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Dynamical behavior of a stochastic forward-backward algorithm

using random monotone operators

Pascal Bianchi ∗ Walid Hachem†

August 12, 2015

Abstract

The purpose of this paper is to study the dynamical behavior of the sequence (xn)
produced by the forward-backward algorithm

yn+1 ∈ B(un+1, xn),

xn+1 = (I + γn+1A(un+1, ·))
−1(xn − γn+1yn+1),

where A(ξ) = A(ξ, ·) and B(ξ) = B(ξ, ·) are two functions valued in the set of maximal
monotone operators on R

N , (un) is a sequence of independent and identically distributed
random variables, and (γn) is a sequence of vanishing step sizes. Following the approach of
the recent paper [16], we define the operators A(x) = E[A(u1, x)] and B(x) = E[B(u1, x)],
where the expectations are the set-valued Aumann integrals with respect to the law of
u1, and assume that the monotone operator A + B is maximal (sufficient conditions for
maximality are provided). It is shown that with probability one, the interpolated process
obtained from the iterates xn is an asymptotic pseudo trajectory in the sense of Benäım
and Hirsch of the differential inclusion ż(t) ∈ −(A + B)(z(t)). The convergence of the
empirical means of the xn’s towards a zero of A+B follows, as well as the convergence of
the sequence (xn) itself to such a zero under a demipositivity assumption. These results
find applications in a wide range of optimization or variational inequality problems in
random environments.

Keywords : Dynamical systems, Randommaximal monotone operators, Stochastic forward-
backward algorithm, Stochastic proximal point algorithm.

AMS subject classification : 47H05, 47N10, 62L20, 34A60.

1 Introduction

1.1 The setting

In the fields of convex analysis and monotone operator theory, the forward-backward splitting
algorithm [26, 25] is one of the most studied algorithms for finding iteratively a zero of a sum

of two maximal monotone operators. As is well known, a set-valued operator A : RN → 2R
N
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where N is some positive integer is said monotone if ∀(x, y) ∈ gr(A), ∀(x′, y′) ∈ gr(A),
〈y− y′, x−x′〉 ≥ 0 where gr(A) stands for the graph of A. A non empty monotone operator is
said maximal if its graph is a maximal element in the inclusion ordering. A typical maximal
monotone operator is the subdifferential of a function belonging to Γ0, the family of proper
lower semicontinuous convex functions on R

N . A splitting algorithm for minimizing the sum
of two functions in Γ0, or more generally, for finding a zero of a sum of two maximal monotone
operators, is an algorithm that involves each of the two operators separately. Denote by M
the set of maximal monotone operators on R

N , and let dom(A) = {x ∈ R
N : A(x) 6= ∅} be

the domain of the operator A. Given A,B ∈ M where B is assumed single-valued and where
dom(B) = R

N , the forward-backward algorithm reads

xn+1 = (I + γA)−1(xn − γB(xn))

where I is the identity operator, γ is a real positive step, and (·)−1 is the inverse operator
defined by the fact that (x, y) ∈ gr(A−1) ⇔ (y, x) ∈ gr(A) for an operator A. This algorithm
involves a forward step (I − γB)(xn) followed by a backward step that consists in applying to
the output of the former the resolvent (I + γA)−1, also called the proximity operator when A

is the subdifferential of a function in Γ0 (it is well known that (I + γA)−1 is a single valued
operator with domain R

N since A ∈ M [17, 10]). Let Z(A) = {x ∈ R
N : 0 ∈ A(x)} be

the set of zeros of the operator A. Assuming a so-called cocoercivity assumption on B and
a condition on γ, the forward-backward algorithm is known to converge to an element of
Z(A+ B) provided the latter set is nonempty [10].

The purpose of this paper is to study a version of the forward-backward algorithm where
at each iteration n, operators A and B are replaced with some operators randomly chosen
amongst some collections (A(ξ))ξ∈Ξ and (B(ξ))ξ∈Ξ respectively where (Ξ,T ) is a measurable
space (measurability issues are made precise below). Let (un)n∈N∗ be a sequence of Ξ-valued
independent and identically distributed (iid) random variables defined on some probability
space and denote by µ the probability distribution of u1. Let (γn)n∈N∗ be a sequence of
deterministic positive steps in ℓ2 \ ℓ1. Assume that dom(B(ξ)) = R

N for µ-almost all ξ ∈ Ξ.
Denote by A(ξ, x) and B(ξ, x) the respective images of x under the operators A(ξ) and B(ξ).
Starting with an arbitrary x0 ∈ R

N , the aim of this paper is to study the iterations

yn+1 ∈ B(un+1, xn)

xn+1 = (I + γn+1A(un+1, ·))
−1(xn − γn+1yn+1).

(1)

Notice that contrary to the standard forward-backward algorithm recalled above, the steps
γn are now made converge to zero to alleviate the noise effect due to the randomness of (un),
and the operator B(ξ) is no longer assumed single valued.

Our purpose is to study the dynamical behavior of the sequences (xn) so defined. A
central role will be played by the operators

A =

∫

A(ξ)µ(dξ) and B =

∫

B(ξ)µ(dξ)

where these set-valued integrals who were introduced in the recent paper [16] are to be
recognized as Aumann integrals [7, 6]. One can immediately check that the operators A, B
and consequently A+B, are monotone. Assuming that A+B is moreover maximal (verifiable
maximality conditions for this operator are provided below) and writing D = dom(A + B),
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it is a standard fact from monotone operator theory that for every z0 ∈ D, the differential
inclusion ż(t) ∈ −(A + B)(z(t)) admits a unique absolutely continous solution z : R+ → R

N

such that z(0) = z0, and the map Φ(z0, t) = z(t) thus obtained can be extended to a semiflow
from D×R+ to D [17, 5]. With this at hand, we define the affine interpolated process obtained
from the sequence (xn) as follows. Let τn =

∑n
1 γk for n ∈ N. Notice that τn →n ∞ since

(γn) 6∈ ℓ1. For any t ∈ [τn, τn+1), set

x(t) = xn +
xn+1 − xn
γn+1

(t− τn).

Now, borrowing a concept introduced by Benäım and Hirsch in the field of stochastic approx-
imation, we show that under some conditions, the interpolated process is almost surely (a.s.)
a bounded Asymptotic Pseudo Trajectory (APT) [12, 13] for the semiflow Φ.

The convergence of the algorithm towards an element of the set of zeros Z = Z(A+B) is
of obvious interest. In this regards, the above APT property yields two important corollaries.
Using a result of [14], the sequence of empirical means (x̄n) given by

x̄n =

∑n
k=1 γkxk
∑n

k=1 γk

is shown to converge a.s. to a (random) element of Z. Yet, the sequence xn itself is not in
general guaranteed to converge (a simple counterexample can be found in [17, 30]). Never-
theless, it is known that any solution z(t) of the differential inclusion converges to an element
of Z provided that the operator A + B is demipositive [18]. When this condition holds, the
interpolated process x(t) (and hence the sequence (xn)) inherits from z(t) the convergence
towards a point of Z, as a consequence of the above APT property. Verifiable conditions for
the demipositivity of A+ B can be easily devised.

1.2 Application examples

We provide herein some application examples of Algorithm (1) without insisting for the
moment on the assumptions.

Example 1. Let g : Ξ×R
N → (−∞,∞] be such that g(ξ, ·) ∈ Γ0 for µ-almost any ξ ∈ Ξ. Let

G(x) =
∫

g(ξ, x)µ(dξ) and consider the minimization problem minx∈RN G(x) which is assumed
to have a solution. Writing A(ξ) = ∂xg(ξ, ·) and B(ξ) = 0 and using some assumptions making
licit the interchange between the integration and the subdifferentiation, we are led to finding
a zero of the mean operator A =

∫

A(ξ)µ(dξ). The algorithm boils down to the random
proximal point algorithm xn+1 = proxγn+1g(un+1,·)(xn) where proxf (x) = (I + ∂f)−1(x) is the
proximity operator associated to the function f ∈ Γ0. Instances of this algorithm can be the
following:

1. Consider a distributed multiagent system. Set Ξ = {1, . . . ,m} where the positive integer
m represents the number of agents in a network, write G(x) =

∑m
i=1 g(i, x), and assume

that Agent i has access to its private function g(i, ·) only. Up to an irrelevant m−1

factor, G(x) coincides with the integral
∫

g(ξ, x)µ(dξ) where µ is taken as the uniform
distribution on {1, . . . ,m}. The random proximal point algorithm goes as follows: at
iteration n + 1, an agent wakes up at random according to µ, applies the proximity
operator to its private function and hands out the result to the next active agent. This
is the so called incremental proximal algorithm [15].
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2. In a centralized setting, assume that the distribution µ is unknown and that an observer
seeks to minimize G on-line, based on the sole knowledge of the sequence (un). The
random proximal point algorithm can be seen here as the proximal analogue of the well-
known stochastic (sub)gradient algorithm, where implicit steps are performed instead
of explicit ones. Indeed, the former reads xn+1 = xn − γn+1∂xg(un+1, xn+1) while in
the latter, ∂xg(un+1, xn+1) is replaced with ∂xg(un+1, xn). It is interesting to note
that in the special case where g(ξ, . ) is quadratic (say, g(ξ, x) = ‖ξ1x − ξ2‖

2 where
ξ1 ∈ R

m×N , ξ2 ∈ R
m and ξ = (ξ1, ξ2)) the random proximal point algorithm boils down

to the so-called normalized least mean square which is well-known in signal processing
applications.

