
HAL Id: hal-01184805
https://hal.science/hal-01184805

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Twelve numerical, symbolic and hybrid supervised
classification methods

Olivier Gascuel, Bernadette Bouchon-Meunier, Gilles Caraux, Patrick
Gallinari, Alain Guénoche, Yann Guermeur, Yves Lechevallier, Christophe

Marsala, Laurent Miclet, Jacques Nicolas, et al.

To cite this version:
Olivier Gascuel, Bernadette Bouchon-Meunier, Gilles Caraux, Patrick Gallinari, Alain Guénoche,
et al.. Twelve numerical, symbolic and hybrid supervised classification methods. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 1998, 12 (5), pp.517-572.
�10.1142/S0218001498000336�. �hal-01184805�

https://hal.science/hal-01184805
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TWELVE NUMERICAL, SYMBOLIC AND HYBRID
SUPERVISED CLASSIFICATION METHODS•

OLIVIER GASCUELa,t, BERNADETTE BOUCHON-MEUNIERb,
GILLES CARAUX3, PATRICK GALLINARib, ALAIN GUENOCHEc,

YANN GUERMEURb, YVES LECHEVALLIERd, CHRISTOPHE MARSALAb,
LAURENT MICLETe, JACQUES NICOLASr, RICHARD NOCKa,

MOHAMMED RAMDANib, MICHELE SEBAGg, BASAVANNEPPA TALLURr,
GILLES VENTURINih and PATRJCK VITTEc

a LIRMM, 161 rue Ada, 34392 Montpellier cedex 5, Fronc.e

b LAFORIA-IBP, Universite Paris 6, case 169, 4 place Jussieu, 75252 Paris cedex 5, Fronc.e
c LIM-CNRS, 163 Av. de Luminy, 13288 Marseille cedex 9, Fronce

d/NRIA Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le Chesnay, Fronce

e IRISA-ENSSAT, Rue de Kerampont, 22300 Lannion, Fronce

f !RISA, Campus de Beaulieu, 35042 Rennes, Fronce

g LMS-CNRS 317, Ecole Polytechnique, 91128 Palaiseau, Fronce

h E31, 64 Av. Jean Portalis, BP 4:, 37913 Tours cedex 9, Fronce

Supervised classification has already been the subject of numerous studies in the
fields of Statistics, Pattern Recognition and Artificial Intelligence under various appel­
lations which include discriminant analysis, discrimination and concept learning. Many
practical applications relating to this field have been developed. New methods have ap­
peared in recent years, due to developments concerning Neural Networks and Machine
Learning. These "hybrid" approaches share one common factor in that they combine
symbolic and numerical aspects. The former are characterized by the representation of
knowledge, the latter by the introduction of frequencies and probabilistic criteria. In the
present study, we shall present a certain number of hybrid methods, conceived (or im­
proved) by members of the SYMENU research .group. These methods issue mainly from
Machine Learning and from research on Classification Trees done in Statistics, and they
may also be qualified as "rule-based". They shall be compared with other more classical
approaches. This comparison will be based on a. detailed description of each of the twelve
methods envisaged, and on the results obtained concerning the "Waveform Recognition
Problem" proposed by Breiman et al.,4 which is difficult for rule based approaches.

Keywords: Supervised classification, statistical methods, discriminant analysis, neural
networks, classification trees, machine learning approaches, hybrid methods, waveform
recognition problem.

1. INTRODUCTION

1.1. Survey Motivation and Outline

Supervised Classification is the problem of learning a classification function from
examples. If these examples are patients described through a certain number of
symptoms or images of digits described by pixel values, a classification function

tcorresponding author. E-mail: gascuel@lirmm.fr
*The authors are members of the French research group SYMENU which is composed of fifty
participants from ten laboratories. SYMENU stands for "Numerical-Symbolic Discriminatio,n
Methods". The group is supported by the French Ministry of Research and Education.

1

518 --�--·-···-----------

must predict the class of these elements, in other words an illness or a digit. The
goal is to construct these classification functions by using a set of previously clas­
sified examples a.s the only a priori knowledge. This is called the learning set. The
subject is vast, involving numerous applications, and has already been extensively
explored in the fields of statistics, pattern recognition and artificial intelligence.
Depending on the field in question, supervised classification appears under differ­
ent names ranging from discriminant analysis, discrimination and concept learning.

Over the last ten years, several new approaches have appeared, in particular due
to developments in the domains of Neural Networks and Machine Learning. These
approaches share one common factor in that they facilitate the coexistence of sym­
bolic aspects, such as those found in example representation or in the manner in
which the learned classification function is expressed, and numerical aspects, such
as the introduction of frequencies and probabilistic criteria.

The aim of this paper, written by the French research group SYMENU, is to
study these hybrid approaches, which combine symbolic and numerical aspects. We
shall present a certain number of methods conceived (or improved) by members
of our group. These methods issue mainly from Machine Learning and from re­
search on Classification Trees done in Statistics. They may also be qualified as
"rule-based" in that they all use, in some respects, typically AI rules for form IF
description THEN class. We shall provide a presentation of these methods, which
should be simple but sufficiently complete, thus demonstrating the various ways of
combining both the symbolic and numerical aspects, as well as the advantages and
the inconveniences of these combinations. Besides, numerous other supervised clas­
sification approaches exist, which are mainly numerical and derived from Statistics,
Pattern Recognition and Neural Networks. We shall present the most frequently
used and cited of these methods. This will enable us to illustrate the specifici­
ties of hybrid, rule-based approaches. Moreover, the mere principle as well as the
properties and recent developments of these classical methods often seem not to be
well known by the Machine Learning community, and this paper could serve as an
introduction to these aspects.

In the last few years, several systematic comparisons of various methods on data
sets have been published.6135162. In particular, King et al. provide a confrontation
between 17 well-known methods (CART, CN2, C4.5, SMART, . . .) on 12 real­
word sized problems. Our purpose is somewhat different. Most of the methods we
present are original, or very recent. Therefore, we decided in favour of a precise,
explanatory description of these methods, rather than an extensive experimental
comparison which could be seen as untimely. To illustrate the differences among
the methods presented, we have evaluated them according to a classical problem
of supervised classification, that of "Waveform Recognition"4 which is known to be
difficult for rule-based approaches. Our objective was to show experimentally that
our original hybrid algorithms have better performances (on this difficult problem)
than classical symbolic methods such as, for example, CART, and that they are not
very far from well established numerical methods such as, for example, Fischer's
linear discriminant function.

2

519

This paper is organized as follows. First, we shall define more formally the
subject of supervised classification and introduce the notation (Sec. 1.2). A brief
history will allow the methods to be contextualized (Sec. 1.3). Then, we shall outline
the main points of the hybrid approaches (Sec. 1.4). The waveform recognition
problem is presented in Sec. 1.5. A comparison of methods is not that easy to
accomplish, even on a particular application. Thus, a certain number of criteria
have been retained which are presented in Sec. 1. 6.

Tihe remainder of the article is devoted to a description of the methods them­
selves . In order to provide a sufficiently large scope of supervised classification, we
first describe several classical methods: Sec. 2 addresses the main statistical ap­
proaches with particular emphasis on four classical methods; Sec. 3 describes Neu­

ral Networks, and. more especially the Multi-Layer Perceptron; Sec. 4 presents the
CART Classification Tree approach of Breiman et al. 4 Remaining parts are devoted
to original contributions. Section 5 proposes the combination of Classification Trees
and Fuzzy Sets. Sections 6-8 present methods based on the use of Decision Rules,
similar to the rules of an expert system: the first adopts a combinatorial approach;
the second describes "Decision Committees" which are a simple and comprehensible
way of combining rules; the third relies on the use of a Genetic Algorithm. The two
following parts look at methods derived from the Version Space approach43: Sec. 9
proposes the combination of this approach and of a Hierarchical Clustering based
pre-processing; Sec. 10 is also related to the Star Algorithm41 and is based on the
use of "constraints". The fina] sections (11 and 12) provide a general discussion of
our results and observations, and conclude the paper.

1.2. Supervised Classification

Let us assume that we have a set of examples E, called the learning set, of cardinal
n. As a general rule, this set constitutes only a small part of the entire range of
possible examples which is often infinite. Each example, which we shall denote (x, c)
represents a pair (description, class). The description x belongs to the description
space X. In the case where the description is of the value-attribute type, the
description space is a product space X = X1 x X2 x · · · x Xp, in which each Xj
is the set of values possible for the jth attribute. The value of this attribute for a
given description x is denoted as Xj. The class c of an example is an element of the
classes {Ci, C2, . . . , C9}. The set E is thus partitioned into g subsets E1, E2, . . . , E9,
of cardinal ni, n2, .. . , n9, respectively. In the special case where there are only two
classes, these are denoted C+ and C_. In this case, one frequently refers to the
learning of a concept, the positive examples being those of E+ and the negative

examples or counter examples are those of E_. Note that each example is assigned
to a single class. However, the same description may correspond to several examples
belonging to different classes. Therefore, the link between the description and the
class is not necessarily functional, or deterministic. In practice, this is almost never
the case as the description is generally incomplete and partially erroneous.

3

520

Our goal is to build a classification function from these learning examples, thus
allowing a class to be attributed to a new example whose class is unknown. The
general principle consists in constructing a function which will enable a good reclas­
sification of the learning examples. However this principle does not suffice, since the
goal is to achieve, above all, good performance on the new examples. In order to
estimate it, a test set is used which is independent of the learning set. In practice,
we have a finite set of examples that we divide into one (or several) learning sets
and one (or several) test sets. Due to the nondeterministic nature of the problems
processed, and because the learning set generally constitutes only a small subset
of the possible examples, it must be admitted that the classification function cho­
sen does not provide a perfect reclassification of the learning examples. Excellent
results on the .learning set do not necessarily yield excellent test results, therefore
a compromise between learning performance and test performance must be found.
Moreover, one often wishes the learning procedure to provide a classification func­
tion containing explanations on the class partition observed on the data.

1.3. A Brief History

Supervised classification has quite a long history; our purpose here therefore will be
to provide a limited scope of the subject. We shall concentrate on a broad outline
highlighting the specificity of the hybrid approaches.

The discriminant function of Fisher1 7 was one of the first methods to appear. In
this method, examples are represented by points of RP, and classes are separated
by linear or quadratic surfaces which are optimal when the classes are Gaussian
(cf. Sec. 2). The Rosenblatt Perceptron56 also uses a representation in RP with
linear decision surfaces while enabling an adaptive, or incremental, learning, which
means that it iis capable of taking examples into account consecutively as each one
"arrives". Current Neural Network models, in quite a number of cases, are direct
descendants of the Perceptron (cf. Sec. 3).

The 1960's saw the development of several studies in pattern recognition, notably
statistical pattern recognition. Duda and Hart15 and Fukanaga21 provide a general
presentation of that period. Among these studies, Sonquist and Morgan64 produced
the first works to appear on Classification Trees whose methods are still considered
today as the pivots of the hybrid approach. Tree-based approaches are interesting
from two points of view. On the one hand, they naturally integrate qualitative or
symbolic representations; on the other hand, they contain a very high explanation
power (cf. Secs. 4 and 5). They also constitute a nonparametric method class
in that they do not presuppose a data. model. Other nonparametric approaches
were also developed; notably Parzen's Kernel method49 and the k-Nearest-Neighbor
technique.11 These approaches are not only simple to implement, they also contain
remarkable asymptotic properties (cf. Sec. 2). Concerning binary data processing
(represented in {O, 1 }P), it is worth mentioning the works of Bongard3 and those
of Quinqueton and Sallantin,52 who present an alternative to Classification Trees
and who are primarily responsible for some of the methods which will be presented
below (cf. Secs. 6 and 7).

4

In the field of Artificial Intelligence, the development of supervised classification
methods dates essentially from the beginning of the 1970's, with the famous "Arch
Concept Learning" problem as devised by Winston.75 These methods contributed
to the capacity to learn from structural example descriptions, thus abandoning
the value-attribute model used in all of the above-mentioned approaches. Several
repres·entation modes were envisaged, notably those based on semantic networks75
and on predicate logic. 70 Mitchell43 showed that in the AI methods, a more or
less explicit solution, or version, space exists, partially ordered by a generalization
relation. Moreover, Mitchell proposed an algorithm to search this space (cf. Secs. 9
and 10). Other methods were proposed, notably the Star algorithm,41 (cf. Secs. 8
and 10) while the notion of generalization was also explored, 14 particularly within
the scope of Inductive Logic Programming. 45

Neural networks have come to the forefront due to the work of Hopfield33 on
associative memory models, inspired by statistical physics. In the field of supervised
classification, a decisive step was reached with the development of the Multi-Layer
Perceptron. 57 The MLP associates the notion of hidden cells40 with a learning al­
gorithm of the stochastic gradient type, such as the backpropagation of the error
gradient, thus enabling a break-away from the linear framework. Large scale appli­
cations have been. handled successfully, notably in the domain of speech processing60
and character recognition. 12

1.4. Hybrid Approaches

Hybrid approaches comprise both neural network methods and other more typical
AI methods as mentioned above. Neural networks are close to numerical methods,
and the symbolic aspect appears mainly in the network architecture which is sym­
bolic by nature, and which expresses a priori knowledge on the problem processed.
This symbolic aspect appears also in recent studies which aim at giving explanatory
virtues to the networks, especially by implementing rule extraction mechanisms.62
Concerning AI methods, although originally symbolic, it was soon obvious that
an overly logical approach,41 aiming to construct perfect classification functions on
the learning set, was not the best solution. Thus the idea emerged of construct­
ing classification functions with "good" learning performance, this being quantified
by statistical numerical criteria. 9•22 More generally, the proximity of the problem
lends itself to a more natural cooperation between the statistical approach, the neu­
ral network approach or that used in Al For example, validation methods, of the
cross-validation or bootstrap type, 28•65 naturally apply to "nonstatistical" meth­
ods. This is also the case for certain fundamental results produced by Vapnik and
Chervonenkis,68 which can prove the asymptotic consistency of numerous meth­
ods, notably neural24 and those based on classification trees.4 Finally, numerous
statistical algorithms may be used, for example, to conduct data pre-processing47
(Sec. 9).

5

The hybrid approaches thus constitute a research domain, rather than a set of
well defined methods. They take advantage of the tools and results from various
fields - statistics, pattern recognition, neural networks and artificial intelligence.
Among the main objectives pursued, the following may be mentioned: performance,
whether in terms of calculation time or classification error rate; the explanatory
nature of the learned classification function; the capacity to handle complex data,
represented for example in predicate logic, which cannot be handled by conventional
numerical methods.

1.5. The Waveform Recognition Problem

Waveform recognition is an artificial problem which was introduced by Breiman
et al. 4 in the study of classification trees. In their book, these authors used two
illustrative applications: the digit recognition problem, and the waveform problem.
With the former, their classification tree program, CART, achieves excellent results,
in terms of both classification accuracy and tree size. And they chose the waveform
problem precisely because it is difficult for classification trees, thus providing a
better illustration of program behavior. Moreover, the first rule-based programs
issued from machine learning do not solve the problem better. For example, CN29
obtains results which are not as good as those of CART, while the SDL5 which
relies on a heavy, simulated annealing algorithm, only slightly improves the CART
performance. Therefore, we chose this problem for the same reasons as Breiman
et al., and because it appeared challenging for our approaches.

The problem is to discriminate between three classes of waveforms. Each wave­
form simulates a quantitative chronological phenomenon observed in 21 regularly
spaced instants. It is an object characterized by a point of R21.

1.5.1. Analytical class definition

The three classes are obtained by combining three basic waves two by two. The
latter, which we shall denote hi, h2, and h3 are represented in Fig. 1. They are
unimodal and dephased. They are associated by a random convex combination
before being perturbed by a random Gaussian noise. Thus, considered analytically,
class C1, C2 and C3 elements are respectively conceived through the expressions:

x = uh1 + (1 - u)h2 + e,

x = uh1 + (1 - u)h3 + e,

x = uh2 + (1 - u)h3 + e,
where u is a random variable of uniform density on the [O, 1] interval, and where c
is a random Gaussian centred vector, with a variance-covariance matrix unity. We
also consider the classes to be equiprobable.

