of 2 or 3 contiguous attributes 
in the two compared sequences. 

9.5. The Classification Function 

As many version spaces are produced there are classes to be discriminated. It is 
necessary then to build a classification rule which seeks for a consensus between 
the different judges represented by each version space. After numerous trials, we 
adopted a solution where each judge has g ballot papers to be distributed among 
the g classes following its decision function. This corresponds to a rule choosing the 
class Ci maximizing the following function fi :

fi(x) = L /ii(x) where
i=l,g 

If dvs; (x) = C+ then fti(x) = g and fij (x) = 0 for j =J i ;

If dvs, (x) = C_ then fii(X) = 0 and fij (X) = gjg - 1 for j =J i ;

If dv Si ( x) =? then fij ( x) = 1 for every j .

9.6. Results and Discussion 

Results given in Table 9 have been obtained from binary data, using a classification 
based on windows of 2 attributes (Sec. 9.4), and on continuous data coded according
to the method of Breiman et al. (Sec. 9.3), using a classification based on windows
of 3 attributes. The CPU time corresponds to a program written in C and Prolog, 
which is relatively well optimized (original research results were necessary for this 
purpose, 46 and which runs on a Spare IPX 32 Mega ( � Spare 2). This includes the
time of clustering training examples, which is about 20 seconds. The obtained length 
is expressed in terms of the number of literals and corresponds to the generation 
of 12 sets (S and G for each class and characterizing either the examples or the
counter-examples). 

Table 9. Version spaces. 

Data 'Train Test Test(l) Test(2) Test(3) CPU train CPU test Size 

Binary 30.9% 31.9% 37.53 29.23 29.1% 35" 0.2" 27 

(3.6%) (2.3%) (62) 

Breiman's 17.43 21.6% 28.9% 19.23 16.73 70" 0.311 214 

Goding (1.93) (2.03) (300) 
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There is generally a single monomial in G (and S). These monomials are rel­
atively short in the case of the initial binary coding (about 2 literals), and much 
longer in the cMe of Breiman's coding (about 18  literals, but for a code 6 times 
longer). Exhibited learning times show a linear progression with respect to the num­
ber of attributes. The recognition rates found have to be appreciated in relation 
to the error rate on the training set, corresponding to the percentage of training 
examples that were not taken into account, due to the inadequacy of the character­
ization language. A related interesting indicator is the number of examples treated 
before the convergence of the algorithm. This number is given between brackets in 
column Test(l). For an acceptable coding, there must be no convergence, i.e. one 
must find 300. The slight difference between results obtained on the training set 
and those on the test set is to be noted. Note also that results are less accurate for 
class 1 ,  more difficult to characterize in a conjunctive way. 

10. CONSTRAINT-BASED LEARNING

10.1. Method Overview 

Constraint-based induction is a new Machine Learning algorithm58•59 inspired from 
both the Star Algorithm AQ41 and the Version Space approach. 43 Since these ap­
proaches were presented previously (Secs. 8 and 9), we shall only recall the limita­
tions which motivated their hybridizati:on and embedding in the constraint-based 
induction frame. 

Version Space fails to handle disjunctive concepts, overlapping concepts, and/or 
noisy data. FUrthermore, the size of the G set may be exponential when using 
the standard disjunctive representation.30 Star Algorithms partly overcome such 
limitations through a bottom-up exploration of the examples. However, the stars 
are built under control of the expert, who explicitly provides criteria for sorting the 
number of solutions to be kept. 

So constraint-based learning investigates the coupling of the Version Space and 
.the Star Algorithm. On the one hand, a bottom-up exploration enables us both to 
deal with disjunctive concepts and handle noisy data. On the other hand, the need 
for evaluation and control is avoided by defining the star of a seed (x, c) M the G
set derived from this seed: the G-star associated to seed (x, c), noted G(x, c), is the 
more general formula covering x and not covering any training example belonging 
to another class. A constraint-like representation, inspired from Ref. 46, enables a 
polynomial building and handling of G-stars with attribute-value descriptions. Note 
that this representation handles continuous attributes directly, as opposed to some 
approaches (e.g. Secs. 6, 7 and 9) which require prior segmentation of continuous 
attribute domains. Finally, to classify an unknown description z, we use a simple 
idea which exists, for example, in the k-NN method and in some methods already 
presented: z is classified in the most frequent class among the stars to which it 
belongs. 
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10.2. Notation and Definitions 