3. Given a positive integer m, let C1, . . . , Cm be closed convex sets in R
N , and let f ∈ Γ0.

Consider the problem

min
x∈C

f(x), C =

m
⋂

i=1

Ci

where a minimizer is assumed to exist. Assume nevertheless that the projection operator
onto C is difficult to implement while the projection on any of the Ci is easy (think of
e.g. half spaces). Here we set Ξ = {0, 1, . . . ,m}, g(0, ·) = f , g(ξ, ·) = ιCξ

for 1 ≤ ξ ≤ m
where ιC is the indicator function of the set C, and µ =

∑m
i=0 αiδi where all the αi are

positive and δi is the Dirac measure at i. Under mild assumptions on the set C1, . . . , Cm,
the optimization problem is equivalent to finding a zero of the mean operator

A = α0∂f +NC1 + · · ·+NCm

where for every x, NCi
(x) is the normal cone of Ci at x. In practice, according to the

outcome of un+1, either the operator proxγn+1f is applied to the current iterate, or a
simple projection onto one of the Ci is performed.
A refinement consists in assuming that the function f is itself an expectation with
respect to an unknown probability law as in Case 2 above. We can then replace the
operator proxγn+1f with a randomized version as in Example 1.2.

The above examples are instances of the following general case:

Example 2. Given a probability space (X,X , ν), let the functions f : X × R
N → (−∞,∞)

and g : X × R
N → (−∞,∞] satisfy f(η, ·), g(η, ·) ∈ Γ0 for ν-almost all η ∈ X. Consider the

sum F (x) + G(x) where F (x) =
∫

f(η, x)ν(dη) and G(x) =
∫

g(η, x)ν(dη). Considering the
sets C1, . . . , Cm of the preceding example, we aim at solving the problem

min
x∈C

F (x) +G(x), C =
m
⋂

i=1

Ci

where the minimum is assumed to exist. It is also assumed that the proxg(ξ,·) operator can be
easily implemented, while the functions f(ξ, ·) are better suited for operations involving only
the subgradients. Define on {0, 1, . . . ,m} the probability distribution ζ =

∑m
i=0 αiδi where

all αi are positive. On the space X×{0, . . . ,m} equipped with the probability µ = ν ⊗ ζ, let
ξ = (η, i), and define the random operators

A(ξ) =

{

α−1
0 ∂xg(η, ·) if i = 0,
NCi

otherwise
and B(ξ) = ∂xf(η, ·). (2)
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Then the minimization problem introduced above amounts to finding a zero of the operator
A + B = ∂F + ∂G +

∑m
i=1NCi

. Given a sequence (un = (vn, In)) of Ξ-valued iid random
variables with probability law µ, the algorithm (1) reads

yn+1 ∈ ∂f(xn, vn+1),

xn+1 =

{

proxα−1
0 γn+1g(vn+1,·)

(xn − γn+1yn+1) if In+1 = 0,

projCIn+1
(xn − γn+1yn+1) otherwise,

where projCi
(·) is the projection operator onto Ci.

The algorithm (1) can be also used to solve a variational inequality problem:

Example 3. Let C = ∩Ci be as in Example 1.3. Consider the problem of finding x⋆ ∈ C that
solves the variational inequality

∀x ∈ C, 〈F (x⋆), x− x⋆〉 ≥ 0

where F : RN → R
N is a monotone single-valued operator on R

N [40][22]. Since the pro-
jection on C is difficult, one can use the simple stochastic algorithm xn+1 = projCun+1

(xn −

γn+1F (xn)) where the random variables un are distributed on the set {1, . . . ,m}. The variant
where F is itself an expectation can also be considered.

1.3 About the literature

The problem of minimizing an objective function in a noisy environment has given birth to a
very rich literature in the field of the stochastic approximation [11, 23]. In the framework of
this paper, most of this literature studies the evolution of the projected stochastic gradient
or subgradient algorithm where the projection is made on a fixed constraint set.

In the case where the constraint set has a complicated structure, an incremental mini-
mization algorithm with random constraint updates has been proposed in [27], who seeks to
minimize a deterministic convex function f on a finite intersection of closed convex constraint
sets. The algorithm developed in [27] consists in a subgradient step over the objective f
followed by an update step towards a randomly chosen constraint set. Along the same princi-
ple, a distributed algorithm involving an additional consensus step has been proposed in [24].
Random iterations involving proximal and subgradient operators in the spirit of Example 2
were considered in [15] and in [39]. In [39], the functions g(ξ, . ) are supposed to have a full do-
main, satisfy the inequality ‖g(ξ, x)−g(ξ, y)‖ ≤ L(‖x−y‖+1) for some constant L which does
not depend on ξ and, finally, are such that

∫

‖g(ξ, x)‖2µ(dξ) ≤ L(1 + ‖x‖2). In the present
paper, such conditions are not needed. An other work of the same authors which is also close
to ours is [40], where among other things, the problem described in Example 3 was considered
in the case where F (x) =

∫

f(ξ, x)µ(dξ). In [40], it is assumed that F is strongly monotone
and that the stochastic Lipschitz property

∫

‖f(ξ, x) − f(ξ, y)‖2µ(dξ) ≤ C‖x − y‖2 holds,
where C is a positive constant. In our work, the strong monotonicity of F is not needed, and
the Lipschitz property is essentially replaced with the condition ‖f(ξ, x)‖2 ≤ M(ξ)(1 + ‖x‖)
where M(ξ) satisfies a moment condition.

Regarding the convergence rate analysis, let us mention [3, 35] which investigate the per-
formance of the algorithm xn+1 = proxγn+1g(xn − γn+1Hn+1) where Hn+1 is a noisy estimate
of the gradient ∇f(xn). The same algorithm is addressed in [36] where the proximity opera-
tor is replaced by the resolvent of a fixed maximal monotone operator, and Hn+1 is replaced
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by a noisy version of a (single-valued) cocoercive operator evaluated at xn. The paper [37]
addresses the statistical analysis of the empirical means of the estimates obtained from the
random proximal point algorithm of Example 1.

This paper follows the line of thought of the recent paper [16], who studies the behavior
of the random proximal iterates xn+1 = (I + γn+1A(un+1))

−1(xn) in a Hilbert space and
establishes the convergence of the empirical means x̄n towards a zero of the mean operator
A(x) =

∫

A(ξ, x)µ(dξ). In the present paper, the proximal point algorithm is replaced with
the more general forward-backward algorithm. Thanks to the dynamical approach developed
here, the convergences of both (x̄n) and possibly (xn) are established.

Finally, it is worth noting that apart from the APT of Benäım and Hirsch [12], many
authors introduced alternative concepts to analyze the asymptotic behavior of perturbed
solutions to evolution systems (see [2] and references therein). An important one is the
notion of pseudo-orbit of [1, 2] which has been shown useful to analyze certain perturbed
solution to differential inclusions of the form (3). The pseudo-orbit property is however more
demanding than the APT property and is in general harder to verify. Fortunately, the concept
of APT is proved here sufficient to guarantee that the interpolated process x(t) almost surely
inherits both the ergodic and non-ergodic convergence properties of the orbits of Φ.

1.4 Paper organization

Section 2 is devoted to the exact problem description and to the statements of the results.
Theorem 2.1 shows that under proper assumptions, the interpolated process x(t) is a.s. an
APT for the differential inclusion ż(t) ∈ (A+ B)(z(t)). The consequences of this theorem in
terms of convergence of (x̄n) or (xn) towards a zero of A+B follow. These results are followed
by a proposition devoted to the maximality of A+B. Application examples are then provided
in Section 3 with an emphasis on Example 2 above. Section 4 is devoted to the proofs.

2 Problem statement and results

2.1 Set-valued functions and set-valued integrals

Let (Ξ,T , µ) be a probability space where T is µ-complete. Consider the space RN equipped

with its Borel field B(RN), and let F be a function from Ξ to 2R
N

such that F (ξ) is a closed
set for any ξ ∈ Ξ. The set-valued function F is said measurable if {ξ : F (ξ) ∩H 6= ∅} ∈ T

for any set H ∈ B(RN ). This is known to be equivalent to asserting that the domain
dom(F ) = {ξ ∈ Ξ : F (ξ) 6= ∅} of F belongs to T and that there exists a sequence of
measurable functions ϕn : dom(F ) → R

N such that F (ξ) = {ϕn(ξ)} for all ξ ∈ dom(F ) [19,
Chap. 3] [20].
Assume now that F is measurable and that µ(dom(F )) = 1. For 1 ≤ p < ∞, denote by
Lp(Ξ,T , µ;RN ) the Banach space of measurable functions ϕ : Ξ → R

N such that
∫

‖ϕ‖pdµ <
∞, and let

Sp
F = {ϕ ∈ Lp(Ξ,T , µ;RN ) : ϕ(ξ) ∈ F (ξ) µ− a.e.}.