6

5 7 9 II 13 15 17 21

Fig.. 1. The three basic waves.

It may be noted that in the absence of the e Gaussian noise, the three classes
would be represented in R 21 by the three sides of the hi, hz and h3 summit triangle,
as shown in Fig. 2. In this case, the problem would be deterministic. A perfect
assignment function (without classification error) should consist in assigning each
description x to the corresponding class on the side to which x belongs. The random
Gaussian noise will perturb these considerations. The effect produced is that each
point of R 21 is an acceptable description in terms of the three classes, and the
problem is no longer deterministic.

Fig. 2. Schematic representation of the three classes.

Given that the classes are equiprobable, we can demonstrate that the minimal
error assignment rule, or Bayes rule (cf. Sec. 2.1), consists in assigning a description
x to the class whose conditional probability density is maximum. The assignment
areas are now not so easy to define. Nevertheless, we can predict that the bound­
aries, points of equilibrium between the conditional densities, trace "quasilinear"
surfaces. In fact, we know that for symmetrical reasons, at least one of these bound­
aries is perfectly linear. This boundary corresponds to the vertical axis passing by
h3 in Fig. 2. The other boundaries, represented in the figure by a dotted line,
are not necessarily linear, however they are most likely to be quite regular. More­
over, in the regions which are near the summit h1 and h2 of the triangle, regions
of high uncertainty and high density, these boundaries must be well approximated
by hyperplanes passing by (or close to) hi, respectively h2. The quasi linearity of
the optimal boundaries explains, to an extent, the success of certain methods such

7

524 0. GASCUEL ET AL. ·--·�-- -·· ·-·---� . ----- · --- -- .. -----

as the statistical parametric methods and neural networks. We shall discuss the
subject at greater length in what follows.

According to Breiman et al.4 the error rate of the Bayes rule is around 14% for
this problem. No classification function, even if it is learned on an infinite number
of examples, can expect to beat this performance. As the learning sets which we
manipulated were of limited size (n = 300), we cannot even expect to reach this
optimal result due to the sampling noise.

1. 5.2. Learning and test sets

Eleven learning sets, each of them under three different codings as described below,
were distributed within the SYMENU group. The first set corresponds to data used
by Breiman et al. to test the CART program performance. The other ten were
drawn at random, according to the process described above. Each set consists of
300 examples drawn independently (note that the a priori probability of the classes
is 1/3). As it was possible to make use of several comparable learning sets, this
enabled us to show quite precise averaged results, and to highlight the variability
of these results. Using the same process, and independently of the learning sets,
we drew a test sample of 5000 examples. The classification methods which we shall
present in the following were validated using these test examples.

1.5.3. Attribute discretization

The attributes presented above are all continuous. We transformed the eleven
learning sets and the test sample, in order to evaluate the performance of the
methods on discrete data which are nearer to symbolic. The initial quantitative
attributes were split into 21 binary descriptors and 21 ternary descriptors. As a
result, each of the files initially drawn for the quantitative attributes produced
two discretized files. Boundary identification, essential in coding the quantitative
attributes, was achieved through maximization of the link between the partition into
classes and that obtained by discretization in intervals of the variable to be coded.
This link was measured using the x2 criterion. The algorithm we used 18•37 is based
on dynamic programming, and it enables optimal coding according to this criterion.
Let k be the number of desired intervals and n the number of examples. The
complexity of this algorithm is O(kn2) when k f:. 2 (a very simple, linear algorithm
is sufficient when k = 2). Therefore, it may be seen as challenging, in comparison
with Catlett's6 which has O(nlog(n)) complexity, but which is suboptimal. The 21
descriptors were split in this manner on a base of 1500 examples which were drawn
specifically. This coding was then applied to each o f the files.

1.6. Evaluation Criteria

We selected a certain number of criteria to evaluate the methods, which are shown
in Table 1. The first column describes the type of data processed: binary, ternary
or continuous. The following columns give the average results obtained on the 11
learning files. Each criterion shall now be examined in greater detail.

8

Table 1. Format of tables to be completed for the various methods (numbers are given only as
illustration).

Data

Binary

Train

17.33

(1.13)

Test

223

(13)

Test(l)

28.9%

1.6.1. Classification error rate

Test(2) Test(3) CPU train CPU test Size

18.63 18.63 0.3" l" 66

The classification error rate is the proportion of cases where the example class is

not identified by the learned classification function. This proportion is estimated
by using the test sample described above. The Test column gives the average result
obtained on the 1 1 learning files, as well as the standard deviation (number in
brackets). A high standard deviation indicates that the method is unstable, and
can sometimes yield bad results. The 3 Test(i) columns give the results obtained
for the three subsets of the test set, corresponding to each of the 3 classes. When
the results in the columns are unbalanced, this means that there is a "weakness" in
the method. For example, in Table 1, it may be noticed that the method classes the
examples of the first class poorly. The Train column gives the average results, and
the standard deviation obtained on the learning sets. A low score in this column
does not necessarily indicate that the method is good. What is important is that
the difference between learning and test is not too high. If this is the case, the
method has a tendency towards rote learning. Most likely, it has too high a degree
of freedom.

1.6.2. Computing time

It is possible to distinguish between two calculation times, the required learning
time: CPUtrain, and the required time to decide on a new example class: CPUtest,
which is the time required to classify the 5000 examples of the test set. Depending
on the application in question, the relative importance of learning and test time will
vary. If, for example, the data being processed is scientific data with a very long
acquisition time, a learning time of several days is not always a drawback. However,
if an exploratory procedure is adopted to try to "understand" the data, by varying
the method parameters as well as the description mode, then the learning must be
quick. The same applies to the decision: the waiting time for a medical diagnosis
may be a few seconds; the decision must be "real-time" in the case of phoneme
recognition for continuous speech processing.

1.6.3. Explanation size and power

The Size column shows the complexity of the learned classification function. Of
course there is no unique measurement. In the case of numerical methods, we
count the number of parameters. In the case of more symbolic (or logical) methods,
it is possible to count for example, the number of literals used. Size is directly

9

526

linked to the explanation power of the method. The greater the size, the lower
the explanation power of the classification function. Moreover, for equal sizes, it
is usually easier to interpret a logical formula than a mathematical formula based

on real parameters. Again, the results should be modulated in function of the

application : a good explanation power is of little use for phoneme recognition, but

is indispensable in the medical field. Finally: it is worth pointing out that size and

decision time are mandatorily correlated.

1.6.4. Finding a compromise

Generally speaking, a compromise must be found between the qualities mentioned

above. For example, a low size associated with a high explanation power is usually

obtained at the expense of a high error r;ate. Nevertheless, we are also aware of

the fact that too high a size often corresponds to rote learning, and to an equally

high error rate. From another point of view, it is often more difficult to optimize

in the discrete space, and thus obtain logic:a.l formulae containing explanation, than

to optimize in the continuous space, which yields numerical functions and few ex­

planations. Also, certain methods such as the k-Nearest-Neighbor, do not proceed

to any learning. However, this is balanced by a high decision time. It is an empty
quest to hope for a perfect method , and depending on the application one quality

will be given preference over another.

2. STATISTICAL METHODS

We consider here two approaches which are very classical in statistical pattern

recognition: the pammetric approach, which we expound in the Gaussian frame­

work , and the nonparametric one. These two approaches are opposed in principle,
and reveal two distinct ways of treating the subject. However, first, we shall intro­

duce the Bayes Minimal Error Decision Rule w hich plays a central role in statistical

discrimination.

2.1. Bayes Minimal Error Decision Rule

As we have seen in Sec. 1.2, the problems treated are rarely deterministic, and ob­
jects from two different classes often adhere to the same description. Thus, Classifi­

cation which proceeds from example description is automatically subject to a degree

of incertainty. Bayes Decision Rule consists in assigning the object described by x to

the class Ci such that Pr(Ci/x) is maximum. It is easy to demonstrate that this rule

is optimal, in the sense that it minimizes tbe misclassification probab ility. In reaJiity,
however, it is very rare to know the class probabilities given the description. On
the contrary, it is much easier to find out, or to estimate, class probabilities and the
description distribution given the class. Using the Bayes theorem, an operational

expression may then be found:

P (c·/) = Pr(Ci)f(x/Ci)
r , x

f (x) ,

10

where f(x) and f(x/Ci) represent, respectively the density and conditional density
of x. The denominator of this expression being independent of Ci, the Bayes Deci­
sion Rule consists in assigning x to the class which maximizes Pr(Ci)f(x/Ci). Let
us now consider the case where the c;lassification is binary (g = 2). By putting

(f(x/C+)) (Pr(C+))
>.(x) = ln f(x/C_) . + ln Pr(C_) ' (1)

we find that the Bayes Decision Rule is expressed as

Vx, If A(x) � 0 Then C+, Else C_.

From this expression, it results that the surface defined by the equation >.(x) = 0
is the boundary separating the two areas assigned to C+ and C_ in X.

It should be noted that precise knowledge of the probability laws ruling the
descriptions of the objects to be classified is essential when implementing the Bayes
Decision Rule. However, in most cases these laws are unknown. But they can be
estimat�d by diverse methods, the most classical of which we are going to examine
below.

2.2. Parametric Methods; the Gaussian Case

We shall assume in this section that the conditional probability laws of descriptions
are elements of a known family defined by a vector (). More precisely, the generic an­
alytical expression f(x/8) is known, however, the ()i parameters, which characterize
the distribution of each class Ci remain unknown. The parametric approach uses
the Bayes Decision Rule after having estimated these unknown parameters from the
learning examples. In the most general case, this estimation is often carried out
through the maximum likelihood method. However, here we shall only discuss the
Gaussian case, which is easier to process.

Let us assume that the description x of an object to be classified consists of p
continuous attributes (x E RP), and that the set of descriptions of each class Ci is
randomly dispersed in RP according to a Gaussian distribution with mean vector
µi and variance-covariance matrix Ei.

In this case, the conditional density of x is expressed as

The Bayes Decision Rule now consists in minimizing the expression

(2)

where �l (x, µi) is the Mahalanobis distance between x and the mean description
of the class Ci:

D.�1 (x, µi) = (x - µi)tEi1(x - µi).
If we admit that a priori probabilities of classes are identical and that the variance­
covariance matrixes are equal (Vi, Ei = E), it derives from (2) that the Bayes

11

-·- ---

Decision Rule consists in minimizing �E(x, µi)- In this particular case, we then
assign an object described by x, to class Ci whose mean description µi is the nearest
to x. In a more general manner, we show that the equality of the variance-covariance
matrices induces a linear discrimination. This is illustrated simply by examining
the binary case (g = 2). By developing Eq. (1), one finds the linear expression

t -1)
(Pr(C+))

-X(x) = (x - µ)I: (µ+ - µ_ + ln Pr(C_)
,

whereµ = 4(µ+ + µ_). The optimal separation surface between C+ and c_ is a
hyperplane of RP, of equation ..X(x) = 0, defined by p + 1 parameters.

In the general case, by developing expression (2), one easily finds that the bound­
ary is a surface of the second degree in x (Ref. 15, p. 30) and that it is defined by
1 + p(p + 1) /2 parameters. Hence, the discrimination is said to be quadratic. The
Gaussian model, like all parametric models, requires an initial phase of parameter
estimation (or learning). This consists in simply estimating the coordinates of the
mean vectors /.ti and the matrix elements �i on the examples of the learning set.

We applied the method described above to waveform data, by assuming, on one
hand, the equality of the variance-covariance matrices (linear discrimination) and,
on the other hand, the inequality of these matrices (quadratic discrimination) . The
three types of data were processed using the DISRIM procedure of the SAS so�ware,
running on a Spare 2. Results are given in Tables 2.1 and 2.2. What is noticeable
is the robustness of the Gaussian approach. In fact, performance undergoes little
degradation when we drop the Gaussian hypothesis by binarization or ternarization
of the continuous descriptors. Moreover, this hypothesis appears to be extremely
interesting on the level of ·Calculation time, due to the existence of an analytical
solution (2). The learning time is the shortest among all the methods, if the pro­
cedures without learning are excluded (Sec. 2.3). We would also like to highlight
the fa�t that the quadratic discrimination results are not as good as those for linear
discrimination.. In fact, the overparameterization of the quadratic discrimination is
not worthwhile in this case. It serves only to improve the discrimination of the ele­
ments of the learning set and not those of the test sample. This phenomenon occurs
frequently, and is revelatory of the equilibrium to be found between the precision
of the learning and the real test performance.

Table 2.1. Parametric approach, linear discrimination.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 17.33 223 28.93 18.63 18.63 0.3" l" 66

(l.13) (13)

Ternary 15.93 19.93 28.83 15.53 15.53 0.3" l" 66

(1.8%) (0.5%)

Contin. 12.83 20.4% 23.53 19.83 17.93 0.311 1" 66

(1.3%) (13)

12

- --

Table 2.2. Parametric approach, quadratic discrimination.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 10.13 253 31.63 21.8% 21.53 0.611 5" 696
(1 .23) (0.73)

Ternary 7.83 21.93 28.63 18.2% 193 0.611 5" 696
(0.8%) (0.73)

Contin. 4.2% 21.43 21.5% 21.73 21% 0.611 5" 696
(0.93) (13)

2.3. Nonparametric Methods

In statistical supervised classification, the nonparametric approaches are charac­
terized by the absence of an a priori hypothesis on the conditional distribution
of the examples in the description space. As above, we use the Bayes Decision
Rule by trying to identify the class Ci which maximizes the a posteriori proba­
bility Pr(Ci/x). In order to achieve this, and assuming the class probabilities as
a priori knowledge, we need to estimate the conditional densities f(x/Ci) of the
descriptions. Statistical nonparametric methods proceed through local estimation
of these densities, the two most outstanding approaches being that of Parzen's
Kernel49 and k-Nearest-Neighbor.11

2.3.1. Parzen's Kernel method

Let x be the description in RP to be classed. We denote then as Wh(x) the hyper­
cube (or window) centred on x of side h. For Ci fixed, let ki (x) be the number of
examples of Ei included in Wn(x). We can easily demonstrate that

where lwh (x) is the indicator function associated to the hypercube Wh(x) and where
Xe is the description of the example e. It seems only natural to take ki(x)/ni as
the estimation of the conditional probability of membership to the window W h (x).
By dividing this probability by the volume vh = hP of the window, we obtain the
estimation of the conditional density

!�(/C·) =
ki(x)/ni =]_ " 2._ 1 (x - Xe)

X i ,,. L...J u W1(0) h ·
Vh ni eEEi Vh (3)

Moreover, Hand27 has shown that this estimation converges towards the density
f (x/Ci), if the dimension h of the window diminishes according to a law in 0(1/ foi),
when ni increases.

Equation (3) defines f (x/Ci) as the sum of Boolean contributions of each learn­
ing example of class Ci, and the h parameter determines the "scope of action" of

13

these examples. The result is that f(x/Ci) is, by construction, a discontinuous
function even though f(x/C;,) usually is a continuous function. This is not very
satisfactory even when we know that the discontinuity tends to disappear as ni
increases. In order to smooth f(x/Ci), we define a less contrasted contribution of
examples by using a continuous function for characterizing the scope and intensity
of the example influence. Expression (3) may then be generalized by

where K is a positive function, called kernel, such as

J J 1 (X - Xe)
K(u)du =

Vii
K

h dx = 1 .