We restrict ourselves to linear (real, integers) and nominal (discrete or tree­
structured) attributes. Let (x, c) denote a seed. Let E_ be the set of training
examples that belong to a class different from c. The G-star G(x, c) is the conjunc­
tion of the constraints derived from the examples in E_, called counter-examples 
to (x, c). Before defining a constraint, let us recall the notion of selector.41

- A selector is a Boolean function defined on the problem domain X, which is 
denoted as [attribute = VJ; in the case where attribute is nominal , this function 
takes value true for x in X i:ff the value attribute(x) equals value V (or is more 
specific than V if the domain of attribute is a hierarchy); in the case where 
attribute is linear, it takes the value true iff attribute(x) belongs to interval V. 

- The constraint derived from counter-example (x', c'), noted D(x, x'), is the dis­
junction of the most general selectors that cover x and reject x', called maximally 
discriminant selectors. Let us consider the following data: 

Smooth Height 

x = Yes 3 

x' = No 7 

Width Colour Class 

19 Red C+ 

12 Blue C_ 

Attribute Smooth is binary; so the maximally discriminant selector based on this 
attribute is [Smooth = yes] . Attributes Height and Width are linear. Hence, 
the maximally discriminant selectors based on these attributes are respectively: 
[Height < 7] and [Width > 12]. Last, assuming Hot-colour is the most general 
value for attribute Colour such that it covers Red and rejects Blue, then the max­
imally discriminant selector based on attribute Colour is [Colour = Hot-colourj. 
Finally, the more general formula covering x and rejecting x' is:

D(x, x') = [Smooth = Yes] or [Height < 7) 

or [ Width > 12] or [Colour = Hot-colour] . 

The disjunction D(x, x') is the G-star built from the unique positive example 
(x, c) (the seed) and the unique negative example (x', c') . The selector based on
a given attribute is present iff this attribute is informed for both x and x' (which 
enables easy handling of missing values), and if it takes different values for x and 
x' (up to a given precision in the case of real values).

- The G-star of a seed (x, c) is the conjunction of the constraints D(x, x') derived
from all its counter-examples. However, a counter-example gives rise to a con­
straint iff, at the time it is considered, it still belongs to the star. Otherwise, it
is discarded. 

10.3. Algorithms 

As in the Star Algorithm, learning examples are considered randomly. An example 
becomes a seed, i.e. gives rise to a star iff, at the moment it is considered, it is 
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not yet rightly classified given the stars formerly built. The star of a seed (x, c) 
is the conjunction of all constraints derived from the counter-examples of (x, c) ,
and the constraint derived from a counter-example (x', c') is the disjunction of all 

maximally discriminant selectors covering x and rejecting x' (see above). Note that 
this representation of G is polynomial with respect to the number of attributes and 

examples, whereas the usual representation (as a disjunction of conjunctions) is pos­
sibly exponential.30 This allows polynomial learning (and classification). Building 
a constraint is in O(p), building a star is i� O(n2p), and the entire learning process 
is in O(n3p).

The classification of a new description z is based on the learned G-stars: z is clas­
sified in the most frequent class among the stars G(x , c) it belongs to. Membership 
to a star may be tuned according to two parameters: 

- The first parameter denoted as c allows us to handle "noisy" descriptions: z 
belongs to G(x, c) if it satisfies at least a percentage (100 - c) of the constraints 
in the star. 

- The second parameter denoted as M controls the generality of constrain.ts: z 
satisfies a constraint D(x, x') iff it satisfies at least M selectors in this constraint. 
When M is 1 ,  D(x, x') is simply used as a disjunction of the selectors; otherwise, 
D(x, x') is used as an M-of-N concept. This heuristic is motivated by the fact 
that, when M is 1 ,  most z happen to satisfy any D(x, x') (especially when the 
problem domain involves many continuous attributes); hence they belong to most 
stars, and are classified in the most represented class! This drawback disappears 

as expected when M increases. 