If S1
F 6= ∅, the function F is said integrable. The Aumann integral [7, 6] of F is the set

∫

Fdµ =

{∫

Ξ
ϕdµ : ϕ ∈ S1

F

}

.
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2.2 Random maximal monotone operators

Consider a function A : Ξ → M. Note that the graph gr(A(ξ)) of any element A(ξ) is a
closed subset of RN × R

N [17]. Assume that the function ξ 7→ gr(A(ξ)) is measurable as a

closed set-valued function from Ξ to 2R
N×R

N

. As shown in [4, Ch. 2], this is equivalent to
saying that the function ξ 7→ (I + γA(ξ))−1x is measurable from Ξ to R

N for any γ > 0
and any x ∈ R

N . Denoting by D(ξ) the domain of A(ξ), the measurability of ξ 7→ gr(A(ξ))
implies that the set-valued function ξ 7→ D(ξ) is measurable. Moreover, recalling that A(ξ, x)
is the image of a given x ∈ R

N under the operator A(ξ), the set-valued function ξ 7→ A(ξ, x)
is measurable [4, Ch. 2]. Denote by A0(ξ, x) is the element of least norm in A(ξ, x) for any
given x ∈ D(ξ) (namely, A0(ξ, x) = projA(ξ,x)(0)). The function ξ 7→ A0(ξ, x) is measurable
(see again [4, Ch. 2]).

For any γ > 0, we denote by

Jγ(ξ, x) = (I + γA(ξ))−1(x)

the resolvent of A(ξ). As is well-known, Jγ(ξ, ·) is a non-expansive function on R
N . Since

Jγ(ξ, x) is measurable in ξ and continuous in x, Caratheodory’s theorem shows that Jγ :
Ξ × R

N → R
N is T ⊗ B(RN ) measurable. We also introduce the Yosida approximation

Aγ(ξ) of A(ξ), which is defined for any γ > 0 as the T ⊗ B(RN) measurable function

Aγ(ξ, x) =
x− Jγ(ξ, x)

γ
.

The function Aγ(ξ, ·) is γ
−1-Lipschitz continuous, satisfies ‖Aγ(ξ, x)‖ ↑ ‖A0(ξ, x)‖ and Aγ(ξ, x) →

A0(ξ, x) for any x ∈ D(ξ) when γ ↓ 0. Moreover, the inclusion Aγ(ξ, x) ∈ A(ξ, Jγ(ξ, x)) holds
true for all x ∈ R

N [17, 10].
We now introduce the mean operator. The essential intersection D of the domains D(ξ)

is [21]

D =
⋃

E∈T :µ(E)=0

⋂

ξ∈Ξ\E

D(ξ)

in other words,
x ∈ D ⇔ µ({ξ : x ∈ D(ξ)}) = 1.

Let us assume that D 6= ∅ and that this function is integrable for each x ∈ D. On D, we
define A as the Aumann integral

A(x) =

∫

Ξ
A(ξ, x)µ(dξ).

One can immediately see that the operator A : D → 2R
N

so defined is a monotone operator.

2.3 Evolution equations and almost sure APT

Given A ∈ M, consider the differential inclusion
{

ż(t) ∈ −A(z(t)), ∀t ∈ R+ a.e.
z(0) = z0

(3)

for a given z0 ∈ dom(A). It is known from [17, 5] that for any z0 ∈ dom(A), there exists
a unique absolutely continuous function z : R+ → R

N satisfying (3) - referred to as the

7



solution to (3). Consider the map Ψ : dom(A) × R+ → dom(A), (z0, t) 7→ z(t) where z(t) is
the solution to (3) with the initial value z0. Then for any t ≥ 0, Ψ(·, t) is a non-expansive
map from dom(A) to dom(A) that can be extended by continuity to a non-expansive mapping
from dom(A) to dom(A) that we still denote as Ψ(·, t) [17, 5]. The function Ψ so defined
is a semiflow on dom(A) × R+, being a continuous function from dom(A) × R+ to dom(A)
satisfying Ψ(·, 0) = I and Ψ(z0, t + s) = Ψ(Ψ(z0, s), t) for every z0 ∈ dom(A), t, s ≥ 0.
The set γ(x) = {Ψ(x, t) : t ≥ 0} is the orbit of x. Although orbits of Ψ are not necessarily
convergent in general, any solution to (3) converges to a zero of A (assumed to exist) whenever
A is demipositive (see [18]). By demipositive, we mean that there exists w ∈ Z(A) such that
for every sequence ((un, vn) ∈ A) such that (un) converges to u and {vn} is bounded,

〈un − w, vn〉 −−−→
n→∞

0 ⇒ u ∈ Z(A).

We need to introduce some important notions associated to the semiflow Ψ. A com-
prehensive treatment of the subject can be found in [12, 11]. A set S ⊂ dom(A) is said
invariant for the semiflow Ψ if Ψ(S, t) = S for all t ≥ 0. Given ε > 0 and T > 0, an
(ε, T )-pseudo orbit from a point a to a point b in R

N is a finite sequence of n partial orbits
({Ψ(yi, s) : s ∈ [0, ti]})i=0,...,n−1 such that ti ≥ T for i = 0, . . . , n− 1 and

‖y0 − a‖ < ε,

‖Ψ(yi, ti)− yi+1‖ < ε i = 0, . . . , n − 1,

yn = b.

Let S be a compact invariant set S for Ψ. If for every ε > 0, T > 0 and every a, b ∈ S,
there is an (ε, T )-pseudo orbit from a to b, then the set S is said Internally Chain Transitive
(ICT). We shall say that a R

N -valued random process v(t) on R+ is an almost sure asymptotic
pseudo trajectory [12, 13] for the differential inclusion (3) if

sup
s∈[0,T ]

‖v(t+ s)−Ψ(projdom(A)(v(t)), s)‖ −−−→
t→∞

0 a.s.

for any T > 0 (in the APT definition of [12, 13], no projection is considered because the flow is
defined there on the whole space. Projecting on dom(A) here does not alter the conclusions).
Let

L(v) =
⋂

t≥0

v([t,∞))

be the limit set of the trajectory v(t), i.e., the set of the limits of the convergent subsequences
v(tk) as tk → ∞. An important result is the following: if {v(t)}t∈R+ is bounded a.s., and if
v is an almost sure APT for (3), then with probability one, the compact set L(v) is ICT for
the semiflow Ψ [12].

The article [14] establishes a useful property of asymptotic pseudo trajectories pertaining
to the asymptotic behavior of their empirical measures. We now consider that v : Ω×R+ →
R
N is a random process on the probability space (Ω,F ,P) equipped with a filtration (Ft)t∈R+ .

As is well known, v is said progressively measurable if for each t ≥ 0, the restriction to Ω×[0, t]
of v is Ft ⊗ B([0, t])-measurable, where B([0, t]) is the Borel field over [0, t]. For t ≥ 0, the
empirical measure νt(ω, ·) of v is then the random probability measure defined by the identity

∫

f(x) νt(ω, dx) =
1

t

∫ t

0
f(v(ω, s)) ds

8



for any measurable function f : RN → R+. We also note that a probability measure ν on R
N

is said invariant for the semiflow Ψ if
∫

f(x) ν(dx) =

∫

f(Φ(x, t)) ν(dx)

for any t ≥ 0 and any measurable function f : RN → R+.
Now, if v is progressively measurable and if it is an almost sure APT for the semiflow Ψ,

then on a probability one set, all the accumulation points of the set {νt(ω, ·)}t≥0 for the weak
convergence of probability measures are invariant measures for Ψ [14, Th. 1]. 1

2.4 Algorithm description and main results

Let B : Ξ → M be a mapping such that, similarly to the mapping A introduced in Section 2.2,
the function ξ 7→ gr(B(ξ)) is measurable. We moreover assume throughout the paper that
dom(B(ξ)) = R

N for almost every ξ ∈ Ξ. We also assume that for every x ∈ R
N , B(·, x)

is integrable and we set B(x) =
∫

B(ξ, x)µ(dξ). Note that domB = R
N . Let (un)n∈N∗ be

an iid sequence of random variables from a probability space (Ω,F ,P) to (Ξ,T ) having the
distribution µ. Starting with some arbitrary x0 ∈ R

N , our purpose is to study the behavior
of the iterates

xn+1 = Jγn+1(un+1, xn − γn+1b(un+1, xn)), (n ∈ N),

where the positive sequence (γn)n∈N∗ belongs to ℓ2 \ ℓ1 and where b is a measurable map on
(Ξ × R

N ,T ⊗ B(RN)) → (RN ,B(RN )) such that for every x ∈ R
N , b( . , x) ∈ S1

B( . ,x) (a

possible choice for b is for instance b(ξ, x) = B0(ξ, x) which is T ⊗B(RN)–measurable as the
limit as γ ↓ 0 of Bγ(ξ, x)). Recall the definition of the affine interpolated process

x(t) = xn +
xn+1 − xn
γn+1

(t− τn)

for every t ∈ [τn, τn+1) where τn =
∑

k≥n γk. Consider the differential inclusion

{

ż(t) ∈ −(A+ B)(z(t)), ∀t ∈ R+ a.e.
z(0) = z0 .