(4)

This latter expression, associated with (4), makes f(x/Ci)'s integrate equal to
one, and thus estimation (4) may be assimilated to a probability density. The
term h is called the smoothing factor. This parameter plays a determining role by
defining both the amplitude and the scope of the influence of the learning examples.
If too high, we would tend to level off the variations of f(x/Ci)· However, if too low
the estimation of f (x/Ci) will become a "comb'' with multiple peaks localized at
the points of the learning sample. For waveform data, we have chosen a Gaussian
kernel, as is usually the case

It has the advantage of defining a symmetric influence around examples as well
as a progressive extinction of the contribution of these examples as one departs from
the description to be classed. We tested the method for different values of h (0.5, 1
and 2), using the Euclidean distance. The results are very stable. In Table 2.3, we
provide only the statistics obtained for the case where h = 1. The CPU times are
those provided by the SAS software running on a Spare 2. The size is that of the
data, since there is no prior learning phase, i.e. 300 (examples) x 21 (descriptors).

Table 2.3. Nonparametric approach, Parzen's Kernel method.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 3.3% 22.7% 47.8% 8.73 11.5% O" 893" 300 x 21

(2.03} (1.5%) = 6300

Ternary 0% 21.7% 35.5% 15.3% 14.2% O" 86611 300 x 21

(0.6%) = 6300

Contin. 0% 22.2% 26.4% 18.7% 21.4% O" 93311 300 x 21

(1.2%) = 6300

14

�����������������-

2.3.2. k-nearest-neighbor method

Let us reconsider the first part of Eq. (3)

f (x/Ci) =
ki(x)/ni .vh

This relation encompasses two nondetermined terms, with a common structural
link: ki(x) and Vh (the term ni is known from the learning set). Two attitudes
may be adopted for the calculation of f(x/Ci): either we fix the volume Vh and we
count the number ki(x) of examples belonging to this volume, or we fix the value
and then adapt the volume Vh so that it contains exactly ki(x) examples. The first
approach is that adopted above, the second is the base of the k-Nearest-Neighbor
technique, or k-NN. This method implements an intuitive idea, which consists in
assigning to x the most represented class among the k nearest neighbors of x. As h
above., the k parameter plays a very delicate role. Too weak a value for k induces a
classification function which is too specific of the learning sample. Too high a value
of k will tend to make the classification function uniform; this function will then
retain the most frequent class. It should be pointed out that when the size of the
learning sample increases indefinitely, and if we take a value of k in 0(1/ Jn), the
k-NN assignment rule converges towards the Bayes Decision Rule.

In waveform processing, we applied the k-NN method for several values of k (1 ,
30, 75 and 100), using the Euclidean distance. Best results were obtained when k
is around 30, the value retained in Table 2.4. The CPU time is that of the SAS
software on Spare 2. As in the previous case, the size is that of the data.

Table 2.4. Nonparametric approach, k-nearest-neighbor method.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 03 23.33 46.03 10.63 13.23 O" 23211 300 x 21

(2.13) = 6300

Ternary 03 20.43 42.53 9.93 8.93 O" 24511 300 x 21

(1.73) = 6300

Contin. 03 18.33 31.83 10.33 12.9% O" 258" 300 x 21

(1 .73) = 6300

2.4. Discussion

The error rates of both nonparametric methods used are fairly close, and roughly
equivalent to that of linear discrimination (Table 2.1) . This may be explained by
the characteristics of the problem in which the decision surfaces are quasilinear
(Sec. 1.5), so that the Gaussian assumption does not appear as a handicap. Dif­
ferent results could be obtained with another problem. It has to be underlined
that both nonparametric methods obtained unbalanced error rates among the three
classes. Examples from the first class are often poorly predicted. In real-world

15

532

applications, such a characteristic would usually be considered a heavy flaw. More­
over, from a practical point of view, one important element of these methods is
that they do not conduct a priori learning phase. Therefore, their learning time
and explanation power are null, yet the decision time is relatively long. Neverthe­
less, various pre-processing techniques can be performed to reduce the complexity
of nearest neighbors based recognition.13 In this case, the learning time is not null
and the recognition time is cut down. The first solution consists in reducing the
sample size while extracting prototype examples. 7•29 In this case, we speak of the
"condensed" nearest neighbor rule. We performed experiments using the edition
method74 which consists in removing from the learning sample the examples which
are poorly classified during a first application of the standard k-NN method. Our
results with binary data show that the performance is slightly improved (23.0%)
while the number of retained, prototype examples is greatly reduced (56 in aver­
age, instead of 300) as is the decision time. Other methods structure the learning
sample and organize the search. Several solutions exist, which are usually based
on trees20 and which make it possible, in some cases, to find nearest neighbors in
approximately constant average time. 71 However, the performance of these latter
methods degrades rapidly with the dimension of the representation space. They
could hardly be used to deal with the waveform problem, unless preprocessing the
data by reducing the representation space dimensionality (Ref. 15, pp. 246-248) .

3. NEURAL NETWORKS

3. 1. The Multi-Layer Perceptron Model

Neural Networks include a wide range of models which differ in functional form,
the classes of functions approximated, the criteria optimized and the learning algo­
rithms. Generally, learning consists in estimating the value of numerical quantities,
the weights, characterizing the model, from a learning set of patterns. Supervised
classification is one of the favourite applications of many of those models. We refer
to Hertz et al.31 for a more detailed presentation of Neural Networks.

We used the Multi-Layer Perceptron (MLP) model57 for our tests. It is one of the
most common and simplest nonlinear network models. MLP's are nonparametric
systems as defined in Sec. 2. Like all networks, an MLP is a combination of basic
elements called cells. These are computational units which receive input data from
RP, and produce a real output in R. The transfer function characterizing such a
unit has the following form:

The parameters w = (w1 , . . . , wp) are the weights of the cell, w0 is the bias, x =
(X1 , . . . , Xp) is the input to the cell and y its computed output. In the basic MLP
model, the activation function f is usually defined as follows:

eKu _ e-Ku
f(u) = eKu + e-Ku .

16

6

Layer: input hidden output

Fig. 3. A three-layer perceptron.

This function was initially inspired by McCulloch and Pitts'40 formal model of the
neuron.

In a basic MLP, the units are arranged in successive layers with connections
between layers. Data is sent to the input layer for a copy and is afterwards processed
sequentially by the successive hidden layers. Cells belonging to the same layer
compute in parallel, the outputs of the cells of layer m being the input to layer
m + 1 . The last layer provides the answer of the system and is called the output
layer. We only consider systems with a single hidden layer. Figure 3 depicts a three­
layers MLP. A bias cell (index 0) enables the bias terms Wio to be introduced. It
is permanently set to 1 and is connected to all cells in the subsequent layers. The
composition of elementary transfer functions of the different cells is called the global
transition function of the network. This function, </>, is defined from RP to Rq and
can be written for the ith output by combining the local activation functions of the
different units:

Yi = </>i(x) = f (ww + � Wijf(wjo + r;kWjkXk)) ,
J

where j indexes the hidden units and k the input units. </> being a combination
of elementary nonlinear functions, its complexity may be adjusted by varying the
number of hidden cells.

3.2. The Learning Algorithm
Let us consider a network with a fixed architecture. Its transition function is then
defined by the value of the connection weights. The difference between the desired
outputs and the outputs computed by this model, or the matching of the model to
the data, is characterized by a cost function Q. Learning consists in minimizing
this function by adjusting parameters of the model. One of the most common cost
functions is the quadratic error, i.e. the square of the Euclidean distance between
desired and computed outputs. This is the function we have used here. Usually,

17

the desired outputs for a classification task are indicators of classes (i.e. if x E Ci,
all components of y are equal to 0 except the ith which is equal to 1).

Classic algorithms for MLP are based on gradient techniques. The basic version
described below is known as the steepest descent method. Let us consider a given
network. Starting from an initial configuration, a gradient algorithm will modify
the values of the parameters by successive adjustments which aim at minimizing
the error criterion Q according to the rule:

W = W - E8Q/8w ,

where c is the learning rate. It monitors the amplitude of the modifications and
can be fixed or variable during the algorithm. It is set to 0.01 in the experi­
ments described below. The classical learning algorithm for MLP is called back­
propagation. 57 It constitutes an implementation of an adaptive gradient algorithm
on a MLP. 73 Other, more sophisticated learning algorithms were proposed67 which
are mainly based on second order minimization techniques,2 or on the conjugate gra­
dient principle.44 These algorithms tend to converge faster than the back­
propagation, and usually find apparently better parameter values, according to
the cost function Q measured on the learning set. Impressive differences between
the back-propagation and a quasi-Newton approach have been reported by Chung
and Setiono8 using artificial data. However, this type of result is generally not
observed with real world problems, and the improvement obtained on the learning
set is rarely confirmed on the test set. Moreover, the convergence speed of these
algorithms often makes it difficult to use early-stopping which consists in stopping
the algorithm before convergence, and which is one of the most efficient procedures
to avoid overfitting with neural methods. For example, with waveforms, we have
tested the conjugate gradient procedure44; the computation time was divided by
between 2 and 5 depending on the number of iterations, but we were unable to
reach the same level of classification accuracy.

3.3. The Classification Rule

The Classification Rule used for MLP consists in assigning a description to the class
identified by the maximal computed output. The ith output of the MLP is, in some
respects, an estimate of Pr(Ci/x). This quantity is thus directly estimated here,
unlike the statistical methods introduced in Sec. 2 which estimate the conditional
densities of the data.

3.4. Results

Data were normalized per component for each training and test set. Two series of
experiments were run, the first on a network without hidden layer, the second on a
network having an hidden layer of five units. Invariably, the output cells are sigmoi'd
transfer functions. The Bayes Decision Rule being quasi-linear (refer to Sec. 1.5),
we did not test more complex networks. Moreover, we tested two algorithms, the

18

----·-��-·- ---· ··- --·----

standard backpropagation and Moller's44 conjugate gradient. The results obtained
with backpropagation for both networks are given in Tables 3.1 and 3.2. In the size
column, we indicate the number of weights of the corresponding network. The CPU
time is approximate and was measured on a Spare 10. The performance obtained
for continuous data is almost optimal (i.e. close to 14%). The results obtained for
ternary data are also similar. Note that whatever the data set, both systems give
equivalent performances, despite a slight overparameterization of the second. When
using the conjugate gradient algorithm with five hidden units, the performance is
a little wor�e (18.23 with continuous data) which indica,tes a slight overfitting, but
the running time is about 6 times faster. Besides, early stopping appears necessary
with this learning algorithm, but it necessitates a fine tuning which is not that easy
to achieve when disposing of only 300 learning examples.

Table 3.1. Two-layer perceptron.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 14.933 20.873 25.423 18.273 18.863 240" 2011 66

(1.593) (0.613)

Ternary 12.233 18.093 23.713 15.313 15.173 24011 2011 66

(1.553) (0.683)

Contin. 10.83 17.313 20.493 16.353 15.063 240" 2011 66

(1.053) (0.823)

Table 3.2. Three-layer perceptron with five hidden units.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 12.53 21.263 25.61% 18.523 19.603 300" 2011 128

(1.383) (0.903)

Ternary 9.63 18.793 23.213 17.133 18.793 30011 2011 128

(1 .093) (0.873)

Contin. 7.83 17.153 :21.83 14.163 15.443 30011 2011 128

(1.333) (0.923)

Network performance is among the best we obtained in this study. This might
be a little surprising, since these methods have not used their nonlinear potential
here. The comparison with statistical methods is particularly interesting (refer to
Sec. 2). Although the optimal surfaces are quasi-linear, linear discriminant analysis
leads to poorer results. The explanation might lie in the fact that data significantly
deviate from the Gaussian model, and the quasi-linear optimal surfaces are only
imperfectly approximated by the analytical solution (2) derived from the Gaussian
hypothesis. Moreover, the sigmoid shape of the transfer function used on the output

19

----------· . �---- ----
units enables us to concentrate on the descriptions located near the boundaries, thus
allowing more precise learning of the latter.

4. TREE-BASED CLASSIFICATION, THE CART METHOD

4.1. Overview

Tree-based methods are used to construct classification functions which can be
represented by a decision tree. These methods are well-known and widely employed
in both statistical Pattern Recognition and Machine Learning. Since the seminal
article of Sonquist and Morgan,64 an impressive amount of research on tree-based
classification has been conducted in both fields, among which we shall only cite here
those of Breiman et al. 4 and Quinlan. 50

Classification trees are usually binary, and can be represented as shown in Fig. 4.
The circular nodes are decision nodes and the square nodes are terminal nodes. Each
decision node has a binary question associated with it, and each terminal node has
a class Ci associated with it. In our example of Fig. 4, there are two classes which
are respectively Ill and Well, while the binary questions are based on the attributes
Temperature which is continuous, Throat-irritation which is binary and Cough (E
{none, dry, loose}) which is qualitative. The tree classifies a description x through
a chain of binary decisions. Starting at the root node and proceeding down the
tree, tests are conducted using questions to determine whether the description goes
to the left or right descend.ant. The description is then assigned to the class of the
terminal node in which it lands.

Fig. 4. A binary classification tree.

A tree path from root to leaf constitutes a production (or decision) rule similar
to those of expert-systems of the MYCIN type.63 For instance, the following rule
may be extracted from the tree of Fig. 4

[Temperature < 38] and [Throat-irritation = Yes] -t fll.

20

This demonstrates the explanation power of the approach, thus the reasons for its
success in Artificial Intelligence. The rules conceived are easy to interpret as they
are written using description language that the user has defined to describe data.

Given a learning set, most approaches to classification tree design determine the
binary questions in a stepwise top-down fashion: the training set E is associated
to the root of the tree; a binary question is chosen which splits E into two subsets;
this splitting process is repeated for both subsets, for their descendants and so on.
Now, there are three basic issues in classification tree design:

(1) selecting an appropriate binary question for each decision node;
(2) determining an appropriate set of terminal node; and
(3) selecting an appropriate class for each terminal node.

For each decision node, the binary question is usually selected by optimizing a
splitting criterion among a set of possible questions. Frequently, these questions
are based on the use of a single description attribute, as in Fig. 4, but they may
also be based on linear4 or neural net26 combinations of these attributes. The
terminal node set is usually determined by halting the splitting by subject to some
stopping criterion, or by continuing the splitting until all terminal nodes have pure
class membership and then pruning back. Pruning is the more recent approach and
has better properties. Finally, the class for the terminal nodes is obtained using the
majority rule, or a weighted majority rule in the case of nonuniform misclassification
cost. In the following, we shall briefly describe the popular CART method which
was the first to propose the pruning approach. More details are given in the book
of Breiman et al. 4

4.2. The CART Method

4.2.1. The set of possible binary questions

In the standard use of CART, each question is based on a single attribute, and
not on some (e.g. linear) combination of the initial attributes. The form of these
binary questions depends on the type of associated attributes. A binary attribute
obviously generates a single binary question. A qualitative attribute taking m
values generates 2m-l - 1 binary questions which correspond to the nonempty
bipartitions of its values, e.g. the attribute Cough defined above generates the
questio_ns: "Cough := None", "Gough = Dry?" and "Cough = Loose" which
correspond to the bipartitions: {None} I {Dry, Loose}, {Dry} I {None, Loose} and
{Loose}l {None, Dry}. A continuous attribute Xj generates questions having the
shape "xJ < v?". There is a priori an infinite number of possible values for v, and
CART only considers those defined by the equation v = (v1 +vi+1)/2, where the ViS
are the consecutive values taken by the attribute on the examples attached to the
node to be split. Thus, if this node contains m examples, (m - 1) binary questions
are envisaged for each continuous attribute. Finally, ordered attributes, such as
size E {small, medium, big}, are dealt with in the same way as continuous ones.

21

538

4.2.2. Tree growing and splitting criterion

In the tree growing phase, a large tree, T, is grown by recursively finding binary
questions until all terminal nodes have a pure or nearly pure class membership or
cannot be split further. Questions are chosen among the set of possible questions
by optimizing a splitting criterion. The criterion retained by CART is based on the
Gini index. Let t be the node to be split, E be the set of training examples attached
to t, and Pr(Ci/ E) be the proportion of examples from E which belong to class Ci.
The Gini index defines the impurity of E as

i(E) = L: Pr(Ci/E)Pr(Ci /E) .
i=f:j

This impurity is maximum when for every index i we have Pr(Ci/E) = 1/g (g is
the number of classes), and is minimum (= 0) when all examples from E are in the
same class. The aim is to find the binary question which most reduces the impurity
of E. Let us consider a given binary question B, Ef the subset of E corresponding
to the answer Yes to B, and E� the subset corresponding to No (L stands for left
and R for right). The reduction of impurity brought by B is defined by

f}.(E, B) = i(E) - Pr(Ef / E)i(Ef) - Pr(EN/ E)i(EN) ,

where Pr(Ef / E) and Pr(E�/ E) are the proportions of examples from E which are
respectively in Ef, and in EN_. Finally, the binary question chosen for splitting t
is the one which maximizes this criterion.