Since the total number of selectors in the stars is upper-bounded by n2p, the 
classification of an example has a complexity in O(n2p).
10.4. Results 

Parameter c varied from 0 to 203 and parameter M varied from 7 to 1 1  in our 
experiments. Parameter c influences the performance in a classical way: when it 
increases, the performance decreases on the training set, while on the test set it 
increases at first, then decreases. In fact, the only crisp difference occurs between 
(c = 03) and (c = 5%). For a given value of £, the performance is quite stable 
depending on M. However, an increase in M can to some extent counter-balance 
an increase of E. For instance, the best results on continuous data are obtained for 
(c = 10%, M = 8) and (c: = 20%, M = 9). The program is implemented in C++
and runs on a HP 710 workstation. The size is expressed as a number of stars and 
a total number of selectors. Note that this huge number of selectors allows one 
to efficiently grasp an arithmetic concept in a logical manner. On the other hand, 
it needs bunches of selectors to mimic arithmetic skills (imagine approximating 
an oblique line through stepwise functions). The theory hidden in the G-stars is 
therefore unintelligible. However any decision can be explained through the common 
points between the case z at hand, and the seeds (x, c) of the stars to which z 
belongs. Results are given in Table 10, and are among the best we obtained in this 
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study. Thus, it appears that the constraint-based approach efficiently overcomes the 
limitations of the Version Space regarding disjunctive and overlapping concepts and 
noisy data. Moreover, we wou]d like to emphasize that constraint-based learning 
may be extended to a subset of first order logic. 58 

Table 10. Constraint-based learning. 

Data Train Test Test( l )  Test(2) Test(3) CPU train CPU test Size 

Binary 22.8% 21.63 25.63 21.63 17.13 62" 388" stars 87 
(0.5%) (0.33) Sel 33000 

Cont in. 18.03 18.03 18.13 18.13 17.73 5011 303" stars 77 

(0.63) (0.23) Sel 55000 

1 1 .  ABOUT THE RESULTS ON THE WAVEFORM RECOGNITION PROBLEM 

It is obvious that the choice of a particular problem favors certain methods over 
others. All the conclusions of this study, particularly on the misclassification rate, 
cannot therefore be extrapolated to other problems and other domains. Neverthe­
less, certain characteristics of the methods appear in the results presented. Some 
methods learn more rapidly, others decide more quickly, or are endowed with a bet­
ter explanation power. Table 11  and Fig. 9 highlight these different characteristics. 
Except the Best coding item, they are derived from results obtained by methods on 
binary data, which are those which more clearly justify the use of a hybrid approach, 
if we exclude the Fuzzy Classification Trees (Sec. 5) which are basically intended 
to deal with continuous attributes. For this latter method, we used results from 
Table 5 which were obtained for continuous data. The twelve methods are classified 
according to the following six criteria: 

- Total Misclassification Rate for which we provide the detailed ordering, although 
this could be questioned as said before. Moreover, because of the stochastic 
nature of the problem, this ordering might be slightly modified if other learning 
and test sets were used. This is clearly shown in Fig. 9 where the 953 standard 
confidence interval of the expected error rate is represented (Test ± l.96a / Vll).  
When performing a Student test, we see that the only 95% significant differences 
between consecutive methods are between: MLP and Constraint-based, Empty 
Monomials and Genetic approach, Genetic approach and Q. Fischer, Q. Fisher 
and Fuzzy Classification Trees, Classification Tree and Version Space. If we now 
consider for a given learning set the interval in which the misclassification rate lies 
with probability 95% (obtained from Fig. 9 by enlarging the confidence intervals 
by a factor � �  3, 5), we see that it is not unlikely to observe a learning set such 
that a rather poor method, e.g. Q. Fisher, performs better than a good method, 
e.g. L. Fisher. In practice it may be said, therefore, that the first 9 methods 
are not extremely different, while the last 3 yield very inferior results. Besides, 
the standard deviation is widely different from one method to another. Some 
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Table 11. Ordering of the methods according to six criteria. Test, Test(l), CPUtrain, CPUtest
and Size have the same meaning as in previous tables and have been obtained on binary data. 
Best coding provides the ordering of the methods according to lowest misclassification rate 
observed in this study, depending on the coding scheme; B stands for Binary, T for ternary, C 
for continuous and BR for Breiman's coding (Sec. 9.3). 