(4)

If A + B is maximal, then for any z0 ∈ D, (4) has a unique solution. The case being, let
Φ : D × R+ → D be the semiflow associated to (4).

Before stating our main result, we need a preliminary remark. A point x⋆ is an element of
Z = Z(A+B) if and only if there exists ϕ ∈ S1

A(·,x⋆)
and ψ ∈ S1

B(·,x⋆)
such that

∫

ϕdµ+
∫

ψdµ =

0. We will refer to such couple (ϕ,ψ) as a representation of the zero x⋆. In Theorem 2.1 below,
we shall moreover assume that there exists such a zero x⋆ for which the above functions ϕ
and ψ can be chosen in L2p(Ξ,T , µ;RN ) where p ≥ 1 is some integer possibly strictly larger
than one. We thus introduce the set of 2p-integrable representations

R2p(x⋆) =

{

(ϕ,ψ) ∈ S2p
A(·,x⋆)

× S2p
B(·,x⋆)

:

∫

ϕdµ +

∫

ψdµ = 0

}

.

We denote by Π(ξ, .) the projection operator onto D(ξ) and by d(ξ, ·) (resp. d(·)) the distance
function to D(ξ) (resp. to D).

1The result is stated in [14] when v is a so-called weak APT. It turns out that any almost sure APT is a
weak APT by Levy’s conditional form of Borel-Cantelli’s lemma.
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Theorem 2.1. Assume the following facts:

1. The monotone operator A is maximal,

2. There exists an integer p ≥ 1 and an element x⋆ ∈ Z such that R2p(x⋆) 6= ∅.

3. For any compact set K of RN , there exists ε ∈ (0, 1] such that

sup
x∈K∩D

∫

‖A0(ξ, x)‖
1+ε µ(dξ) <∞,

moreover, there exists y0 ∈ D such that
∫

‖A0(ξ, y0)‖
1+1/ε µ(dξ) <∞,

4. There exists C > 0 such that for all x ∈ R
N ,

∫

d(ξ, x)2µ(dξ) ≥ Cd(x)2

and furthermore, γn+1/γn → 1,

5. There exists C > 0 such that for any x ∈ RN and any γ > 0,

1

γ4

∫

‖Jγ(ξ, x)−Π(ξ, x)‖4µ(dξ) ≤ C(1 + ‖x‖2p)

where the integer p is the one specified in 2.

6. There exists M : Ξ → R+ such that M2p is µ-integrable and for all x ∈ R
N ,

‖b(ξ, x)‖ ≤M(ξ)(1 + ‖x‖) .

Moreover,
∫

‖b(ξ, x)‖4µ(dξ) ≤ C(1 + ‖x‖2p).

Then the monotone operator A+B is maximal. Moreover, with probability one, the continuous
time process x(t) is bounded and is an APT of the differential inclusion (4).

Sufficient conditions for the maximality of A are provided below in Sections 2.5 and 3.1.
Setting ε = 1, Assumption 3 can be replaced by the stronger condition that for any compact
set K of RN ,

sup
x∈K∩D

∫

‖A0(ξ, x)‖
2 µ(dξ) <∞.

In the particular case where µ is a finite sum of Dirac measures, Assumption 4 reduces to
the linear regularity condition introduced by [9]. Let us finally discuss Assumption 5. As
γ → 0, it is a known that for every (ξ, x), Jγ(ξ, x) tends to Π(ξ, x). Assumption 5 moreover
provides a control on the convergence rate. The fourth order moment of ‖Jγ(ξ, x)−Π(ξ, x)‖
is assumed to vanish at rate γ4 with a multiplicative constant of order ‖x‖2p. The integer
p can potentially be chosen as large as needed, provided that one is able to find a zero x⋆
satisfying Assumption 2.

The results of Theorem 2.1 can first be used to study the convergence of the sequence
(x̄n) of empirical means:

10



Corollary 2.1. Let the assumptions in the statement of Theorem 2.1 hold true. Assume that
for any x⋆ ∈ Z, the set R2(x⋆) is nonempty. Then for any initial value x0, there exists a
random variable U supported by Z such that the sequence (x̄n) of empirical means converges
almost surely to U as n→ ∞.

We now consider the issue of the convergence of the sequence {xn} to a point of Z. Note
that the conditions of Theorem 2.1 are generally unsufficient to ensure that xn converges. A
counterexample is obtained by setting N = 2 and taking A as a π/2-rotation matrix, B = 0.
However, the statement will be proved valid when A+ B is moreover assumed demipositive.
We start by listing some known verifiable conditions ensuring that the maximal monotone
operator A+ B is demipositive:

1. A+ B = ∂G where G ∈ Γ0 has a minimum.

2. A+ B = I − T where T is a non-expansive mapping having a fixed point.

3. The interior of Z is nonempty.

4. Z 6= ∅ and A + B is 3-monotone, i.e., for every triple (xi, yi) ∈ A + B for i = 1, 2, 3, it
holds that

∑3
i=1〈yi, xi − xi−1〉 ≥ 0 by setting x0 = x3.

5. A + B is strongly monotone, i.e., there exists α > 0 such that 〈x1 − x2, y1 − y2〉 ≥
α‖x1 − x2‖

2 for all (x1, y1) and (x2, y2) in A+ B.

6. Z 6= ∅ and A + B is cocoercive, i.e., there exists α > 0 such that 〈x1 − x2, y1 − y2〉 ≥
α‖y1 − y2‖

2 for all (x1, y1) and (x2, y2) in A+ B.

The above conditions can be found in [30]. Specifically, conditions 1–3 can be found in [18]
while Condition 4 can be found in [29]. Conditions 5 and 6 can be easily verified to lead to the
demipositivity of A + B. Condition 1 is further discussed in Section 3.1 below. Condition 2
is satisfied if Z 6= ∅ and if for any ξ, the operator I − (A+B)(ξ) is a non-expansive mapping.
Condition 4 is satisfied if Z 6= ∅ and if all the operators A(ξ) + B(ξ) are 3-monotone. The
last two conditions are most often easily verifiable.
We now have:

Corollary 2.2. Let the assumptions in the statement of Theorem 2.1 hold true. Assume in
addition that the operator A + B is demipositive and that for any x⋆ ∈ Z, the set R2(x⋆) is
nonempty. Then for any initial value x0, there exists a random variable U supported by Z
such that xn → U almost surely as n→ ∞.

We now address the important problem of the maximality of A.

2.5 Maximality of A

By extending a well-known result on the maximality of the sum of two maximal monotone
operators, it is obvious that A is maximal is the case where µ is a finite sum of Dirac measures
and where the interior of D is non empty [17, 10]. For more general measures µ, we have the
following result.

Proposition 2.1. Assume the following facts:

11



1. The interior of D is non empty, and there exists a closed ball in D such that ‖A0(ξ, x)‖ ≤
M(ξ) for any x in this ball, and such that M(ξ) is µ-integrable,

2. For any compact set K of RN , there exists ε > 0 such that

sup
x∈K∩D

∫

‖A0(ξ, x)‖
1+ε µ(dξ) <∞,

moreover, there exists y0 ∈ D such that

∫

‖A0(ξ, y0)‖
1+1/ε µ(dξ) <∞,

3. There exists C > 0 such that for any x ∈ R
N ,

∫

d(ξ, x)µ(dξ) ≥ Cd(x),

4.

∫

‖Jγ(ξ, x)−Π(ξ, x)‖µ(dξ) ≤ γC(x) where C(x) is bounded on compact sets of RN ,

Then the monotone operator A is maximal.

3 Application to convex optimization

We start this section by briefly reproducing some known results related to the case where
A(ξ) is the subdifferential of a proper closed convex function g(ξ, ·).

3.1 Known facts about the Aumann integral of subdifferentials

A function g : Ξ×R
N → (−∞,∞] is called a normal integrand [32] if the set-valued mapping

ξ 7→ epi g(ξ, ·) is closed-valued and measurable. Let us assume in addition that g(ξ, ·) is
convex and proper for every ξ.

Consider the case where A(ξ) = ∂g(ξ, ·). The mean operator A is given by2

A(x) =

∫

∂g(ξ, x)µ(dξ) . (5)

Under some conditions that will be discussed below, the integral and subdifferential signs can
be exchanged in (5). In this case,

A(x) = ∂G(x) (6)

where G is the integral functional given by G(x) =
∫

g(ξ, x)µ(dξ), the integral being defined
here as the sum

∫

{ξ : g(ξ,x)∈R+}
g(ξ, x)µ(dξ) +

∫

{ξ : g(ξ,x)∈(−∞,0)}
g(ξ, x)µ(dξ) + I(x)

2By [4, 34], it holds that the mapping A : Ξ → M defined as A(ξ) = ∂g(ξ, ·) is measurable in the sense of
Section 2.2.
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where

I(x) =

{

+∞ if µ({ξ : g(ξ, x) = ∞}) > 0,
0 otherwise

and where the convention (+∞) + (−∞) = +∞ is used. The function G is a lower semi
continuous convex function if G(x) > −∞ for all x [38]. Assuming in addition that G is
proper, the identity (6) ensures that:

• A is a maximal monotone demipositive operator,

• the zeros of A are the minimizers of G.