4.2.3. Tree pruning

In the tree pruning phase the large tree, T, is pruned back to avoid overfitting the
training data. This process consists in removing some branches of T which do not
significantly improve the error rate, but which make its size (or complexity) high.
A pruned subtree is selected by minimizing an error rate estimate over a parametric
family of pruned subtrees. This family is generated as follows. Suppose each node
in T is assigned a class Ci based on majority vote. Then we may compute the
error rate on the training sample of any pruned subtree S of T. Let R(S) be this
resubstitution error estimate. Now define the error-complexity of a pruned subtree
S(c T) by

Ra(S) = R(S) + alSI ,

where a � 0 and ISi is the number of terminal nodes in S. The desired family of
pruned subtrees T0(a � 0) is obtained by minimizing the error-complexity crite­
rion for each fixed value of a: R0(Ta) = minscT Ra(S). Note that To = T and
Ta = root(T) when a is large enough. From a computational stand point, it is not
easy to obtain Ta for any given value of a, so that CART uses an algorithm which
starts from To(= T) and, by iterative pruning of "weak" branches, produces a se­
quence of smaller and smaller subtrees until root(T) is reached. Moreover, it may be
shown that this sequence, (Ta.), is a subset of the family (T0). From this sequence,

22

-·· ---- -----------

a pruned subtree, Ta• , is then selected by minimizing and "honest" estimate, R, of
the probability of error

CART can use several methods to obtain honest estimates of the error probability.
The simplest approach is to use an independent test sample. But this approach
does not allow all of the training data to be used for both growing and pruning
the tree, so that it is precluded when the number of training examples is low. In
this case, the usual approach employed in this study is based on a cross-validation
estimate of the error probability.

4.3. Results

Results obtained by CART 1.1 using the default options are displayed in Table 4.
The (average) tree size is measured by the number of edges, and the CPU time is
obtained on a Spare 2. Among the methods experimented in this study, classifica­
tion trees have one of the best explanation powers. These classification functions,
however, are also endowed with one of the poorest discrimination powers, which
illustrates the dilemma explanation/discrimination power. It is a recognized fact
that the waveform problem is difficult for classification trees. The use of a more
appropriate coding such as that used in (Sec. 9), enables tree results to come very
close to those obtained by other methods. Moreover, analogous results may be
obtained by using linear combination of attributes in the decision nodes, instead
of single attributes (for more details see Ref. 4). The results obtained here do not
therefore prejudice classification tree results on other applications.

Table 4. Tree-based approach, the CART method.

Data Thain Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 22.93 29.9% 34.63 29.13 26.0% 29" 26" 17.6

(1 .03) (2.23)

Ternary 22.53 30.53 33.373 31.223 26.74% 33" 17" 12.6

(0.73) (1.633)

Con tin. 19.83 31.13 29.73 32.13 31.5% 60" 34" 7.4

(1.13) (1.23)

5. FUZZY CLASSIFICATION TREES

5.1. Overview

We are primarily concerned here with the problem of the construction of classifica­
tion trees when (some) attributes are continuous. With such data, usual symbolic
classification trees do not give excellent results. The key point is the discretization
of these attributes, i.e. the partitioning of an infinite number of values into a fini1te

23

540 ------------

number of subsets of their domain. Most of the known methods to discretiz-e con­
tinuous attributes are used prior to the construction of the tree.6116 This may be
done for several reasons, e.g. to reduce the running time. Our method, like CART
described above (Sec. 4), proceeds dynamically by adjusting the thresholds at each
tree's node according to the attached examples. However, we have observed that,
if we split the domain of an attribute into two subsets at a given threshold, we
obtain imprecise tested values near this threshold, because all possible values of the
attribute are not present in the training examples. The solution we propose is to
use membership degrees for examples with values near the threshold, establishing a
gradual split of the values. During tree construction, we employ a fuzzy measure of
information53 to discretize and to compare the continuous attributes. To classify a
new example, we aggregate membership degrees obtained by a given example on a
path of the tree, using the fuzzy set theory. 76

5.2. A Dynamically and Fuzzy Entropy-Driven Discretization

5 .. 2.1. Splitting criterion

We must choose the best attribute that will be used to split into subsets the set
of training examples E attached to a given node t. A cost function is used to
determine this choice, which is based on a fuzzy measure of entropy. Let us use the
same notation as in Sec. 4.2. The classical Shannon entropy has, in some respects,
a meaning similar to that of the Gini index (Sec. 4.2), and is defined by

e(E) = L -Pr(Ci/ E) log(Pr(Ci/ E)) .
i

In our model, classical sets are replaced by fuzzy sets and we have to define a fuzzy
probability. Let n = { w1, . . . , Wr} be a set of events, each one associated with a
probability Pr(wi)· Let F be a fuzzy set defined on n with membership function
f F . The fuzzy probability of the fuzzy set F is

r
Pr*(F) = L f F(wi) · Pr(wi) .

i=l

Using this notion, the classical entropy can be extended to a fuzzy measure of
entropy

e*(E) = L -Pr*(Ci/E) log(Pr*(Ci/E)) .
i

Let us now consider a. noncontinuous attribute j, associated with the sparse
domain Xj = {v1 , v2, . . . , vk}· This attribute splits E into k subsets El whose
conditional probabilities are denoted as Pr(Et/ E). The classical information of this
split (or the measure of conditional entropy) is defined as

J(j) = L Pr(Et/ E)e(Ei) .
i

24

541 ·----

A fuzzy measure of information, the entropy-star measure, can also be defined in
the same way. If F1 , F2, . . . , Fk are fuzzy sets of E, we now have

k
!* (Fi , F2, . . . , Fk) = l: Pr* (F1)e*{F1) .

l=l
When splitting E by means of the attribute j, the information gain represents

the decrease of uncertainty on the classes Ci entailed by the use of j

.6.(j) = e(E) - J(j)

or, with the fuzzy quantities

� *(j) = e*(E) - J*(j) .

To split the training set, we look for convenient fuzzy sets Fi , F2, . . . , Fk for each
continuous attribute j, and this search will be explained in the next section. To
construct the tree, we choose the attribute with the highest fuzzy information gain
/:i*(j). Then, the best attribute corresponds to the minimum of J* (j).

5.2.2. Fuzzy set determination and threshold computation

To construct the fuzzy subsets of E attached to a given continuous attribute j, we
build a partition of xj into fuzzy sets which is satisfying for the identification of
classes. In order to define these fuzzy sets, we search for relatively homogeneous
clusters of Xi with respect to the distribution of classes. Each of these clusters will
represent the kernel of a fuzzy subset of the partition.

To find such clusters, we use a technique from the mathematical morphology
theory. 10•39•61 This technique is generally used in image analysis to smooth and to
filter spot noise. It lies on two operators: erosion and dilatation. Erosion enables
the destruction of small heterogeneous regions, while dilation enlarges and brings
together homogeneous zones. Here, the training set E defines a two-dimensional
shape for each attribute. The first dimension is the set S1(c Xj) of values occurring
in E, and the second dimension is the set of classes. For a given attribute, E may be
transformed into a word whose alphabet is the set of classes. For example, when E
equals {(1.7, C1), (2.4, C2), (2.9, C1), (3.3, C1), (3.7, C2) , (3.8, C3), (4.0, C1), (4.2,
C2), (4.3, C2)}, the corresponding word is C1C2C1C1C2C3C1C2C2. Dilatation and
erosion are applied to this word to obtain a clustered form. Each of these operators
is implemented as a transducer which expresses rewriting rules, such as: change
a letter L into U when it is surrounded by two letters different from L. In this
case, the special letter U means "uncertainty" and indicates the places where the
classes are highly mixed. For instance, with the previous word we would obtain
C1C1C1UUUC2Cz.

Except the uncertain one, each of these clusters represents a collection of values
from Sj which, in the majority of cases, belong to the same class. Let the two
biggest clusters, other than the uncertain one, be expressed as

[£, n and [b, Ii] with l < .a .

25

542

From these clusters, we may now define the two fuzzy sets Fi and Fh whose ker­
nels are Ki = [-oo,l} and Kh = [h, +oo}, and whose supports are respectively
!-oo,h:} and [f, +oo]. To define the membership function of Fi. and Fh , we compute
a threshold, denoted as Vj 1 using the barycentric expression

The membership functions of Fi and Fh are then defined as shown in Fig. 5. Finally,
we can compute r(FL Fn) to find the most relevant attribute. Moreover, two
training subsets of E are obtained from the split induced by Vj, and used for further
tree expansion. This expansion is performed by adding new attributes until the
measure of entropy of the local training subset is below a fixed value.

y
0,5
1-y

0
v. .hJ

(a)

j, l. t] . h

(b)
Fig. 5. (a.) Membership functions associated with the fuzzy events {xi < Vj} and {xi > Vj }; (b)
Use of these functions in a tree node.

The dilatation and erosion operators are used a fixed number of times, so that
the discretization's complexity remains linear (once the attribute values have been
sorted). It follows that the complexity of the whole algorithm is the same as CART's
or ID3's, i.e. O(pnd) where d is the depth of the tree.66 If the tree is well-balanced,
we have d = O(log(n)), and the time complexity is O(pnlog(n)). This is also the
complexity needed for sorting the attribute values, prior to the algorithm runs.

5.3. Classification Function

Generally, when a classification tree is used to classify a new example, the values
of this example are compared with the computed thresholds. However, a threshold
is not generally a value which really occurs in the training set. It is imprecise in
nature because there is no precise information about the values between [and b_.
Restricting the descent to a single branch of the tree for these values may not be very
efficient. It is better to enlarge the threshold to an interval. An estimate probability
may then be associated with the outcome of this test. 51 In our approach, we use
the values found during discretization as boundaries for the imprecise interval, and
a graduality of membership to a path for the values near the threshold. At a given
tree node, the description to be classified is associated with each of the edges issuing

26

·����--�������
from the node, with a degree equal to its degree of membership to the fuzzy subsets
associated with that edge, as defined in Fig. 5. A path to a leaf is then associated
with a collection of degrees and we can aggregate these membership degrees by
means of fuzzy aggregation operators.

A path from the root to a leaf is equivalent to a rule "If (and P1 P2 . . . Pk)
Then Ci'' , where the premises correspond to the fuzzy events associated with the
edges of the path, and where the conclusion is the class attached to the leaf. In
order to aggregate the premises, we use a conjunctive operator, and to aggregate
the conclusions of all the rules corresponding to a given class, we use a disjunctive
operator from fuzzy set theory. More specifically, in order to achieve the intersection
of the premises, we use the usual operator known as triangular norm (t-norm for
short), and to achieve the union of the conclusions, we use a triangular conorm
(t-conorm for short). In this study, we employed the t-norm and the t-conorm
defined by Zadeh,76 which are respectively the minimum and the maximum. The
final decision is the class which has the highest membership degree. We can foresee
other uses for these membership degrees which take into account all the degrees
found on the paths. For example, a classification into continuous classes can be
made by computation of a barycentric value from all the obtained classes, or, in a
fuzzy framework, it would be useful to preserve the decision as a fuzzy subset of
the set of classes, with the obtained degree.

5.4. Results

Our approach is essentially concerned with the problem of the construction of clas­
sification trees when continuous values occur, and we present here our results on
the continuous data sets only (Table 5). The average size of the trees is the number
of edges. The CPU time is indicated for a program written in C, running on a
Sun station Spare 10. We observe that the results are slightly enhanced by the use
of fuzzy trees compared to results obtained by CART which considers crisp (non
fuzzy) tests for the thresholds. However, the average sizes of CART trees and fuzzy
trees are not the same, so that further studies would be needed to obtain a more
precise comparison.

Data Train

Contin. 13.13
(1.563)

Table 5. Fuzzy classification trees.

Test Test{l) Test{2) Test(3) CPUtrain CPUtest Size

29.963 34.73 25.9% 27.13 5" 54" 26.4
(1.253)

6. EMPTY MONOMIALS

6.1. Method Overview

This method builds discriminant functions between classes, the elements of which
are described with binary attributes. These functions are conjunctions of Boolean

27

------- ---··------

variables. The conjunctions that we use are selected because they never appear in
one specific class, but are attested in the other classes a minimum number of times.
So these conjunctions are characteristic elements of non-membership of a given class
Ci, i.e. characteristic of "not-Ci'' .

We shall first describe our method for a problem with only two classes C+ and
c_, represented by positive and negative examples. These belong to the sets E+ and
E_ whose union constitutes the learning set E. A new description is classified into
C+ (resp. C_) according to the number of characteristic rules of not-C_ (resp. not­
C+) it satisfies. We can measure two error rates, one on the learning set, the other
on the test set. On the learning set, there may be no error, but there might be
indecision, since it is possible to find an element of E that satisfies no rules. On
the test set, errors are obviously possible. Moreover, some uncertainty may occur,
either because an example does not satisfy any characteristic features of C+ and
c_, or because it possesses the same quantity of both.

In the Boolean framework, a conjunction of attributes (generators of Boolean
algebra) with values 0 or 1 is a monomial, and monomials are conjunctions of liter­
als. On the set E, a monomial covers some elements, those having the same values
as those of the monomial attributes. If there is no element of E to present this
conjunction of literals, this monomial is said to be empty on E. The empty mono­
mials of E+ (resp. E_) indicate not-C+ (resp. not-C_). To build our discriminant
functions, we first enumerate all the empty monomials of E+, then those of E _ , and
we only keep monomials that cover at least q elements of E_ (resp. E+), q being
a parameter. Moreover, we only consider empty monomials with a minimal length,
since an empty conjunction lengthened with other literals stays empty.

The building of empty monomials has been studied for a long time, because
it is connected with the minimization of Boolean function problems. Let F be a
Boolean function given as a disjunction of complete monomials (disjunctive normal
form), or equivalently as a T Boolean array (with p attributes, T has p columns).
To minimize F we look for all its prime implicants that are the empty monomials
of the complementary function F. To solve this very important problem for cir­
cuit design,72 numerous algorithms have been proposed (Karnaugh, Mc Cluskeyand
Quine, cf. Ref. 19) that start from f'. This is not very practical in our framework,
since f' is the complementary array of T in {O, l}P. Therefore, we have chosen
Kuntzmann's36 algorithm, which works directly on T and can be adapted, particu­
larly when the number of literals must be bounded, or when only positive forms of
attributes are required.

Let us suppose that we: are building the empty monomials of E+ (the procedure
is the same for E-). The algorithm is sequential, and it builds the successive lists
of empty monomials. After examining the i first elements of E+ the resulting list is
denoted as Li. Let ei be an element of E+ and Si be the set of the complementary
forms of its literals. For instance, if ei = x1x2x3x4 we have Si = {x1 ,x2, x3, x4}.
The first list L1 is initialized with S1. Each step corresponds to the examination of
a new element ei and produces the list Li from list Li-l· When the whole set E+
has been check, the resulting list contains all the empty monomials of E+.

28

--·-----

This algorithm is based on the following proposition:

Let >. E Si and µ E Li-11
(1) If µ contains .\ then µ E Li;
(2) If µ does not contain >., then the conjunction µ>. belongs to Li.