Method Test Test(l) Best coding CPU train CPU test Size 

L. Fisher 3 5 4 T 1 1 2 

Q. Fisher 9 7 6 c 1 1 3 

Parzen 4 12 8 T 1 3 3 

k-NN 6 11 3 c 1 3 3 

MLP 1 2 1 c 3 2 2 

Decision tree 11 9 9 BR 2 1 1 

Fuzzy decision tree 10 6 12 c 3 2 2 

Empty monomials 7 1 10 B 2 2 3 

Decision com. 5 8 5 T 2 1 1 

Genetic approach 8 4 11 B 3 2 2 

Version space 12 10 7 BR 2 1 1 

Constraint based 2 3 2 c 3 3 3 

methods (e.g. Parzen's Kernel or k-NN) have quite a high variability, while some 
others, typically hybrid methods (e.g:. Empty Monomials and Constraint-based) 
present a low standard deviation. 

- Misclassification rate in the first class, indicated as Test(l), for which we also 
provide the detailed ordering. We selected this criterion because the first class 
seems to be much harder to predict correctly. It follows that some methods, 
e.g. Parzen's Kernel, obtained very unbalanced results among the three classes. 
These latter methods rarely predict the first class and take few risks. On the other 
hand, methods such as Empty Monomials, take more risks, obtain well balanced 
res�lts and inevitably are

. 
not excellent considering the total misclassification

rate. Therefore, the misdassification rate in the first class enables the point of 
view given by the total misclassification rate to be completed and corrected (see 
Fig. 9). 

- Lowest misclassification rate observed during this study, depending on the coding 
scheme, indicated as Best coding. Again, we selected this criterion to complete 
and correct the misclassification rates obtained with binary data. Indeed, some 
methods have the ability to directly handle continuous data or have sufficiently 
low computational cost that it is possible to use a sharp non-binary discretization 
of continuous attributes. Most of these methods takes advantage of these data 
which contain more information than binary data (Fig. 9). The most important 
improvement is obtained for the k-NN method, while the exceptions are CART 
whose results are better with the binary data (Table 4), and Parzen's Kernel 
which is only slightly improved by ternary and continuous codings (Table 3). The 
Empty Monomials and Genetic methods which have only been tested with the 
binary coding, probably because of computational cost, are penalized. Finally, 
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Fig. 9. Ordering of the twelve methods with: their a.verage total misclassification rate on binary 
data (horizontal stroke); the 953 standard confidence interval of this average rate (vertical line); 
their average misclassification rate in the first class (white circle); their lowest average misclassi.fi-
cation rate observed during this study, depending on the coding s<:heme (black circle: continuous 
data, black triangle: ternary data, black square: Breiman's coding). 

the most impressive difference is obtained with Breiman's coding (Sec. 9.3) which 
was only applied to the two poorest methods (i.e. CART and Version Space) and 
which makes them close to the best. This proves, if proof is needed, that the 
coding stage is of primary importance and that it must be conducted by using as 
much as possible the knowledge we have about the data1 and by considering the 
properties of the classification method we envisage. 
Learning Time for which three categories of methods were considered: (1) those 
which provide an instant response ($ 1 second); (2) those for which the waiting
time is reasonable ($ 1 minute); (3) others which are not likely to be envisaged
in the case of an exploratory procedure aimed at "understanding" the data. The 
times as indicated throughout the article were all measured on different equip-
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ment. To o
i
btain comparable results we considered the Spare 2 (Sec. 2) as the 

basic machine (power = 1), and we have corrected the other running times by 
using the following power ratios: Mac (Sec. 6) � 1/10, Spare 1 (Sec. 4) � 1/2, 
Spare IPX (Sec. 9) and HP710 (Sec. 10) � 1, Spare 10 (Secs. 3, 5, 7 and 8) � 
2. This is clearly a quite rough estimate, but our categories are not affected by
reasonable modifications of these ratios. 

- Decision time for which we also considered three categories: (1)  quick response
for 5000 test examples (� 10 seconds); (2) reasonable time (� 2 minutes); (3) 
others not to be envisaged in an exploratory approach. If we take the decision 
time for a single example, all the methods are sufficiently rapid (� 1 second) to 
be used, for instance, in the case of medical diagnosis. 

- Size for which we also provide three categories: (1) results directly exploitable 
and interpretable; (2) size sufficiently reduced so that useful information may be 
drawn from the results without much difficulty; (3) size such that the compression 
aspect (or resume) of data is practically absent. For example, classification trees 
are in the first category, linear discrimination (66 parameters) in the second, while 
quadratic discrimination ( 696 parameters) is in the third category. 