Sufficient conditions for obtaining (6) can be found in [33]. Namely, denoting as dom g(ξ, ·)
the domain of this function, assume that G(x) < ∞ whenever x ∈ dom g(ξ, ·) µ-almost
everywhere. Suppose moreover that G is continuous at some point and that the set-valued
function ξ 7→ dom g(ξ, ·) is constant almost everywhere. Assume finally that the right hand
side of (6) is a closed set. Then (6) holds true.

3.2 A constrained optimization problem

In this paragraph, we consider the case of Example 2 described in the introduction of this
paper. Let (X,X , ν) be a probability space. Let the functions f : X × R

N → (−∞,∞) and
g : X × R

N → (−∞,∞) be normal convex integrand. Here we assume that g is everywhere
finite to simplify the presentation, however we note that the results can be extended to the
case where g is allowed to take the value +∞. Recall the optimization problem

min
x∈C

F (x) +G(x), C =

m
⋂

i=1

Ci (7)

where F (x) =
∫

f(η, x)ν(dη), G(x) =
∫

g(η, x)ν(dη) and C1, . . . , Cm are closed convex sets.
Consider a measurable function ∇̃f : X × R

N → R such that for every η ∈ X and x ∈ R
N ,

∇̃f(η, x) is a subgradient of f(η, . ) at x. Let (vn)n be an iid sequence on X with probability
distribution ν. Finally, let (In) be an iid sequence on {0, 1, . . . ,m} with distribution αi =
P(I1 = i) for every i and satisfying αi > 0 for every i. We consider the iterates

xn+1 =

{

proxα−1
0 γn+1g(vn+1,·)

(xn − γn+1∇̃f(vn+1, xn)) if In+1 = 0,

projCIn+1
(xn − γn+1∇̃f(vn+1, xn)) otherwise.

(8)

We denote by ∂g0(η, x) the element of least norm in the subdifferential of g(η, . ) at point x.
If H is a subset of RN , we use the notation |H| = sup{‖v‖ : v ∈ H}.

Corollary 3.1. We assume the following. Let p ≥ 1 be an integer.

1. For every x ∈ R
N ,
∫

|f(η, x)|ν(dη) +
∫

|g(η, x)|ν(dη) <∞.

2. For any solution x⋆ to Problem (7), there exists a measurable function M⋆ : X → R such
that

∫

M⋆(η)
2ν(dη) <∞ and for all η ∈ X, |∂f(η, x⋆)|+ |∂g(η, x⋆)| ≤M⋆(η). Moreover,

there exists a solution x⋆ for which
∫

M⋆(η)
2pν(dη) <∞.
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3. For any compact set K of RN , there exists ε ∈ (0, 1] such that

sup
x∈K

E‖∂g0(Θ, x)‖
1+ε <∞ .

Moreover, there exists y0 ∈ C such that E‖∂g0(Θ, y0)‖
1+1/ε <∞.

4. The closed convex sets C1, . . . , Cm are linearly regular i.e.,

∃κ > 0,∀x ∈ R
N , max

i=1,...,m
d(x,Ci) ≥ κd(x,

m
⋂

i=1

Ci)

and γn/γn+1 → 1. Moreover, C has a non-empty interior.

5. There exists M : X → R such that
∫

M(η)2pν(dη) < ∞ and for all (η, x) ∈ X × R
N ,

‖∇̃f(η, x)‖ ≤M(η)(1 + ‖x‖).

6. There exists c > 0 such that for all x ∈ R
N ,
∫

‖∇̃f(η, x)‖4ν(dη) ≤ c(1 + ‖x‖2p).

Then, the sequence (xn) given by (8) converges almost surely to a solution to Problem (7).

4 Proofs

We start with the proof of Proposition 2.1 because it contains many elements of the proof of
the main theorem.

4.1 Proof of Proposition 2.1

We recall that for any ξ ∈ Ξ and any γ > 0, the Yosida approximation Aγ(ξ) is a single-
valued γ−1-Lipschitz monotone operator defined on R

N . As a consequence, the operator
Aγ : RN → R

N given by

Aγ(x) =

∫

Aγ(ξ, x)µ(dξ)

is a single-valued continuous monotone operator defined on R
N . As such, Aγ is maximal [17,

Prop. 2.4]. Thus, given any y ∈ R
N , there exists xγ ∈ R

N such that y = xγ + Aγ(xγ). We
shall find a sequence γn → 0 such that xγn → x⋆ ∈ D with y − x⋆ ∈ Ax⋆. The maximality of
A then follows by Minty’s theorem [17].
Denote respectively by z0 and ρ the center and the radius of the ball alluded to in Assump-
tion 1, and set

u(ξ) = z0 + ρ
Aγ(ξ, xγ)

‖Aγ(ξ, xγ)‖
∈ D

where the convention 0/0 = 0 is used. By the monotonicity of Aγ(ξ),

0 ≤

∫

〈xγ − u(ξ), Aγ(ξ, xγ)−Aγ(ξ, u(ξ))〉µ(dξ).
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Writing C =
∫

M(ξ)µ(dξ) <∞ (see Assumption 1), we obtain

∫

〈xγ , Aγ(ξ, xγ)〉µ(dξ) = 〈xγ , y〉 − ‖xγ‖
2,

∫

〈−u(ξ), Aγ(ξ, xγ)〉µ(dξ) = 〈z0, xγ − y〉 − ρ

∫

‖Aγ(ξ, xγ)‖µ(dξ),
∫

|〈xγ , Aγ(ξ, u(ξ))〉|µ(dξ) ≤ ‖xγ‖

∫

‖A0(ξ, u(ξ)‖µ(dξ) ≤ C‖xγ‖,
∫

|〈u(ξ), Aγ(ξ, u(ξ))〉|µ(dξ) ≤ C(‖z0‖+ ρ).

Therefore,

ρ

∫

‖Aγ(ξ, xγ)‖µ(dξ) + ‖xγ‖
2 ≤ ‖xγ‖(‖y‖ + ‖z0‖+ C) + C(‖z0‖+ ρ) + ‖z0‖ ‖y‖ .

This shows that the families {‖xγ‖} and {
∫

‖Aγ(ξ, xγ)‖µ(dξ)} are both bounded. Writing
Aγ(ξ, xγ) = γ−1(Π(ξ, xγ) − Jγ(ξ, xγ)) + γ−1(xγ − Π(ξ, xγ)) and using Assumption 4, we
obtain that the set {γ−1

∫

‖xγ −Π(ξ, xγ)‖µ(dξ)} is bounded. By Assumption 3, {d(xγ)/γ} is
bounded. Given xγ , let us choose x̃γ ∈ D such that ‖xγ − x̃γ‖ ≤ 2d(xγ). By the boundedness
of {‖xγ‖}, there exists a compact set K ⊂ R

N such that x̃γ ∈ K. Associating to K a positive
number ε as in Assumption 2, we obtain

∫

‖Aγ(ξ, xγ)‖
1+ε µ(dξ) ≤ 2ε

∫

(

‖Aγ(ξ, x̃γ)‖
1+ε + ‖Aγ(ξ, xγ)−Aγ(ξ, x̃γ)‖

1+ε
)

µ(dξ)

≤ 2ε
∫

‖A0(ξ, x̃γ)‖
1+ε µ(dξ) + 21+2ε

∣

∣

∣

d(xγ)

γ

∣

∣

∣

1+ε

which is bounded by a constant independent of γ thanks to Assumption 2. Thus, the family
of Ξ → R

N functions {Aγ(ξ, xγ)} is bounded in the Banach space L1+ε(Ξ,T , µ;RN ).
Let us take a sequence (γn, xγn) converging to (0, x⋆). Let us extract from the sequence of
indices (n) a subsequence (still denoted as (n)) such that (Aγn(ξ, xγn))n converges weakly in
L1+ε towards a function f(ξ). By Mazur’s theorem, there exists a function J : N → N and

a sequence of sets of weights ({αk,n, k = n . . . , J(n) : αk,n ≥ 0,
∑J(n)

k=n αk,n = 1})n such that

the sequence of functions (gn(ξ) =
∑J(n)

k=n αk,nAγk(ξ, xγk)) converges strongly to f in L1+ε.
Taking a further subsequence, we obtain the µ-almost everywhere convergence of (gn) to f .
Observe that x⋆ ∈ D since d(xγn) → 0. Choose a sequence (zn) in D that converges to
x⋆, and for each n, let Tn = {ξ ∈ Ξ : zn ∈ D(ξ)}. Then on the probability one set
T = ∩nTn, it holds that x⋆ ∈ D(ξ). On the intersection of T and the set where gn → f , set
ηn(ξ) = Jγn(ξ, xγn)− x⋆, and write

‖ηn(ξ)‖ ≤ ‖Jγn(ξ, xγn)− Jγn(ξ, x⋆)‖+ ‖Jγn(ξ, x⋆)− x⋆‖.