The proof is easy. If µ is an empty monomial that contains >., as >.(E Si) is
not in ei, µ is still empty. If µ contains �' µ>. contains >..X, and it is useless to add
it to Li. Finally, if µ contains neither >. nor >., µ').. is empty since µ was empty
and >. is not in Ci· The Kuntzmann's algorithm is the iterative application of this
proposition, using the rules (1) and (2) in a specific order:

L1 is initialized with S 1
For i = 2 to IE+ I

For each literal >. E Si
{ Copy in Li all the monomials of Li-1 that contain >.

and delete them from Li-1;
If one of them is equal to .\, .\ is removed from Si }

For each literal >. E Si and any monomial µ E Li-l
{ When A 1. µ and µ>. ¢ Li, add µ>. to Li }

End of For i

The complexity of this algorithm depends on the length of empty monomial lists,
that cannot be predicted. In the worst case, this length is exponential in the number
of attributes, so it cannot be used for large size problems. To get Li from list Li-l ,
either we copy monomials remaining empty or we enlarge them with one literal in
Si. So it is very simple to generate only monomials having a bounded number of
literals, which is attractive in our context. Moreover, the number of monomials
having a bounded length lmax is polynomial, and consequently the enumeration
procedure has a worst case complexity O(plmax) .

6.2. Application to the Waveform Problem

We applied the method described above to the binary description of the waveforms.
We shall now explain how we adapted this method, and how we choose the param­
eter values using the original data of Breiman et al. 4

For each class of the learning set compared to the union of the others, we enu­
merate its empty monomials having at most k literals, or k-monomials. Then, for
any description to be classified, we count the number of monomials of each class
covering this example. The greater the quantity for a class, the smaller the chance
of belonging to it. Thus, we have three scores corresponding to the classes, and we
assign a description to the one which has the smallest score, i.e. the class having the
minimum number of empty monomials covering this example. When considering a
learning example, there is at least one class with a score equal to 0, but there may
be several. In that case, there is indecision. For a test example, there may be two
or three scores obtaining the minimum value. If the actual class does not give a
minimum score, we count an error, and so indecisions are only between alternatives,

29

one of them being the correct class. If there are two tied classes, the third one is
discarded, and this becomes a double indecision; if there are three, we have a triple
indecision.

First, we tried empty 2-monomials. Among the 300 instances of the learning
set, there are 162 double indecisions and 2 triples. This means that there are only
136 elements that are (correctly) classified. This great rate of uncertainty (553)
led us to consider empty monomials with length 3. There are respectively 567, 604,
564 for the three classes. Now, 48 double indecisions and no triple remain, which
corresponds to 843 of correctly classified elements. Then, we discarded monomials
covering less than 103 of the negative examples, i.e. less than about 20 examples.
This selection criterion gives 265 monomials for class C1 , and we took the same
number for the other classes, retaining monomials with the best covering rate. For
the learning set, there are now 56 double indecisions, no triple and 244 waveforms
correctly classified. For the test set that contains 5000 waveforms, the number of
double indecisions is 858, corresponding to 173 and there is no triple. The number
of errors is 681, and the number of elements correctly classified is 3461. Uncertainty
can be treated according to two options:

- Either we do not take a decision, and then there are only 4142 classified elements.
Consequently, the error rate is 16.5%;

- Or we toss up to decide the class when there is indecision, and the decision will
be correct one time out of two. In that case, there will be 681 + 429 errors,
corresponding to an error rate of 22%.

6.3. Results

For the 1 1 learning sets, we limited the number of selected monomials to 250.
Sometimes, all of them do not cover 103 of the elements of the other classes, and
often there are less than 250. When there are more than 250, we keep those having
the greatest covering rate. The average number of selected monomials is 225 per
class, most of them having length 3. On average, there are 1094 double indecisions,
that is 223, which are not uniformly distributed; there are less for class C2 than for
class C1 or C3 . The average number of errors is 625 corresponding to 133 of the
waveforms. If we insist on classifying the whole test set, tossing up for a decision,
there will be 547 new errors which will give 23.43 on the whole set. The CPU time
corresponds to a program written in Basic and running on a Macintosh Power Book
165. The size is the number of monomials multiplied by their length. Results are
given in Table 6.

Data Train

Binary 113

(0.73)

Test

23.4%

(0.33)

Table 6. Empty monomials.

Test(l) Test(2)

25% 21%

Test(3) CPUtrain CPUtest

24 3 330" 444"

Size

2025

30

____ , _ ___ _ _

It seems clear that the quality of the decisions depends on the number of selected
empty monomials; we use a large number, be cause b e low the threshold of 100 the
uncertainty numbe r increases very fast (greater than 1500). So, conside ring the size
of the classification function, it is a poor method. Even if we were to design a selec­
tion strategy to reduce the number of monomials, keeping the same covering rat e ,
we would never reach the efficiency of the Decision Committees method (Sec. 7),
for example. Finally, the way the empty monomials are built seems to be the most
interesting point. It is more efficient than the enume ration of all the monomials
which come first, and then selecting those having a large covering rate in one class
and a small value in the others. But, in doing so, monomials that cover only a
few elements in a class and that occur frequently in another, are missing, although
these monomials could b e good indicators of class membership.

7. DECISION COMMITTEES

7 .1. Introduction

Decision committees use expert-syste m-like rules. They try to associate the ex­
planatory character of classification trees with an additive combination of the rule ,
in the same way as MYCIN-like expert systems.63 The decision is taken on the basis
of a set of fired rules, and not on the basis of a single rule (or a path from the root
to a leaf) as in classification trees. This additivity exists in linear discrimination
and in neural networks, and partially explains the performance of these approaches
which are often better than those based on classification trees. Our aim is to find
small-sized decision. committees. Even though they do not constitute a radically new
type of classification procedure (Refs. 3 and 52, Sec. 6), decision committees have
given rise to few studies, especially in the form presented here. For more details,
further theoretical and expe rimental results, the reader shall refer to Ref. 48.

7.1.l. Notations and definitions

We shall consider here that examples are described by binary attributes, these
being possibly derived from nonbinary ones (qualitative , ordinal, . . .) by following
a classical discretization procedure (Ref. 4, Secs. 1.5 and 4.2). Literals associated
with variables are denoted as x i , x 1 , x2, x2, • . . , Xp and x.v·

A decision committee consists of a set of rules {(ti, vi)} where each ti (the
condition part) is a. monomial (or conjunction of lite rals) and each Vi (the conclusion
part) is a g component-vector, Vij taking its values in { - 1 , 0, 1}. These values
express that the ith rule is respectively in favour, neutral and in disfavour of the
class C1 . A default rule is added to this set of rules: in a way, it expresses the
a prfori distribution of classes, and it is used in case of indecision. To classify an
example , we calculate for each class C1 the sum v.1 of the jth components of the
fired rules. After that, the sums v.1 are compared. When one of these is strictly
greater than the others, it designs the selected class. In the other case , we use the
default class to choose among the classes having the highest scores. An example
is given in Fig. 6. In (a) we give the decision committee itself, in (b) the result of

31

548

this decision committee for the example x1x2X3X4X5, and in (c) the result of this
decision committee for the example x1 X2X3X4 X5. In both cases, two rules are fired.
In case (b), the chosen class is C1, and in case (c), the decision is given by the
default class, and is 02.

(a) (b) (c)
Conditions Conclusions

XJ X-i I 0 -1

�X3 0 l 0

X4 0 0 I
- I 0 0 X5 X5 0 0

Total Total I 0 0 Total 0

Default 0.2 0.3 0.5 Def au II 0.2 0.3 o.s Default 0.2 0.3 0.5

C 1 C2 C3 C 1 C2 C3

Fig. 6. (a) A decision committee; (b) Result for the example x1x2x3x4x5; (c) Result for the
example x1 :f'2x3x4 xs.

Small-sized decision committees, such as the one above, are easy to interpret,
and they need only a pencil to be used, like classification trees, or Rivest's decision
lists. 55 The difference is that rules are neither ordered (as in decision lists) nor
organized in a dichotomic way (as in classification trees). Decision committees
might also be viewed as linear discriminators whose coefficients belong to { -1 ; O; 1} ,
and are able to use conjunctions of literals. Finally, note that when there are two
classes, it is convenient to state that a rule in favor of one class be in disfavor of the
other. We can then state that the conclusion has one value belonging to { -1 , 1}
which indicates that the rule is respectively in disfavor and in favor of class 01 or,
equivalently, respectively in favor and in disfavor of class C2 (an example is given
in Fig. 7).

XI ..t2 -1
Xt ..t2 1 XI � -1

-X1 �X4 I X1 X3X4 -I
Total Total
Default 0 Default 1

C 1

(a) (b) (c)

Fig. 7. Two ways (b) and (c) of coding a decision tree (a) by a decision committee.

32

7 .1 . 2. Comparison with other classification functions

Let us consider first the Boolean case (g = 2). Classes C1 and C2 represent truth val­
ues True and False, and the truth table of any Boolean function can be transcribed
directly under the form of a decision committee whose monomials are composed
of p literals. This means that by multiplying the number of rules and the number
of literals, we can represent every Boolean function by a decision committee. This
result can be extrapolated to a greater number of classes.

However, in supervised da.ssification we only consider functions whose size
(number of literals) is limited. The result given above demonstrates that if we
take a decision committee with sufficiently high size k', we can represent any func­
tion whose size is k. In order to compare decision committees with other classes
of functions, we therefore need to establish a link between k and k'. Take the case
of classification trees and consider Fig. 7, in which we show two ways of coding a
classification tree by a decision committee. On the basis of this figure, it is clear
that classification trees whose depth is k can be coded by decision committees whose
monomials have a length of k at most. If we define the size of a classification tree
more naturally to be the number of its edge,,,<; (8 in the previous example), and
the size of a decision committee to be its number of literals (5 and 8 before), we
can show that any tree of size k can be coded by a decision committee whose size
is at most (k2 + 6k)(g - 1)/8g. To give a concrete example, let us consider the
classification tree found by CART ,4 for the waveform recognition problem. It is
composed of 20 edges. The preceding result shows us that by exploring the set of
decision committees whose size is no more than 44, we explore a set of functions
that -contains any classification tree of size 20, and thus the one found by CART.

Other results of the same type can be derived for other classes of functions. Let
us mention however that the possibility to duplicate a rule allows us to come as close
as desired to linear separators having real coefficients, and allows us to simulate the
ordering of monomials in a decision list (the first rules are duplicated in order to
make the decision when they are fired).

7.2. The Learning Algorithm

We can demonstrate that finding the decision committee whose size is bounded and
which makes the fewest number of errors is an NP-Ha.rd problem. We are therefore
obliged to use approximate methods. We tested numerous algorithms among which
some were based on simulated annealing, as in Ref. 5. The algorithm we retained
proceeds in two stages ; it begins by extracting a certain number of "good" rules
and then puts them in a decision committee having a "good,, performance on the
training sample. We are now going to examine these two procedures separately.

7.2.L Extracting good rules

The algorithm us€d is a version of PLAGE restricted to Boolean representations.23
The aim is to find all of the most general rules satisfying certain numerical criteria.

The principle is to make a breadth-first search of the set of monomials, organized

33

---- - ---··

·

� ··----------------·

according to the generalization relationship. This search is top-down and starts
with the most general monomials, i.e. those having only 1 literal. A monomial m
is evaluated by two numerical criteria: (1) we impose that it covers a sufficiently
high number of examples N of the learning sample; (2) we impose that it has a
sufficiently high discriminant power. This power is measured by the x2 criterion,
used here as an heuristic, rather than for its statistical properties. For each class
Ci, we calculate the quantity Qi using the x2, as indicated below

m True False

a c
b d

(a + b + c + d) (ad - be)2Qi = (a + b)(a + c)(d + b)(d + c) ·

When condition (1) is satisfied, and when the maximum of the Qis is greater than
a threshold T, we construct a rule having m as condition. For any i, if (Qi < T)
then the ith component of the rule is O; otherwise if (ad - be > 0) this component
equals 1, and it is - 1 otherwise. When a monomial is retained to form a rule, all of
its specializations are pruned. If m is not retained, we calculate a promise function
that gives the best score that could be reached by a specialization of m. If this
promise is lower than T, all the specializations of m are also pruned. Finally, the
algorithm stops when all monomials have been pruned or evaluated.

The worst case complexity of this algorithm is exponential in the number of
attributes. In practice, the computation time depends on the chosen thresholds. If
they are badly adjusted the algorithm will explore the whole space of all monomials,
and this time will be prohibitive. Inversely, the case might occur where only the
monomials having a single literal are produced, and the rest of the space is pruned.
Experimentally, this algorithm allows us to find rules having 3 literals, from de­
scriptions based on more than 100 binary attributes, in less than one hour of CPU
on Spare 10.

7.2.2. Rule aggregation to form a good decision committee

The objective of this algorithm is to extract from the set of rules previously cho­
sen, a subset that, when assembled, constitutes a decision committee having a low
error rate on the training set. The general principle is analogous to that used in
agglomerative methods of hierarchical classification. First, we partition the rules
into singletons reduced to single rules. At each step, the algorithm achieves the
union of two subsets belonging to this partition, and the number of elements of this
partition diminishes by one element. These two subsets are chosen by maximizing a
gain criterion R among the set of pairs of elements of the partition. The algorithm
stops when the best union of pairs of elements of the partition leads to negative or
null value of R. We then extract from the partition the subset of rules which forms
the decision committee having the lowest error rate.

Let L be a set of rules. We define its error rate, eL, to be that of the Decision
Committee formed by these rules and completed by the best possible default rule
(according to the error rate computed on the learning set). The criterion RL,L'

34

measures the gain expected from the union of the two sets L and L'. It is defined
by the equation

When this criterion is positive, the Decision Committee formed by the union of
L and L' has a lower error rate than that of the two Decision Committees taken
in isolation. All along the algorithm, we therefore try to group rules representing a
high gain rather than a low error rate. This enables us not to forget rules that could,
once reunited in a Decision Committee, constitute a good classification procedure.
Let us point out the fact that the results obtained using this algorithm are much
better than those of the greedy approach which consists in choosing the best rule and
adding rules one by one, while minimizing the error rate, until no gain is possible.
Finally, the complexity of this algorithm is in O(nr3), where r is the number of
rules found by the preceding procedure, and n the number of examples.

7.3. Results

The learning algorithm described above has been evaluated on binary and ternary
data. The CPU time corresponds to a nonoptimized program written in C, running
on a Sun Spare 10. The size of the decision committees obtained is the number of
literals. Results are given in Table 7. We notice that the performance of decision
committees is not so far from that of neural networks and much better than that of
classification trees. The size of the resulting decision committee is always small, and
thus achieves one of the objectives of symbolic methods, which is to produce dis­
criminant functions with a good explanatory power. The rules found generally have
only one literal. This explains the small amount of time needed for computation.
When different thresholds are chosen (smaller for N and higher for T), computation
time and rule size increase, but results are not better.

Table 7. Decision committees.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 20.53 23.03 32.83 20.73 15.93 25" 3" 20

(1.53) (0.8%)

Ternary 16.63 20.53 33.0% 14.83 13.6% 23" 5" 28

(1.8%) (1.43)

8. LEARNING RULES WITH A GENETIC ALGORITHM

8.1. The Genetic Algorithm Principles

Genetic algorithms are optimization procedures inspired from the mechanisms of
natural selection. 32 In order to solve an optimization problem, these algorithms use a
population where each individual represents a possible solution to the problem. Such
an individual is evaluated using an evaluation function that measures how well the

35

---- · -------- · ·-----

individual is adapted to the problem. Starting initially with a randomly generated
population where each individual has been evaluated, the genetic algorithm selects
a subset of individuals by choosing the best individuals of the population with a
high probability. Then, these selected individuals are used as parents in order to
produce the next generation. To achieve this, an individual must be represented as
a string of genes in order to be able to use genetic operators such as crossover or
mutation. The crossover operator selects two parents and randomly exchanges two
substrings of genes in order to create two new individuals. The mutation operator
randomly modifies some genes of an individual and aims at introducing new or
forgotten genes in the population. These operators aim to create better and better
individuals by combining useful genes of their parents. A new population of the
same size as the preceding one is created using these operators, and the algorithm
will continue such evaluation-selection-crossover-mutation cycles until a stopping
criterion is fulfilled.