It may be noted that among the "best" methods, we find Linear Discrimina­
tion, Multi-Layer Perceptron and Decision Committees, which are similar in several 
aspects. The performance of these methods may certainly be explained by their 
appropriateness for the problem. Moreover, the analytic solution of Fisher's Dis­
criminant Function, combined with the well optimized implementation of the SAS 
software, yields high computational efficiency. However, if we try to compare the 
hybrid methods with the most classical methods presented (Fisher's Discriminant 
Function, Parzen's Kernel, k-NN and Classification-Tree), we see that there are 
some methods which are more powerful in terms of error rate, for example, Neu­
ral Network or Constraint-based methods. Moreover, most hybrid methods obtain 
results which are better balanced than those obtained by the classical methods. 
Concerning Neural Networks, similar results have been found in other studies.35•54 
Likewise, the Decision Committee method is as explanatory as that of Classification 
Trees, yet the results obtained by the former are vastly superior at the performance 
level. This somewhat contradicts a conclusion of King et al. (Ref. 35, p. 312) which
was that "symbolic algorithms all performed very similarly and that there is no 
obvious best algorithm". The explanation, developed below, is very likely linked to 
the notion of vote in decision taking, used by the best hybrid methods. Therefore, 
these experimental results are very encouraging. It remains to verify that these 
good performances can also be observed with various large real-world classification 
problems. Preliminary results in that direction have already been obtained for the 
Decision Committe method. 48 

12. CONCLUSION

In this article we presented twelve supervised classification methods, some classical
and some original, which combine numerical and symbolic aspects. We would now 
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like to make some general remarks about the methods presented, and try to draw 
some conclusions. 

First of all, it appears that the symbolic aspect of the methods presented is 
predominantly linked to the notion of rule. This is clear in all of the methods, with 
the exception of the purely numerical (Sec. 2). The rule notion, which emerges in 
the earliest studies on Machine Learning, and is linked to expert systems and to the 
search for explanation virtues, takes on various forms. We find juxtaposed, Tree­
Based and Decision Committee methods (Secs. 4, 5 and 7) on one hand, and on 
the other hand, those based on empty monomials (Sec. 6) and constraints (Sec. 10). 
In the first case, we find rules which are indeed close to those of expert systems, 
whilst in the latter the rules are extremely numerous and primarily characterize the 
description space. It is also to he noted that Neural Networks, which are inherently 
numerical, integrate a certain notion of rule if they possess a hidden layer. This 
hidden layer contains the "rule" conclusions defined through the first weight layer, 
while the next layer shows how these rules should be combined. 

Concerning the numerical aspects, the notion of vote in decision taking has 
considerable importance. This occurs on two levels. First, in several methods, rules 
are fired through a partial matching procedure, in other words, through a counting 
and threshold comparison procedure. Now, in most methods, the decision is taken 
based on a set of fired rules and not on the basis of a single rule. Exceptions to this 
are the classification-tree methods, which in light of the results on waveforms, seem 
to be penalized by this characteristic. Numerical methods, particularly Fisher's 
Linear Discrimination and Neural Networks, integrate the voting notion through 
the more general notions of weighted sum and activation function. 

Different solutions are proposed by these methods for finding rules, for evaluating 
those rules individually and collectively, for firing rules, and for combining their 
decisions. Other solutions exist, which are not presented here, among which we 
may cite those inspired by neural networks, such as Refs. 26 and 62. Deepening 
the theoretical results is a promising research field to be explored in future studies. 
This would make it possible to find paths through the diversity of the solutions 
proposed at present, to specify formal bases of certain approaches and to explain 
the often positive experimental results obtained by these methods. 

Several methods presented integrate the notion of generalization, and that of 
solution or version space. They proceed by exploration of this space, and extract 
the pertinent points which are used to form the condition part of rules. Thus, they 
are able to pass from simple attribute-value descriptions to more complex system 
descriptions, based on subsets of predicate logic, or on graph-based formalisms. 
This passage has already been studied for several methods we have presented,58•69 

and applications for other description types, notably biological sequences, have been 
conducted successfully. 22•25 We think that this capacity to process complex data, 
a.s well as the results obtained here on a problem known to be hard for rule based 
approaches, is very encouraging for the future of supervised classification hybrid 
methods. 
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