Since Jγn(ξ, ·) is non-expansive and since x⋆ ∈ D(ξ), it holds that ηn(ξ) →n 0. Considering
Assumption 2 we also have

‖ηn(ξ)‖ ≤ ‖x⋆‖+ ‖Jγn(ξ, xγn)− Jγn(ξ, y0)‖+ ‖Jγn(ξ, y0)− y0‖+ ‖y0‖

≤ ‖x⋆‖+ sup
γ

‖xγ‖+ 2‖y0‖+ ‖A0(ξ, y0)‖
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as soon as γn ≤ 1. By Assumption 2 and the dominated convergence theorem, we obtain that
ηn → 0 in L1+1/ε. With this at hand,

∫

|〈ηn(ξ), Aγn(ξ, xγn)〉|µ(dξ)

≤

(∫

‖ηn(ξ)‖
1+1/εµ(dξ)

)ε/(1+ε)(∫

‖Aγn(ξ, xγn)‖
1+εµ(dξ)

)1/(1+ε)

and we obtain that the left hand side converges to zero. Consequently, the random variable

en =

J(n)
∑

k=n

αk,n〈Jγk(ξ, xγk )− x⋆, Aγk (ξ, xγk)〉

converges to zero in probability, hence in the µ-almost sure sense along a subsequence. Fix ξ
in the new probability one set so defined, choose (u, v) ∈ A(ξ) arbitrarily, and write

Xn =

J(n)
∑

k=n

〈u− Jγk(ξ, xγk ), αk,nv − αk,nAγk(ξ, xγk)〉.

It holds by the monotonicity of A(ξ) that Xn ≥ 0. Writing

Xn = 〈u− x⋆, v − gn(ξ)〉 + en −

J(n)
∑

k=n

αk,n〈ηk, v〉

and taking n→ ∞, we obtain that 〈u−x⋆, v−f(ξ)〉 ≥ 0. By the maximality of A(ξ), it holds
that (x⋆, f(ξ)) ∈ A(ξ).
To conclude, we have

y =

J(n)
∑

k=n

αk,nxγk +

∫

gn(ξ)µ(dξ),

∑J(n)
k=n αk,nxγk →n x⋆ ∈ D, and gn

L1(µ)
−−−→ f ∈ S1

A(·,x⋆)
. Making n→ ∞, we obtain

y − x⋆ =

∫

f(ξ)µ(dξ) ∈ A(x⋆)

which is the desired result.

4.2 Proof of Theorem 2.1

Noting that domB = R
N and using Assumption 6 of Theorem 2.1, one can check that the

assumptions of Proposition 2.1 are satisfied for B. It results that B is maximal. Because
B has moreover a full domain and A is maximal, A + B is maximal by [10, Corollary 24.4].
Thus, the first assertion of Theorem 2.1 is shown, and moreover, the differential inclusion (4)
admits a unique solution, and the associated semiflow Φ is well defined.

Defining Yγ(ξ, x) = Aγ(ξ, x− γb(ξ, x)), the iterates xn be rewritten as

xn+1 = xn − γn+1b(un+1, xn)− γn+1Yγn+1(un+1, xn)

= xn − γn+1hγn+1(xn) + γn+1ηn+1,

16



where we define

hγ(x) =

∫

(Yγ(ξ, x) + b(ξ, x))µ(dξ)

and

ηn+1 = −Yγn+1(un+1, xn) + En(Yγn+1(un+1, xn))− b(un+1, xn) + En(b(un+1, xn))

where En denotes the expectation conditionally to the sub σ-field σ(u1, . . . , un) of F (we also
write E0 = E). Consider the martingale

Mn =

n
∑

k=1

γkηk

and let M(t) be the affine interpolated process defined for any n ∈ N and any t ∈ [τn, τn+1)
as

M(t) =Mn + ηn+1(t− τn) =Mn +
Mn+1 −Mn

γn+1
(t− τn).

For any t ≥ 0, let
r(t) = max{k ≥ 0 : τk ≤ t}.

Then for any t ≥ 0, we obtain

x(τn + t)− x(τn) = −

∫ t

0
hγr(τn+s)+1

(xr(τn+s)) ds+M(τn + t)−M(τn)

= H(τn + t)−H(τn) +M(τn + t)−M(τn) (9)

where H(t) =
∫ t
0 hγr(s)+1

(xr(s)) ds. The idea of the proof is to establish that on a P-probability
one set, the sequence of continuous time processes (x(τn + ·))n∈N is equicontinuous and
bounded. The accumulation points for the uniform convergence on a compact interval [0, T ]
(who are guaranteed to exist by the Arzelà-Ascoli theorem) will be shown moreover to have
the form

z(t)− z(0) = − lim
n→∞

∫ t

0
ds

∫

Ξ
µ(dξ) (Yγr(τn+s)+1

(ξ, xr(τn+s)) + b(ξ, xr(τn+s))) (10)

where the limit is taken over a subsequence. We then show that the sequence of Ξ× [0, T ] →
R
2N functions ((ξ, s) 7→ Yγr(τn+s)+1

(ξ, xr(τn+s)), b(ξ, xr(τn+s)))n is bounded in the Banach space

L1+ε(Ξ× [0, T ], µ⊗λ) where λ is the Lebesgue measure on [0, T ]. Analyzing the accumulation
points and following an approach similar to the one used in the proof of Proposition 2.1, we
prove that the limit in the right hand side of (10) coincides with

z(t)− z(0) = − lim
n→∞

∫ t

0
ds

(∫

Ξ
f (a)(ξ, s)µ(dξ) +

∫

Ξ
f (b)(ξ, s)µ(dξ)

)

where for almost every s ∈ [0, T ], f (a)(·, s) and f (b)(·, s) are integrable selections of A(·, s) and
B(·, s) respectively. This shows that z satisfies the differential inclusion (4). Hence, almost
surely, the accumulation points of the sequence of processes (x(τn+ ·))n∈N are solutions to (4).
Recalling that the latter defines a semiflow Φ : D × R+ → D, it follows that the process x(t)
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is a.s. an APT of (4).

Throughout the proof, C denotes a positive constant that can change from line to line
but that remains independent of n. We denote by c, c1, etc. random variables on Ω → R+

that do not depend on n. For a fixed event ω ∈ Ω, these will act as constants.

Proposition 4.1. Let Assumptions 2 and 6 of Theorem 2.1 hold true. Then

1. The sequence (xn) is bounded almost surely and in L2(Ω,F ,P;RN ),

2. E[
∑

n γ
2
n

∫

‖Yγn(ξ, xn)‖
2µ(dξ)] <∞,

3. The sequence (‖xn − x⋆‖)n converges almost surely.

Proof. By expanding ‖xn+1 − x⋆‖
2 = ‖xn − x⋆‖

2 + 2〈xn+1 − xn, xn − x⋆〉+ ‖xn+1 − xn‖
2, we

obtain

‖xn+1 − x⋆‖
2 = ‖xn − x⋆‖

2 − 2γn+1〈Yγn+1(un+1, xn), xn − x⋆〉 − 2γn+1〈b(un+1, xn), xn − x⋆〉

+ γ2n+1‖b(un+1, xn) + Yγn+1(un+1, xn)‖
2

Thanks to Assumption 2, we can choose ϕ ∈ S2
A( . ,x⋆)

and ψ ∈ S1
B( . ,x⋆)

such that 0 =
∫

(ϕ + ψ)dµ. Writing u = un+1, γ = γn+1, Yγ = Yγn+1(un+1, xn), Jγ = Jγn+1(un+1, xn −
γn+1b(un+1, xn)), and b = b(un+1, xn) for conciseness, and recalling that Yγ = (x−γb−Jγ)/γ,
we write

〈Yγ , xn − x⋆〉 = 〈Yγ − ϕ(u), Jγ − x⋆〉+ γ〈Yγ − ϕ(u), Yγ〉+ γ〈Yγ − ϕ(u), b〉 + 〈ϕ(u), xn − x⋆〉

≥ γ‖Yγ‖
2 − γ〈ϕ(u), Yγ 〉+ γ〈Yγ − ϕ(u), b〉 + 〈ϕ(u), xn − x⋆〉

since Yγ ∈ A(u, Jγ) and A(ξ) is monotone. Also, 〈b, xn − x⋆〉 ≥ 〈ψ(u), xn − x⋆〉 by the
monotonicity of B(ξ). By expanding γ2‖b+ Yγ‖

2, we obtain altogether

‖xn+1 − x⋆‖
2 ≤ ‖xn − x⋆‖

2 − γ2‖Yγ‖
2 + 2γ2〈ϕ(u), Yγ〉+ 2γ2〈ϕ(u), b〉 + γ2‖b‖2

− 2γ〈ϕ(u) + ψ(u), xn − x⋆〉

≤ ‖xn − x⋆‖
2 − γ2(1− β−1)‖Yγ‖

2 + γ2(1 + β−1)‖b‖2 + 2γ2β‖ϕ(u)‖2

− 2γ〈ϕ(u) + ψ(u), xn − x⋆〉 (11)

where we used the inequality |〈a, b〉| ≤ (β/2)‖a‖2 + ‖b‖2/(2β) where β > 0 is arbitrary. By
Assumption 6, En‖b‖

2 ≤ C(1+‖xn‖
2) ≤ 2C(1+‖x⋆‖

2+‖xn−x⋆‖
2) for some (other) constant

C. Moreover En〈ϕ(u) + ψ(u), xn − x⋆〉 = 0. Thus,

En‖xn+1 − x⋆‖
2 ≤ (1 + Cγ2n+1)‖xn − x⋆‖

2 − γ2n+1(1− β−1)

∫

‖Yγn+1(ξ, xn)‖
2µ(dξ) +Cγ2n+1.