Genetic algorithms can be applied to machine learning problems.34•69 In this
case, each individual represents knowledge such as rules, neural networks or Lisp
functions. The evaluation function is computed using a learning set and may mea­
sure, for instance, whether or not an individual correctly classifies the examples
in this set. The aim of the algorithm is then to find the individual that correctly
classifies the greatest number of examples. The algorithm we shall present, called
SIA, follows this line of approach.

8.2. Input-Output Model

SIA takes as input:

- Examples. Each example is described with attributes. For instance, these at­
tributes can be Colour or Size. Each example has a special attribute that rep­
resents its class and that takes discrete values. For instance, the Fly attribute
that may take the values yes or no can be the class attribute to be predicted
using the two other attributes. The attribute values can be missing, indifferent
or undefined. SIA can also deal with tree-structured values. For instance, the
Colour attribute may ta.ke the specific values red or orange, and a more general
value red-like.

- Biases. These biases are preference given by the user who may like .to favor some
rules. For instance, the user may ask for specific rules that take into account
many attributes, or for general rules. This aspect is expressed using a parameter
which is denoted as f3 in the following. In order to handle noise, the user may
also give a maximum allowed error rate for each learned rule, denoted as a.

- Search intensity. The user can let the genetic algorithm spend more or less time
for learning rules, by modifying the stopping criterion. This intensity is denoted
by Nbmax and its use is detailed in the following.

Finally, SIA outputs rules of the following form:

If (Colour = red-like) and (Size E [4.3, 7.8]) Then Fly = yes .

36

553

These rules can be used by SIA to predict the class of an unclassified example, or to
analyze the database by providing the user with symbolic and thus understandable
results.

8.3. The Learning Algorithm

SIA is a covering algorithm inspired from AQ42 which uses a genetic algorithm as
search algorithm: an example of the learning set is chosen as a seed, and then
the genetic algorithm tries to find the best rule that covers this example; another
uncovered example is then chosen to learn another rule, until all examples are
covered. For instance, let us suppose that the chosen example is:

(Colour = red) and (Size = 5.4) and (Fly = yes) .

The genetic algorithm is going to generalize this example into a rule. This example
is initially translated into a very specific rule, denoted by Rinit in the following,
that would be in our example:

If (Colour = red) and (Size E [5.4, 5.4]) Then (Fly = yes) .

Then, the genetic algorithm uses a population of rules that are all at least as general
as this initial rule. Its aim is to find a rule that maximizes the criterion which is
defined by the user, like for instance "the most general rules with less than 103
classification errors" . This population of rules evolves using the principles described
earlier and using genetic operators adapted to the high level representation of the
rules.

The mutation operator randomly generalizes a rule by performing one or more
of the following operations:

- Enlarging an interval. For instance, the (5.4, 5.4] interval can be changed to [4 .7 ,
5.6], where 4. 7 and 5.6 are other values of the Size attribute that are observed in
the learning set.

- Generalizing a tree-structured attribute. For instance, in the previous rule, the
value red can be changed to red-like.

- Dropping a condition. For instance, the condition over the Size attribute in the
previous rule can be dropped, which generates the rule "If (Colour = red) Then
(Fly = yes)" .

The crossover operator exchanges conditions between two parent rules. For
instance, with the following two parent rules:

If (Colour = blue) and (Size E [4.4, 7.84]) Then (Fly = yes),

If (Colour = red) and (Size E [3.5, 5.6]) Then (Fly = yes),

the following rules can be generated by exchanging the condition over the Colour
attribute:

If (Colour == red) and (Size E [4.4, 7.84]) Then (Fly = yes),

If (Colour = blue) and (Size E [3.5, 5.6]) Then (Fly = yes) .

37

554 · - - - · � ------· --- ---- --- -···�-

Each generated rule is evaluated through the evaluation function. For a given rule
R, this function equals:

f(R) = c(R) - anc(R) + {3g(R)
c(R) + nc(R)

where c(R) is the number of examples that R classifies correctly, nc(R) is the number
of examples that R misclassifies and where g(R) is the generality of R, measured
by the proportion of dropped attributes in R condition part. Having f3 < 1 , this
function ensures that the accuracy of learned rules, i.e. c(R)/c(R) + nc(R), is above
a/1 + a. This is due to the fact that the initial rule satisfies f (Rinit) 2 0, and that
the algorithm may only improve this rule. The higher f3 is, the greater importance
given to generality. Usually, we choose 0 < {3 < 1. In this case, first importance is
given to the accuracy of rules, and among the rules having the same accuracy, the
most general is prefered.

The genetic algorithm stops when more than Nbmax rules have been generated
without improving the best rule of the population. The best rule found is then
added to the list of rules that will be output. SIA then chooses another example
which is not covered by any learned rules, and uses this example as a new seed for
learning another rule. The genetic algorithm is called up several times until all the
examples in the learning set are covered. The overall algorithm :is the following:

1 Let x be an uncovered example
2 Generalize x into a rule R* using the GA:

2a Translate x into a specific rule Rinit and
Initialize the rule population P to Rinit

2b Randomly select one or two parent rules in P,
Generate one offspring R using genetic operators and
Evaluate R using f.

2c Add R to P if P contains less than 50 rules or
replace the worst rule R- of P with R if f(R) > f(R-) .

2d Repeat steps 2b and 2c until the best generated rule R*
has not been improved for more than Nbmax generations.

3 Output R* and Go to 1 if some examples are still uncovered.

Let p denote the number of attributes. For the sake of simplicity1 let us suppose
that these attributes are binary. In the worst case, the genetic algorithm generates
all possible rules, that is 0(2P), and this for every search it performs. This yields
an exponential worst case complexity of the whole algorithm. Of course, this worst
case complexity is never reached in practice. For instance, in the waveform learning
problem, the maximal number of rule evaluations would be in the order of 1011, but
SIA evaluates only 105 rules in practice.

8.4. Classification Procedure

Given a set of rules and a description z to be classified, SIA looks for the rule which
is the closest to z, and chooses the dass that appears in the conclusion part of

38

---·---------

this rule. This technique is similar, in a way, to the Nearest Neighbor algorithm
(Sec. 2.3). The distance used takes into account the quality of the matching between
the rule and the example. Let us consider a rule R. The distance d(R, z) equals 0
when R matches z exactly. Or else, the distance is equal to the proportion of R's
conditions which do not match z. When several rules are at the same distance from
z, the rule with the best performance on the learning set is chosen, according to the
evaluation function described previously.

8.5. Results

Results on the waveform problem are given in Table 8. The CPU time corresponds
to a Pascal program running on a Sun Spare 10 workstation. The Size column
corresponds to the number of rules (80) multiplied by the mean number of conditions
in the learned rules (4). In this test, SIA tries to find the most general rules with
a maximum error rate of 103 on the learning set (a = 9 and f3 = 0.1). Thus,
SIA performance on the learning set is good. This also explains why the number
of learned rules is high. While SIA is a stochastic algorithm which does not always
learn the same rules on two different runs with the same learning set, the standard
deviations obtained are quite low. SIA has been successfully applied to several
databases, but SIA does not get a better performance on the waveform problem
compared to the other methods. This may be due to the fact that noise is not
handled very well either in the learning or classification procedures.

Table 8. SIA genetic algorithm.

Data Train

Binary 43

(0.73)

Test Test(l)

24.33 27.73

(0.73)

Test(2) Test(3) CPUtrain CPUtest Size

20.83 24.3% 30011 30" 4 x 80 = 320

However, one should note that this learning task is rather "simple" for SIA
because there are no unknown or tree-structured attributes in the data. The genetic
algorithm is also more flexible than other heuristic based search. For instance, the
criteria to be optimized can be easily modified by the user, without any modification
of the search algorithm. This may allow SIA to take into account user preferences for
some attributes over some others, or to use any, e.g. nonuniform, misclassification
cost functions. The flexibility of genetic algorithms also allows SIA to be enhanced
in order to deal with first order logic representation, 1 without changing its main
principles.

9. VERSION SPACES

9.1. The Version Space Framework

Version spaces were developed by Mitchell43 as a general framework of combinatorial
learning algorithms for the discrimination between two classes, C+ and C_ (positive

39

556

and negative instances) . The goal is to represent the set of solutions discriminating
C + from C _ , in a given characterization language. For this purpose, one structures
the space of all sentences of the language with a partial ordering called generalization
relation. This relation is such that a sentence s is more general than another
sentence s' if it covers a superset of examples, and this is denoted as s � s'. One
then builds two sets, the set S of all more specific solutions (minimal w.r.t. this
order) and the set G of all more general solutions (maximal w.r.t. this order) . This
is done incrementally on the set of instances. Initially, S = { .l} (solution rejecting
all instances) and S = {T} (solution accepting all instances). At each step, if
the new instance i is positive (resp. negative), the elements of S (resp. G) are
minimally generalized (resp. specialized) in order to cover (resp. reject) i, with a
set of operators depending on the chosen language. In case of Boolean descriptions,
which we used for the waveform problem, a convenient representation of the G set
allows an O(n2) time complexity, where n is the number of instances.46

The decision dvs of the membership class of a new description x is taken on the
basis of the version space VS = (S, G) following the rule:

dvs(x) = C+ If '<:/s E S, x $ s, i.e. x belongs to the class of examples ;

dvs(x) = C_ If '<lg E G, -.(x � g), i.e. x belongs to the class of counter-examples;

dvs(x) =? Or else, i.e. x can be classified in either two classes indifferently .

This approach presents some important characteristics from the point of view of
supervised classification. First of all, this method is primarily intended to find the
set of solutions which perfectly discriminate the learning examples. When no such
solution exists, the version space approach is faced with a difficulty, the treatment of
which constitutes the main subject of this section. On the other hand, the fact that
all solutions are retained makes the method relatively insensitive to the presence
of irrelevant or redundant attributes. Finally, in common with most generalization
methods, the language of characterization is part of the data. This language may
then be adapted to the application, without changing the method.

9.2. Version Spaces and the Waveform Problem

We considered that the examples were described with binary attributes. In this case,
a natural characterization language is the set of monomials that one may build from
these attributes. Generalization ordering corresponds to the cover relation between
monomials (m1 � m2 iff m2 ::::} m1). Note that in this case, the set S is always
reduced to a singleton.

We tried to characterize the examples corresponding to each class proposed by
Breiman et al.4 with respect to its complementary set, e.g. C1 w.r.t. C2 U C3. The
opposite is also possible, and one may choose C2 U C3 for the class of examples
and C1 for the class of counter-examples. In the second case, the problem comes
down to the characterization by empty monomials, as carried out in Sec. 6, but the
results are clearly inferior. On the other hand, using both characterizations slightly

40

___ , ______ --

improved the results, at the expense of a doubling of the number of literals in each
characterization.

This being stated, the waveform problem is difficult for Version Spaces. Results
clearly show that it is not a good method for this problem. The main reasons are:

- First of all, it is a problem with more than two classes and consequently, not
directly within reach of this method. As already outlined before, the solution
is to produce as many version spaces as the number of classes. However, this
requires a new decision rule to be built, combining the individual decisions of
each version space.

- Second, the chosen description language is insufficient to characterize each class.
The "sequential" nature of the data is not taken into account. Characterizations
are particularly sensitive to a. translation factor, and this is clearly not desirable.

- Finally, a certain degree of covering between classes exists (the problem is not
deterministic). One is not always guaranteed of being able to discriminate per­
fect]y, even between the training examples.

Therefore, we are not looking for a method to challenge the results of classical
methods such as linear discrimination (Sec. 2.2), largely more suited for this par­
ticular application. We would prefer to sho,w how the results of the basic method
may be improved in a symbolic-numerical framework.

9.3. Description Language

We experimented with the binary coding described in Sec. 1.5. This language be­
ing particularly poor, we tried several alternative codings of the continuous data,
in order to enrich the basic descriptions while remaining in a domain of binary
attributes. The most interesting results were obtained with a coding scheme sug­
gested by Breiman et al.,4 based on a moving average calculation on raw data.
More precisely, we computed the moving average for windows of size 1, 3 and 5,
and coded the result with 2 Boolean threshold attributes (xi < 3 and Xi > 6),
that leads to a coding of length p = 126 bits. On average, this coding allows us to
"reduce" the noise attached to these contiguous attributes whose values, before the
noise has been added, are necessarily very close. It includes therefore a considerable
knowledge of the data generation model. For instance, in the case of classification
trees, it provide an increase of about 83 of the recognition rate.4

9.4. Training Example Selection

The search algorithm in the version space is initialized with a set S reduced to
the element 1- (recognizing no description) and a set G reduced to element T
(recognizing all the descriptions). S and G are then refined, taking into account
the examples of the learning set incrementally.

When the language is not sufficient to describe the data (this is in fact the case
for the waveform problem), the algorithm may stop in two different states. Either
it converges on a single solution before having treated all training examples, or

41

------- · -· ·-----

it detects that no solution exists. The simplest way, retained here, that always
guarantees the existence of at least one solution, is to reject all examples producing
an empty version space. It must be clear that this process can lead to an acceptable
solution only if training examples have been adeptly selected for their presentation.
Furthermore, a good scheduling of these examples reduces the complexity of the
calculation by allowing a faster convergence of the algorithm.

The goal is to produce this ordering by means of a hierarchical classification of
the training examples. One selects the higher nodes in the tree, corresponding to a
cluster in which all examples belong to the same class, and represented by circled
nodes in Fig. 8. In this way, one builds a partition of the examples in homogeneous
clusters, that are then sorted in decreasing order of size. While learning class Ci, one
alternates, in decreasing order of size, the presentation of a group of Ci and the pre­
sentation of a group of another class. Thus if classification is correct , one learns as a
priority the most relevant aspects of the characterization, covering the largest set of
examples. Thus, the tree in Fig. 8, where leaves are labeled with the name and the
class of the examples, leads to the following presentation if one tries to learn class C1
(+ for example and - for counter-example): (et, et , et, e1, e;, et, et, e;, e;).

Furthermore, note that the very same tree may serve to produce disjunctive for­
mulae by learning monomials for each group of a partition of the tree. For instance,
if one cuts the tree just below the root, one obtains a partition of the examples in 2
groups that gives the 2 following presentations for class C1: (et , et, et, e1, e;: ,
e;, e7) and (et, et, e}, e2, ej", e7). One may alternatively choose the counter­
examples only in the cluster containing the examples, but this generally leads to
significantly lower results. In the case of waveforms, this possibility of introducing
disjunctions has not brought a noticeable gain in recognition.

Ct

C3 C3
I I

el e2 e3 e4 es e6 e1 es e9
Fig. 8. Hierarchical clustering of the examples e1, e2, . . . , e9, the class being indicated on the

internal nodes, or on the edges.

We used a hierarchical ascending clustering algorithm (CHAVL) , based on the
Likelihood Linkage Analysis method. 38 We start with the calculation of the raw
similarity between any two examples. This raw measurement is standardized with
respect to its theoretical mean and standard deviation, calculated on an indepen­
dence assumption basis, and the final index corresponds to the likelihood of the
similarity. The hierarchy is then built step by step, following the maximum likeli-

42

� --- �-------------· - . ·------- -------- ···-- ---

hood criterion. First, we measured the raw similarity with the number of attributes
simultaneously true in both examples. The results, while noticeably improving
the results of a random partition (approximately 10%), presented a relatively high
standard deviation (4 %) . The best classification results were obtained for a raw sim­
ilarity measuring the number of identical windows of 2 or 3 contiguous attributes
in the two compared sequences.

9.5. The Classification Function

As many version spaces are produced there are classes to be discriminated. It is
necessary then to build a classification rule which seeks for a consensus between
the different judges represented by each version space. After numerous trials, we
adopted a solution where each judge has g ballot papers to be distributed among
the g classes following its decision function. This corresponds to a rule choosing the
class Ci maximizing the following function fi :

fi(x) = L /ii(x) where
i=l,g

If dvs; (x) = C+ then fti(x) = g and fij (x) = 0 for j =J i ;

If dvs, (x) = C_ then fii(X) = 0 and fij (X) = gjg - 1 for j =J i ;

If dv Si (x) =? then fij (x) = 1 for every j .

9.6. Results and Discussion

Results given in Table 9 have been obtained from binary data, using a classification
based on windows of 2 attributes (Sec. 9.4), and on continuous data coded according
to the method of Breiman et al. (Sec. 9.3), using a classification based on windows
of 3 attributes. The CPU time corresponds to a program written in C and Prolog,
which is relatively well optimized (original research results were necessary for this
purpose, 46 and which runs on a Spare IPX 32 Mega (� Spare 2). This includes the
time of clustering training examples, which is about 20 seconds. The obtained length
is expressed in terms of the number of literals and corresponds to the generation
of 12 sets (S and G for each class and characterizing either the examples or the
counter-examples).

Table 9. Version spaces.

Data 'Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 30.9% 31.9% 37.53 29.23 29.1% 35" 0.2" 27

(3.6%) (2.3%) (62)

Breiman's 17.43 21.6% 28.9% 19.23 16.73 70" 0.311 214

Goding (1.93) (2.03) (300)

43

560

There is generally a single monomial in G (and S). These monomials are rel­
atively short in the case of the initial binary coding (about 2 literals), and much
longer in the cMe of Breiman's coding (about 18 literals, but for a code 6 times
longer). Exhibited learning times show a linear progression with respect to the num­
ber of attributes. The recognition rates found have to be appreciated in relation
to the error rate on the training set, corresponding to the percentage of training
examples that were not taken into account, due to the inadequacy of the character­
ization language. A related interesting indicator is the number of examples treated
before the convergence of the algorithm. This number is given between brackets in
column Test(l). For an acceptable coding, there must be no convergence, i.e. one
must find 300. The slight difference between results obtained on the training set
and those on the test set is to be noted. Note also that results are less accurate for
class 1 , more difficult to characterize in a conjunctive way.

10. CONSTRAINT-BASED LEARNING

10.1. Method Overview

Constraint-based induction is a new Machine Learning algorithm58•59 inspired from
both the Star Algorithm AQ41 and the Version Space approach. 43 Since these ap­
proaches were presented previously (Secs. 8 and 9), we shall only recall the limita­
tions which motivated their hybridizati:on and embedding in the constraint-based
induction frame.

Version Space fails to handle disjunctive concepts, overlapping concepts, and/or
noisy data. FUrthermore, the size of the G set may be exponential when using
the standard disjunctive representation.30 Star Algorithms partly overcome such
limitations through a bottom-up exploration of the examples. However, the stars
are built under control of the expert, who explicitly provides criteria for sorting the
number of solutions to be kept.

So constraint-based learning investigates the coupling of the Version Space and
.the Star Algorithm. On the one hand, a bottom-up exploration enables us both to
deal with disjunctive concepts and handle noisy data. On the other hand, the need
for evaluation and control is avoided by defining the star of a seed (x, c) M the G
set derived from this seed: the G-star associated to seed (x, c), noted G(x, c), is the
more general formula covering x and not covering any training example belonging
to another class. A constraint-like representation, inspired from Ref. 46, enables a
polynomial building and handling of G-stars with attribute-value descriptions. Note
that this representation handles continuous attributes directly, as opposed to some
approaches (e.g. Secs. 6, 7 and 9) which require prior segmentation of continuous
attribute domains. Finally, to classify an unknown description z, we use a simple
idea which exists, for example, in the k-NN method and in some methods already
presented: z is classified in the most frequent class among the stars to which it
belongs.

44

561

10.2. Notation and Definitions

We restrict ourselves to linear (real, integers) and nominal (discrete or tree­
structured) attributes. Let (x, c) denote a seed. Let E_ be the set of training
examples that belong to a class different from c. The G-star G(x, c) is the conjunc­
tion of the constraints derived from the examples in E_, called counter-examples
to (x, c). Before defining a constraint, let us recall the notion of selector.41

- A selector is a Boolean function defined on the problem domain X, which is
denoted as [attribute = VJ; in the case where attribute is nominal , this function
takes value true for x in X i:ff the value attribute(x) equals value V (or is more
specific than V if the domain of attribute is a hierarchy); in the case where
attribute is linear, it takes the value true iff attribute(x) belongs to interval V.

- The constraint derived from counter-example (x', c'), noted D(x, x'), is the dis­
junction of the most general selectors that cover x and reject x', called maximally
discriminant selectors. Let us consider the following data:

Smooth Height

x = Yes 3

x' = No 7

Width Colour Class

19 Red C+

12 Blue C_

Attribute Smooth is binary; so the maximally discriminant selector based on this
attribute is [Smooth = yes] . Attributes Height and Width are linear. Hence,
the maximally discriminant selectors based on these attributes are respectively:
[Height < 7] and [Width > 12]. Last, assuming Hot-colour is the most general
value for attribute Colour such that it covers Red and rejects Blue, then the max­
imally discriminant selector based on attribute Colour is [Colour = Hot-colourj.
Finally, the more general formula covering x and rejecting x' is:

D(x, x') = [Smooth = Yes] or [Height < 7)

or [Width > 12] or [Colour = Hot-colour] .

The disjunction D(x, x') is the G-star built from the unique positive example
(x, c) (the seed) and the unique negative example (x', c') . The selector based on
a given attribute is present iff this attribute is informed for both x and x' (which
enables easy handling of missing values), and if it takes different values for x and
x' (up to a given precision in the case of real values).

- The G-star of a seed (x, c) is the conjunction of the constraints D(x, x') derived
from all its counter-examples. However, a counter-example gives rise to a con­
straint iff, at the time it is considered, it still belongs to the star. Otherwise, it
is discarded.

10.3. Algorithms

As in the Star Algorithm, learning examples are considered randomly. An example
becomes a seed, i.e. gives rise to a star iff, at the moment it is considered, it is

45

. 562 -- - · · -- ____ ____ ___ _ _ ___ ,,

not yet rightly classified given the stars formerly built. The star of a seed (x, c)
is the conjunction of all constraints derived from the counter-examples of (x, c) ,
and the constraint derived from a counter-example (x', c') is the disjunction of all

maximally discriminant selectors covering x and rejecting x' (see above). Note that
this representation of G is polynomial with respect to the number of attributes and

examples, whereas the usual representation (as a disjunction of conjunctions) is pos­
sibly exponential.30 This allows polynomial learning (and classification). Building
a constraint is in O(p), building a star is i� O(n2p), and the entire learning process
is in O(n3p).

The classification of a new description z is based on the learned G-stars: z is clas­
sified in the most frequent class among the stars G(x , c) it belongs to. Membership
to a star may be tuned according to two parameters:

- The first parameter denoted as c allows us to handle "noisy" descriptions: z
belongs to G(x, c) if it satisfies at least a percentage (100 - c) of the constraints
in the star.

- The second parameter denoted as M controls the generality of constrain.ts: z
satisfies a constraint D(x, x') iff it satisfies at least M selectors in this constraint.
When M is 1 , D(x, x') is simply used as a disjunction of the selectors; otherwise,
D(x, x') is used as an M-of-N concept. This heuristic is motivated by the fact
that, when M is 1 , most z happen to satisfy any D(x, x') (especially when the
problem domain involves many continuous attributes); hence they belong to most
stars, and are classified in the most represented class! This drawback disappears

as expected when M increases.

Since the total number of selectors in the stars is upper-bounded by n2p, the
classification of an example has a complexity in O(n2p).
10.4. Results

Parameter c varied from 0 to 203 and parameter M varied from 7 to 1 1 in our
experiments. Parameter c influences the performance in a classical way: when it
increases, the performance decreases on the training set, while on the test set it
increases at first, then decreases. In fact, the only crisp difference occurs between
(c = 03) and (c = 5%). For a given value of £, the performance is quite stable
depending on M. However, an increase in M can to some extent counter-balance
an increase of E. For instance, the best results on continuous data are obtained for
(c = 10%, M = 8) and (c: = 20%, M = 9). The program is implemented in C++
and runs on a HP 710 workstation. The size is expressed as a number of stars and
a total number of selectors. Note that this huge number of selectors allows one
to efficiently grasp an arithmetic concept in a logical manner. On the other hand,
it needs bunches of selectors to mimic arithmetic skills (imagine approximating
an oblique line through stepwise functions). The theory hidden in the G-stars is
therefore unintelligible. However any decision can be explained through the common
points between the case z at hand, and the seeds (x, c) of the stars to which z
belongs. Results are given in Table 10, and are among the best we obtained in this

46

study. Thus, it appears that the constraint-based approach efficiently overcomes the
limitations of the Version Space regarding disjunctive and overlapping concepts and
noisy data. Moreover, we wou]d like to emphasize that constraint-based learning
may be extended to a subset of first order logic. 58

Table 10. Constraint-based learning.

Data Train Test Test(l) Test(2) Test(3) CPU train CPU test Size

Binary 22.8% 21.63 25.63 21.63 17.13 62" 388" stars 87
(0.5%) (0.33) Sel 33000

Cont in. 18.03 18.03 18.13 18.13 17.73 5011 303" stars 77

(0.63) (0.23) Sel 55000

1 1 . ABOUT THE RESULTS ON THE WAVEFORM RECOGNITION PROBLEM

It is obvious that the choice of a particular problem favors certain methods over
others. All the conclusions of this study, particularly on the misclassification rate,
cannot therefore be extrapolated to other problems and other domains. Neverthe­
less, certain characteristics of the methods appear in the results presented. Some
methods learn more rapidly, others decide more quickly, or are endowed with a bet­
ter explanation power. Table 11 and Fig. 9 highlight these different characteristics.
Except the Best coding item, they are derived from results obtained by methods on
binary data, which are those which more clearly justify the use of a hybrid approach,
if we exclude the Fuzzy Classification Trees (Sec. 5) which are basically intended
to deal with continuous attributes. For this latter method, we used results from
Table 5 which were obtained for continuous data. The twelve methods are classified
according to the following six criteria:

- Total Misclassification Rate for which we provide the detailed ordering, although
this could be questioned as said before. Moreover, because of the stochastic
nature of the problem, this ordering might be slightly modified if other learning
and test sets were used. This is clearly shown in Fig. 9 where the 953 standard
confidence interval of the expected error rate is represented (Test ± l.96a / Vll).
When performing a Student test, we see that the only 95% significant differences
between consecutive methods are between: MLP and Constraint-based, Empty
Monomials and Genetic approach, Genetic approach and Q. Fischer, Q. Fisher
and Fuzzy Classification Trees, Classification Tree and Version Space. If we now
consider for a given learning set the interval in which the misclassification rate lies
with probability 95% (obtained from Fig. 9 by enlarging the confidence intervals
by a factor � � 3, 5), we see that it is not unlikely to observe a learning set such
that a rather poor method, e.g. Q. Fisher, performs better than a good method,
e.g. L. Fisher. In practice it may be said, therefore, that the first 9 methods
are not extremely different, while the last 3 yield very inferior results. Besides,
the standard deviation is widely different from one method to another. Some

47

Table 11. Ordering of the methods according to six criteria. Test, Test(l), CPUtrain, CPUtest
and Size have the same meaning as in previous tables and have been obtained on binary data.
Best coding provides the ordering of the methods according to lowest misclassification rate
observed in this study, depending on the coding scheme; B stands for Binary, T for ternary, C
for continuous and BR for Breiman's coding (Sec. 9.3).

Method Test Test(l) Best coding CPU train CPU test Size

L. Fisher 3 5 4 T 1 1 2

Q. Fisher 9 7 6 c 1 1 3

Parzen 4 12 8 T 1 3 3

k-NN 6 11 3 c 1 3 3

MLP 1 2 1 c 3 2 2

Decision tree 11 9 9 BR 2 1 1

Fuzzy decision tree 10 6 12 c 3 2 2

Empty monomials 7 1 10 B 2 2 3

Decision com. 5 8 5 T 2 1 1

Genetic approach 8 4 11 B 3 2 2

Version space 12 10 7 BR 2 1 1

Constraint based 2 3 2 c 3 3 3

methods (e.g. Parzen's Kernel or k-NN) have quite a high variability, while some
others, typically hybrid methods (e.g:. Empty Monomials and Constraint-based)
present a low standard deviation.

- Misclassification rate in the first class, indicated as Test(l), for which we also
provide the detailed ordering. We selected this criterion because the first class
seems to be much harder to predict correctly. It follows that some methods,
e.g. Parzen's Kernel, obtained very unbalanced results among the three classes.
These latter methods rarely predict the first class and take few risks. On the other
hand, methods such as Empty Monomials, take more risks, obtain well balanced
res�lts and inevitably are

.
not excellent considering the total misclassification

rate. Therefore, the misdassification rate in the first class enables the point of
view given by the total misclassification rate to be completed and corrected (see
Fig. 9).

- Lowest misclassification rate observed during this study, depending on the coding
scheme, indicated as Best coding. Again, we selected this criterion to complete
and correct the misclassification rates obtained with binary data. Indeed, some
methods have the ability to directly handle continuous data or have sufficiently
low computational cost that it is possible to use a sharp non-binary discretization
of continuous attributes. Most of these methods takes advantage of these data
which contain more information than binary data (Fig. 9). The most important
improvement is obtained for the k-NN method, while the exceptions are CART
whose results are better with the binary data (Table 4), and Parzen's Kernel
which is only slightly improved by ternary and continuous codings (Table 3). The
Empty Monomials and Genetic methods which have only been tested with the
binary coding, probably because of computational cost, are penalized. Finally,

48

· ··· --------- ----

% Misclassification Rate

0

0
0.45

0.40

0

0.35 0 0
0 i0

t 0.30 + 0
0

0 0 t 0.25

1
0

t t • t

... t • •
i

• • Q,) • Q,) 0.20 • bc
• "' ,g Q) • -; ..c - ;; • '§ u "'

a "' u � 0 e i;::; c 0 c ·;;; 0
0.15 (.) 0 8: "' ';;l p..c ... E "' ... "' "' en c 0 (.) ·;;; 4.) 0 u Q,) i.;:: =

... ..c c ·;;; c ';;l ..c � ·o;; 0 c... "' Q,) �
"' ·;;; "' t.i: � -� c. <I> ii "' -l c � c "' ...

:E 0 Q,) ::s 0 Q,) uj Q.. 0 � 0 d tl. >

2 3 4 5 6 7 8 9 10 1 1 12

Fig. 9. Ordering of the twelve methods with: their a.verage total misclassification rate on binary
data (horizontal stroke); the 953 standard confidence interval of this average rate (vertical line);
their average misclassification rate in the first class (white circle); their lowest average misclassi.fi-
cation rate observed during this study, depending on the coding s<:heme (black circle: continuous
data, black triangle: ternary data, black square: Breiman's coding).

the most impressive difference is obtained with Breiman's coding (Sec. 9.3) which
was only applied to the two poorest methods (i.e. CART and Version Space) and
which makes them close to the best. This proves, if proof is needed, that the
coding stage is of primary importance and that it must be conducted by using as
much as possible the knowledge we have about the data1 and by considering the
properties of the classification method we envisage.
Learning Time for which three categories of methods were considered: (1) those
which provide an instant response ($ 1 second); (2) those for which the waiting
time is reasonable ($ 1 minute); (3) others which are not likely to be envisaged
in the case of an exploratory procedure aimed at "understanding" the data. The
times as indicated throughout the article were all measured on different equip-

49

ment. To o
i
btain comparable results we considered the Spare 2 (Sec. 2) as the

basic machine (power = 1), and we have corrected the other running times by
using the following power ratios: Mac (Sec. 6) � 1/10, Spare 1 (Sec. 4) � 1/2,
Spare IPX (Sec. 9) and HP710 (Sec. 10) � 1, Spare 10 (Secs. 3, 5, 7 and 8) �
2. This is clearly a quite rough estimate, but our categories are not affected by
reasonable modifications of these ratios.