Choose β > 1. Using the Robbins-Siegmund Lemma [31] along with (γn) ∈ ℓ2, the conclusion
follows.

The following lemma provides a moment control over the iterates xn.

Lemma 4.1. Let Assumptions 2 and 6 of Theorem 2.1 hold true. Then supn E‖xn‖
2p <∞.
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Proof. We shall establish the result by recurrence over p. Proposition 4.1 shows that it holds
for p = 1. Assume that it holds for p − 1. Using Assumption 2, choose ϕ ∈ S2p

A( . ,x⋆)
and

ψ ∈ S2p
B( . ,x⋆)

such that 0 =
∫

(ϕ+ψ)dµ. Inequality (11) shows that for some constant C > 0,

‖xn+1 − x⋆‖
2 ≤ ‖xn − x⋆‖

2 − 2γn+1〈ϕ(un+1) + ψ(un+1), xn − x⋆〉

+ Cγ2n+1(‖ϕ(un+1)‖
2 + ‖b(un+1, xn)‖

2) .

Raising to the power p and taking the expectation at both sides, we obtain

E‖xn+1 − x⋆‖
2p ≤

∑

k1+k2+k3=p

(

p

k1, k2, k3

)

Ck2(−2)k3γ2k2+k3
n+1 T (k1,k2,k3)

n (12)

where we set for every ~k = (k1, k2, k3),

T
~k
n = E

[

‖xn − x⋆‖
2k1(‖ϕ(un+1)‖

2 + ‖b(un+1, xn)‖
2)k2〈ϕ(un+1) + ψ(un+1), xn − x⋆〉

k3
]

.

We make the following observations.

• By choosing k2 = k3 = 0, we notice that E‖xn+1−x⋆‖
2p is no greater than E‖xn−x⋆‖

2p

plus some additional terms involving only smaller powers of ‖xn − x⋆‖,

• The term corresponding to (k1, k2, k3) = (p−1, 0, 1) is zero since un+1 and σ(u1, . . . , un)
are independent and En〈ϕ(un+1) + ψ(un+1), xn − x⋆〉 = 0. This implies that any term
in the sum except E‖xn − x⋆‖

2p is multiplied by γn+1 raised to a power greater than 2,

• Consider the case (k1, k2, k3) 6= (p − 1, 0, 1) and (k1, k2, k3) 6= (p, 0, 0). Using Jensen’s
inequality and the inequality xkyℓ ≤ xk+ℓ + yk+ℓ for nonnegative x, y, k and ℓ, we get

|T
~k
n | ≤ E

[

‖xn − x⋆‖
2k1+k3(‖ϕ(un+1)‖

2 + ‖b(un+1, xn)‖
2)k2‖ϕ(un+1) + ψ(un+1)‖

k3
]

≤ CE

[

‖xn − x⋆‖
2k1+k3(‖ϕ(un+1)‖

2k2 + ‖b(un+1, xn)‖
2k2)(‖ϕ(un+1)‖

k3 + ‖ψ(un+1)‖
k3)
]

≤ CE

[

‖xn − x⋆‖
2k1+k3‖b(un+1, xn)‖

2k2+k3
]

+ CE

[

‖xn − x⋆‖
2k1+k3

]

E

[

‖ϕ(un+1)‖
2k2+k3 + ‖ψ(un+1)‖

2k2+k3
]

.

By conditioning on σ(u1, . . . , un) and by using Assumption 6, we get

E

[

‖xn − x⋆‖
2k1+k3‖b(un+1, xn)‖

2k2+k3
]

≤ CE

[

‖xn − x⋆‖
2k1+k3(1 + ‖xn‖

2k2+k3)
]

≤ C(E‖xn − x⋆‖
2p + 1).

Noting that 2k1 + k3 ≤ 2(p − 1), we get that E‖xn − x⋆‖
2k1+k3 < C by the induction

hypothesis. Since 2k2 + k3 ≤ 2p and since ϕ and ψ are 2p-integrable selections, it

follows that |T
~k
n | ≤ C(1 + E‖xn − x⋆‖

2p). Note also the in the considered case, one has

2k2 + k3 ≥ 2 which implies that all terms T
~k
n are multiplied by γ2n+1.

In conclusion, we obtain that E‖xn+1−x⋆‖
2p ≤ E(1+Cγ2n+1)‖xn−x⋆‖

2p+Cγ2n+1 for some
constant C > 0. Starting from n = 0 and iterating, we obtain that supn E‖xn − x⋆‖

2p <∞.
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We now need to provide a control over the distances to D of the iterates xn. We start
with an easy technical result.

Lemma 4.2. For any ε > 0, there exist C(ε) > 0 and C ′(ε) > 0 such that for any vectors
x, y ∈ R

N ,

‖x+ y‖2 ≤ (1 + ε)‖x‖2 + C(ε)‖y‖2 and ‖x+ y‖4 ≤ (1 + ε)‖x‖4 + C ′(ε)‖y‖4.

Proof. Observe that |〈x, y〉| ≤ (β/2)‖x‖2 + ‖y‖2/(2β) is true for any β > 0. Taking β = ε,
we obtain the first inequality. We also have

‖x+ y‖4 ≤ ((1 + β)‖x‖2 + (1 + 1/β)‖y‖2)2

= (1 + β)2‖x‖4 + (1 + 1/β)2‖y‖4 + 2(1 + β)(1 + 1/β)‖x‖2‖y‖2

≤ (1 + β)3‖x‖4 + (1 + 1/β)3‖y‖4.

By choosing β small enough, we obtain the second inequality.

Proposition 4.2. Let Assumptions 2, 4, 5, and 6 of Theorem 2.1 hold true. Then d(xn)
tends a.s. to zero. Moreover, for every ω in a probability one set, there exists c(ω) > 0 and a
positive sequence (cm(ω))m∈N converging to zero such that for every integers n,m such that
n ≥ m,

n
∑

k=m

d(xk)
2

γk
≤ cm(ω) + c(ω)

n
∑

k=m

γk .

Proof. We start by writing xn+1 = Π(un+1, xn) + γn+1δn+1 where

δn+1 =
Jγn+1(un+1, xn − γn+1b(un+1, xn))−Π(un+1, xn)

γn+1
.

Upon noting that Jγ(ξ, . ) is non expansive for every ξ,

‖δn+1‖ ≤ ‖b(un+1, xn)‖+
‖Jγn+1(un+1, xn)−Π(un+1, xn)‖

γn+1
.

Using Assumptions 5 and 6, we have

En‖δn+1‖
4 = 4

∫

‖b(ξ, xn)‖
4µ(dξ) + 4γ−4

n+1

∫

‖Jγn+1(ξ, xn)−Π(ξ, xn)‖
4µ(dξ)

≤ C(1 + ‖xn‖
2p).

Therefore, by Proposition 4.1-1., there exists a nonnegative c1(ω) which is a.s. finite and
satisfies En‖δn+1‖

4 ≤ c1(ω) almost surely. By Lemma 4.1, it also holds that supn E‖δn‖
4 <∞.

Consider an arbitrary point u ∈ D. For any ε > 0, we have by Lemma 4.2

‖xn+1 − u‖2 ≤ (1 + ε)‖Π(un+1, xn)− u‖2 + γ2n+1C‖δn+1‖
2.