- Decision time for which we also considered three categories: (1) quick response
for 5000 test examples (� 10 seconds); (2) reasonable time (� 2 minutes); (3)
others not to be envisaged in an exploratory approach. If we take the decision
time for a single example, all the methods are sufficiently rapid (� 1 second) to
be used, for instance, in the case of medical diagnosis.

- Size for which we also provide three categories: (1) results directly exploitable
and interpretable; (2) size sufficiently reduced so that useful information may be
drawn from the results without much difficulty; (3) size such that the compression
aspect (or resume) of data is practically absent. For example, classification trees
are in the first category, linear discrimination (66 parameters) in the second, while
quadratic discrimination (696 parameters) is in the third category.

It may be noted that among the "best" methods, we find Linear Discrimina­
tion, Multi-Layer Perceptron and Decision Committees, which are similar in several
aspects. The performance of these methods may certainly be explained by their
appropriateness for the problem. Moreover, the analytic solution of Fisher's Dis­
criminant Function, combined with the well optimized implementation of the SAS
software, yields high computational efficiency. However, if we try to compare the
hybrid methods with the most classical methods presented (Fisher's Discriminant
Function, Parzen's Kernel, k-NN and Classification-Tree), we see that there are
some methods which are more powerful in terms of error rate, for example, Neu­
ral Network or Constraint-based methods. Moreover, most hybrid methods obtain
results which are better balanced than those obtained by the classical methods.
Concerning Neural Networks, similar results have been found in other studies.35•54
Likewise, the Decision Committee method is as explanatory as that of Classification
Trees, yet the results obtained by the former are vastly superior at the performance
level. This somewhat contradicts a conclusion of King et al. (Ref. 35, p. 312) which
was that "symbolic algorithms all performed very similarly and that there is no
obvious best algorithm". The explanation, developed below, is very likely linked to
the notion of vote in decision taking, used by the best hybrid methods. Therefore,
these experimental results are very encouraging. It remains to verify that these
good performances can also be observed with various large real-world classification
problems. Preliminary results in that direction have already been obtained for the
Decision Committe method. 48

12. CONCLUSION

In this article we presented twelve supervised classification methods, some classical
and some original, which combine numerical and symbolic aspects. We would now

50

like to make some general remarks about the methods presented, and try to draw
some conclusions.

First of all, it appears that the symbolic aspect of the methods presented is
predominantly linked to the notion of rule. This is clear in all of the methods, with
the exception of the purely numerical (Sec. 2). The rule notion, which emerges in
the earliest studies on Machine Learning, and is linked to expert systems and to the
search for explanation virtues, takes on various forms. We find juxtaposed, Tree­
Based and Decision Committee methods (Secs. 4, 5 and 7) on one hand, and on
the other hand, those based on empty monomials (Sec. 6) and constraints (Sec. 10).
In the first case, we find rules which are indeed close to those of expert systems,
whilst in the latter the rules are extremely numerous and primarily characterize the
description space. It is also to he noted that Neural Networks, which are inherently
numerical, integrate a certain notion of rule if they possess a hidden layer. This
hidden layer contains the "rule" conclusions defined through the first weight layer,
while the next layer shows how these rules should be combined.

Concerning the numerical aspects, the notion of vote in decision taking has
considerable importance. This occurs on two levels. First, in several methods, rules
are fired through a partial matching procedure, in other words, through a counting
and threshold comparison procedure. Now, in most methods, the decision is taken
based on a set of fired rules and not on the basis of a single rule. Exceptions to this
are the classification-tree methods, which in light of the results on waveforms, seem
to be penalized by this characteristic. Numerical methods, particularly Fisher's
Linear Discrimination and Neural Networks, integrate the voting notion through
the more general notions of weighted sum and activation function.

Different solutions are proposed by these methods for finding rules, for evaluating
those rules individually and collectively, for firing rules, and for combining their
decisions. Other solutions exist, which are not presented here, among which we
may cite those inspired by neural networks, such as Refs. 26 and 62. Deepening
the theoretical results is a promising research field to be explored in future studies.
This would make it possible to find paths through the diversity of the solutions
proposed at present, to specify formal bases of certain approaches and to explain
the often positive experimental results obtained by these methods.

Several methods presented integrate the notion of generalization, and that of
solution or version space. They proceed by exploration of this space, and extract
the pertinent points which are used to form the condition part of rules. Thus, they
are able to pass from simple attribute-value descriptions to more complex system
descriptions, based on subsets of predicate logic, or on graph-based formalisms.
This passage has already been studied for several methods we have presented,58•69

and applications for other description types, notably biological sequences, have been
conducted successfully. 22•25 We think that this capacity to process complex data,
a.s well as the results obtained here on a problem known to be hard for rule based
approaches, is very encouraging for the future of supervised classification hybrid
methods.

51

568

REFERENCES

1. S. Augier, G. Venturini and Y. Kodratoff, "Learning first order logic rules with a
genetic algorithm" , Proc. Int. Conj. Knowledge Discovery in Databases (K DD195),
AAAI Press, 1995, pp. 21-26.

2. R. Battiti, "First and second order methods for learning: between steepest descent
and Newton's method", Neural Comput. 4 (1992) 141-166.

3. N. Bongard, Pattern Recognition, Spartan Books, 1970. 4. L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and Regres­
sion Trees, Wadsworth Inc., 1984.

5. F. De Carvalho and 0. Gascuel, "SDL, a stochastic algorithm for learning decision
lists with limited complexity", Ann. Math. Artif. In:tell. 1 0 (1994) 281-302.

6. J. Catlett, On changing continous attributes into ordered discrete attributes" , Lectures
Notes in AI 482 (1991) 164-178.

7. C. Chang, "Finding prototypes for nearest neighbor classifiers" , IEEE Trans. Comput.
26 (1974) 1 179-1184.

8. S. L . Chung and R. Setiono, "Efficient neural network training on a cray Y-MP" , Int.
J. High Speed Comput. 7 (1995) 109-123.

9. P. Clark and T. Niblett, "Induction in Noisy domains", Progress in Machine Learning,
eds. I. Bratko and N. Lavrac, Sigma Press, Wimslow, 1987, pp. 1 1-30.

10. M. Coster and J. L. Chermant, Precis d'analyse d'images, Presses du CNRS, Paris,
1989.

1 1 . T. M. Cover and P. E. Hart, "Nearest neighbor pattern classification" , IEEE Trans.
Inform. Theor. 13 (1967) 21-27.

12. Y . Le Cun, B. Boser, J. S. Denker, D . Henderson, R. E. Howard, W. Hubbard and
L.D. Jackel , "Back-propagation applied to handwritten zipcode recognition", Neural
Comput. 1 (1989) 541-551.

13. D. V . Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification Tech­
niques, IEEE Computer Society Press, Los Alamitos, CA, 1991.

14. T. G . Dietterich and R. S. Michalski, "A comparative review of selected methods for
learning from examples" , Machine Leaming: An Artificial Intelligence Approach, eds.
R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Tioga, 1983, pp. 41-81.

15. R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley,
1973.

16. U. M. Fayyad and K. B. Irani, "Multi-interval discretization of continuous-valued
attributes for classification learning", Proc. 13th Int. Joint Conj. Artificial Intelligence,
Chambery, Aug. 1993.

17. R. A. Fisher, "The use of multiple measurements in taxonomic problems" , Ann. Eu-
genics 7 (1936) 179-188.

18. W. D. Fisher, "On grouping for maximum homogeneity", J.A.S.A. 53 (1958) 789-798.
19. H. G. Flegg, L 'algebre de Boole et son Utilisation, Dunod, Paris, 1967.
20. J. H. Friedman, J. L. Bentley and R. A. Finkel, "An algorithm for finding best matches

in logarithmic expected time", ACM Trans. Math. Software 3 (1977) 209-226.
21. K. Fukunaga, Statistical Pattern Recognition, Academic Press, 1990.
22. 0. Gascuel, "A way to give and use knowledge in learning" , Proc. 1st European Work­

ing Session on Machine Learning, Orsay, March 1986.
23. 0. Gascuel, "Quelques aspects numeriques de !'analyse symbolique des donnees" , In­

duction Symbolique et Numerique, eds. E. Diday and Y. Kodratoff, Cepadues-Editions,

Toulouse, 1991, pp. 327-359.
24. S. Geeman , E. Bienenstock and R. Doursat, "Neural networks and the bias variance

dilemna" , Neural Comput. 4 (1992) 1-58.

52

·- - 569

25. A. Guenoche and P. Vitte, "Discriminant analysis for sequences analysis: application
to protein kinases", Technical! Report 126, Laboratoire d'lnformatique de Marseille,
May 1995.

26. H. Guo and S. B. GelfandJ, "Classification trees with neural network feature
extraction", IEEE 1rans. Neural Networks 3 (1992) 925-933.

27. D . . J. Hand, Discrimination and Classifiootion, John Wiley, 1981.
28. D. J. Hand, "Recent advances in error rate estimation", Patt. Recogn. Lett. 4 (1986)

335-346.
29. P. :E. Hart, ''The condensed nearest neighbor rule", IEEE '.Irans. Inform. Theor. 14

{1968) 515-516.
30. D . Haussler, "Quantifying inductive bias: Ali learning algorithms and valiant's learning

framework", Artif. Intell. 36 (1988) 177-221.
31. J. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory of Neural

Computation, Addison Wesley, 1991.
32. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor, 1975.
33. J. J. Hopfield, "Neural networks and physical systems with emergent collective com­

putational abilities", Proc. National Academy of Sciences, USA 79 (1982) 2554-2558.
34. K. De Jong, "Learning with genetic algorithms: an overview", Mach. Learn. 3 (1988)

121-138.
35. R. D. King, C. Feng and A. Sutherland, "STATLOG: Comparison of classification

algorithms on large real-world problems" , Appl. Artif. Intell. 9 (1995) 289-333.
36. J. Kuntzmann and P. Naslin, Algebre de Boole et Machines Logiques, Dunod, Paris,

1967.
37. Y. Lechevallier, "Recherche d'une partition optimale sous contrainte d'ordre total" ,

Technical Report 1247, INRIA, Rocquencourt, Nov. 1990.
38. I. C . Lerman, "Foundations of the likelihood linkage analysis (LLA) classification

method", Proc. Applied Stochastic Models and Data Analysis, Wiley, 1991, pp. 63-76.
39. C. Marsala and B. Bouchon-Meunier, "Fuzzy partitioning using mathematical mor­

phology in a learning scheme" , Proc. Int. Conj. Fuzzy Systems (FUZZ - IEEE'96),
New Orleans, 1996, pp. 1512-1517.

40. W. S. McCulloch and W. Pitts, "A logical calculus of ideas immanent in nervous
activity", Bull. Math. Biophys. 5 (1943) 115-133.

41. R. S. Michalski, "A theory and methodology for inductive learning", Machine Learn­
ing: An Artificial Intelligence Approach, eds. R. S. Michalski, J. G. Carbonell and
T. M. Mitchell, Tioga, 1983, pp. 83-134.

42. R. S. Michalski, I. Mozetic, J. Hong and N . Lavrac, "The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains" , Proc.
AAAI-86 5th National Conference on Artificial Intelligence, 1986.

43. T. Mitchell, "Generalization as search", Artif. lntell. 18 (1982) 203-226.
44. M. F. Moller, "A scaled conjugate gradient algorithm for fast supervised learning" ,

Neural Networks 6 (1993) 525-533.
45. S. H. Muggleton, ed., Inductive Learning Programming, Academic Press, 1992.
46. J. Nicolas, "Une representation efficace pour les Espaces de Versions" , Proc. Joumees

Francophone d'Apprentissage, Apr. 1993.
47. J. Nicolas and I. C. Lerman, "Combining numeric and symbolic tools: a case study in

pattern recognition" , Proc. Applied Stochastic Models and Data Analysis, Wiley, May
1991.

48. R. Nock and 0. Gascuel, "On learning decision committees" , Proc. Int. Con/. Machine
Leaming, July 1995.

53

49. E. Parzen, "On estimation of a probability density function and mode" , Ann. Math.
Stat. 33 (1962) 1065-1076.

50. J. R. Quinlan, "Induction of decision trees", Mach. Learn. 1 (1986) 86-106.
51. J. R. Quinlan, "Probabilistic decision trees" , Mach. Learn. 3 (1990) 140--152.
52. J. Quinqueton and J. Sallantin, "Expansion and compression of binary data to build

features by learning", Proc. 6th Int. Joint. Conj. Pattern Recognition, Aug. 1983.
53. M. Ramdani, Systeme d 'induction formelle a base de connaissances imprecises, These

de l'Universite P. & M. Curie, 1994.
54. B. D. Ripley, "Neural networks and related methods for classification" , J. R. Stat.

Soc. B56 (1994) 409-456.
55. R. Rivest , "Learning decision lists" , Mach. Learn. 2 (1987) 229-246.
56. F. Rosenblatt, "The perceptron: a probabilistic model for information storage and

organisation of the brain" , Psychol. Rev. 65 (1958) 386-407.
57. D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning internal representations

by error propagation", Parallel Distributed Processing, Vol. 1, Chap. 8, MIT Press,
Cambridge, 1986, pp. 318-362.

58. M. Sebag, "A constraint-based induction algorithm in FOL" , Proc. Int. Conj. Machine
Learning, Morgan Kaufmann, July 1994.

59. M. Sebag, "Delaying the choice of bias: a disjunctive version space approach", Proc.
Int. Conj. Machine Learning, Morgan Kaufman, July 1996.

60. T. Sejnowski and C. Rosenberg, "Parallel networks that learn to pronounce English
text", Complex Syst. 1 (1987) 145-168.

61. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, New York,
1982.

62. W. Shavlik, R. Mooney and G. Towell, "Symbolic and neural net learning algorithms:
an artificial! comparison", Mach. Learn. 6 (1991) 11-143.

63. E. Shortliffe, Computer Based Medical Consultations: MYCIN, American Elsevier,
New York, 1976.

64. J. A. Sonquist and J. N. Morgan, "The detection of interaction effects" , Technical
Report, Institute for Social Research, University of Michigan, Ann Arbor, 1963.

65. G . T. Toussaint, "Bibliography on estimation of misclassification" , IEEE Trans. In­
form. Theor. 20 (1974) 472-479.

66. P. E. Utgoff, "Incremental induction of decision trees.", Mach. Learn. 4 (1989) 161-186.
67. P. P. Van der Smagt, "Minimisation methods for training feed.forward neural net­

works" , Neural Networks 7 {1994) 1-11.
68. V. N. Vapnik and Y. A. Chervonenkis, "On the uniform convergence of relative fre­

quencies of events to their probabilities" , Theor. Probability Appl. 16 (1971) 264-280.
69. G. Venturini, Apprentissage adaptatif et apprentissage supervise par algorithme

genetique, These de doctorat, Universite de Paris XI, Orsay, 1994.
70. S. A. Vere, "Inductive learning of relational productions", Pattern-Directed Inference

Systems, eds. D . A. Watterman and F. Hayes-Roth, Academic Press, New York, 1978,
pp. 281-296.

71. E. R. Vidal Ruiz, "An algorithm for finding nearest neighbors in (approximately)
constant average time

,,
, Patt. Recogn. Lett. 4 (1986) 145-157.

72. I. Wegener, The Complexity of Boolean Functions, John Wiley, Chichester, 1987.
73. B . Widrow and M. E. Hoff, "Adaptative switching circuits" , IRE WESCON Conven­

tion Record, Part 4, New York, 1960, pp. 96-104.
74. D. Wilson, "Asymptotic properties of nearest neighbor rules using edited data" , IEEE

Trans. Syst. Man Cybem. 2 (1972) 408-421.

54

571

75. P. H. Winston, "Learning structural descriptions from examples" , The Psychology of
Computer Vision, ed. P. H. Winston, Mc Graw Hill, New York, 1975, pp. 157-209.

76. L. A. Zadeh, «Fuzzy sets11 , Information Control, 1965, pp. 338-353.

55