Since Π(un+1, ·) is firmly non expansive as being the projector onto a closed convex set, we
have

‖Π(un+1, xn)− u‖2 ≤ ‖xn − u‖2 − ‖Π(un+1, xn)− xn‖
2.
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Taking u = Π(xn), we obtain

d(xn+1)
2 ≤ ‖xn+1 −Π(xn)‖

2 ≤ (1 + ε)(d(xn)
2 − d(un+1, xn)

2) + Cγ2n+1‖δn+1‖
2

Taking the conditional expectation En at both sides of this inequality, using Assumption 4 and
choosing ε small enough, we obtain the inequality End

2(xn+1) ≤ ρd2(xn) + γ2n+1CEn‖δn+1‖
2

where ρ ∈ [0, 1). It implies that d2(xn) tends to zero by the Robbins-Siegmund Theorem [31].
Setting ∆n = d(xn)

2/γn and using the fact that γn/γn+1 → 1, we obtain that

En∆n+1 ≤ ρ∆n + γn+1CEn‖δn+1‖
2

for n larger than some n0.
By Lemma 4.2 and the firm nonexpansiveness of Π(un+1, ·), we also have

‖xn+1 − u‖4 ≤ (1 + ε)‖Π(un+1, xn)− u‖4 + γ4n+1C‖δn+1‖
4

≤ (1 + ε)(‖xn − u‖2 − ‖Π(un+1, xn)− xn‖
2)2 + γ4n+1C‖δn+1‖

4. (13)

We also set u = Π(xn) and apply the operator En at both sides of this inequality. By
Assumption 4, we have

∫

(d(x)2 − d(ξ, x)2)2µ(dξ) = d(x)4 +

∫

d(ξ, x)4µ(dξ)− 2d(x)2
∫

d(ξ, x)2µ(dξ)

≤ d(x)4 − d(x)2
∫

d(ξ, x)2µ(dξ) ≤ (1− C)d(x)4

since d(ξ, x) ≤ d(x). Integrating (13), we obtain End
4(xn+1) ≤ ρd4(xn) + γ4n+1CEn‖δn+1‖

4

where ρ ∈ [0, 1), hence En∆
2
n+1 ≤ ρ∆2

n + γ2nCEn‖δn+1‖
4 for n larger than some n0. Taking

the expectation at each side, iterating, and using the boundedness of (E‖δn‖
4), we obtain

that E∆2
n ≤ C(ρn +

∑n
k=1 γ

2
kρ

n−k). Therefore,

∞
∑

n=0

E∆2
n ≤ C

(

1 +

∞
∑

n=0

γ2n

)

<∞.

Consequently, ∆n → 0 almost surely. Moreover, the martingale

Yn =

n
∑

k=1

(∆k − Ek−1∆k)

converges almost surely and in L2(Ω,F ,P;R). Given any two integers 0 < m < n, let

Dn
m =

n
∑

k=m+1

∆k.

We can write

Dn
m =

n
∑

k=m+1

Ek−1∆k + Yn − Ym

≤ ρ
n−1
∑

k=m

(∆k + Cγk+1Ek‖δk+1‖
2) + Yn − Ym

≤ ρ∆m + ρDn
m + ρC

√

c1(ω)

n
∑

k=m+1

γk + Yn − Ym.
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To conclude, we have

Dn
m ≤

ρ

1− ρ
∆m +

Yn − Ym
1− ρ

+
ρC
√

c1(ω)

1− ρ

n
∑

k=m+1

γk .

Since ∆m → 0 and since (Yn(ω))n∈N is almost surely a Cauchy sequence, we obtain the desired
result.

Lemma 4.3. Let Assumptions 3 and 6 hold true. For any compact set K, there exists a
constant C > 0 and ε ∈ (0, 1] such that for all x ∈ K and all γ > 0,

‖hγ(x)‖ ≤ C + 2
d(x)

γ

and moreover

∫

(‖Yγ(ξ, x)‖
2 + ‖b(ξ, x)‖2)

1+ε
2 µ(dξ) ≤ C

[

1 +

(

d(x)

γ

)1+ε
]

.

Proof. Set x ∈ K and introduce some x̃ ∈ D such that ‖x− x̃‖ ≤ 2d(x). Using that Aγ(ξ, . )
is 1

γ -Lipschitz continuous,

‖Yγ(ξ, x)‖ ≤ ‖Aγ(ξ, x̃)‖+
1

γ
‖x− γb(ξ, x) − x̃‖

≤ ‖A0(ξ, x̃)‖+ ‖b(ξ, x)‖ + 2
d(x)

γ
.

Therefore,

‖hγ(x)‖ ≤

∫

‖A0(ξ, x̃)‖µ(dξ) + 2

∫

‖b(ξ, x)‖µ(dξ) + 2
d(x)

γ
.

The first two terms are independent of γ and, by Assumptions 3 and 6, are bounded functions
of x on the compact K. This proves the first statement of the Lemma. Let ε = ε(K) be the
exponent defined in Assumption 3. There exists a constant C such that

(‖Yγ(ξ, x)‖
2 + ‖b(ξ, x)‖2)

1+ε
2 ≤ C(‖Yγ(ξ, x)‖

1+ε + ‖b(ξ, x)‖1+ε)

≤ C

(

(‖A0(ξ, x̃)‖+ ‖b(ξ, x)‖ + 2
d(x)

γ
)1+ε + ‖b(ξ, x)‖1+ε

)

≤ C ′

(

2ε‖A0(ξ, x̃)‖
1+ε + 21+2ε‖b(ξ, x)‖1+ε + 21+3ε

(

d(x)

γ

)1+ε
)

.

By Assumption 6 and since
∫

‖b(ξ, x)‖1+εµ(dξ) ≤ 1 +
∫

‖b(ξ, x)‖2µ(dξ), there exists some
(other) constant C such that

∫

(‖Yγ(ξ, x)‖
2+‖b(ξ, x)‖2)

1+ε
2 µ(dξ) ≤ C

(

∫

‖A0(ξ, x̃)‖
1+εµ(dξ) + 1 + ‖x‖2 +

(

d(x)

γ

)1+ε
)

.

The proof is concluded using Assumption 3.
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End of the proof of Theorem 2.1

Recall Equation (9). Given an arbitrary real number T > 0, we shall study the asymptotic
behavior of the family of functions {x(τn + ·)}n∈N on the compact interval [0, T ].

Given δ > 0, we have ‖H(t+ δ)−H(t)‖ ≤
∫ t+δ
t ‖hγr(s)+1

(xr(s))‖ds. By Proposition 4.1-1,
the sequence (xn) is bounded a.s. Thus, by Lemma 4.3, there exists a constant c1 = c1(ω)
such that for almost every ω,

‖H(t+ δ) −H(t)‖ ≤ c1δ + 2

∫ t+δ

t

d(xr(s))

γr(s)+1
ds

≤ c1δ +

∫ t+δ

t

(

1 +
d(xr(s))

2

γ2r(s)+1

)

ds

= (c1 + 1)δ +

∫ t+δ

t

d(xr(s))
2

γ2r(s)+1

ds

≤ (c1 + c2 + 1)δ + e(t)

for some e(t) →t→∞ 0, where the last inequality is due to Proposition 4.2. We also observe
from Proposition 4.1 and Assumption 6 that Mn is a L2(Ω,F ,P;RN ) martingale and that

E‖Mn‖
2 ≤ E

[

2

∞
∑

k=1

γ2k

∫

‖Yγk(ξ, xk)‖
2µ(dξ) + 2

∞
∑

k=1

γ2k

∫

‖b(ξ, xk)‖
2µ(dξ)

]

and the right hand side is finite by Assumption 6 and Proposition 4.1. Hence, Mn con-
verges almost surely. It results that on a probability one set, the family of continuous time
processes (M(τn + ·) −M(τn))n∈N converges to zero uniformly on R+. The consequence of
these observations is that on a probability one set, the family of processes {zn( . )}n∈N where
zn(t) = x(τn + t) is equicontinuous. Specifically, for each ε > 0, there exists δ > 0 such that

lim sup
n

sup
0≤t,s≤T,|t−s|≤δ

‖zn(t)− zn(s)‖ ≤ ε.

This family is moreover bounded by Proposition 4.1-1. By the Arzelà-Ascoli theorem, it
admits an accumulation point for the uniform convergence on [0, T ], for an arbitrary T > 0.
From any sequence of integers we can extract a subsequence (which we still denote as (zn)
with slight abuse) and a continuous function z(·) on [0, T ] such that (zn) converges to z
uniformly on [0, T ]. Hence, for t ∈ [0, T ],

z(t)− z(0) = − lim
n→∞

∫ t

0
hγr(τn+s)+1

(xr(τn+s)) ds

= − lim
n→∞

∫ t

0
ds

∫

Ξ
µ(dξ) (g(a)n (ξ, s) + g(b)n (ξ, s))

where we set

g(a)n (ξ, t) = Yγr(τn+s)+1
(ξ, xr(τn+s))

g(b)n (ξ, t) = b(ξ, xr(τn+s)) .
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Define the mapping gn = (g
(a)
n , g

(b)
n ) on Ξ × [0, T ] → R

2N . Recalling that the sequence (x̃n)
belongs to a compact set, say K, let ε ∈ (0, 1] be the exponent defined in Lemma 4.3. By the
same Lemma,

∫ T

0
ds

∫

Ξ
µ(dξ) ‖gn(ξ, s)‖

1+ε ≤ c

[

T +

∫ T

0

(

d(xr(τn+s))

γr(τn+s)+1

)1+ε

ds

]

≤ c



T + T
1−ε
2

(

∫ T

0

d(xr(τn+s))
2

γ2r(τn+s)+1

ds

)
1+ε
2





≤ c1

for some constants c and c1. Therefore, the sequence of functions (gn) is bounded in L1+ε(Ξ×
[0, T ],T ⊗ B([0, T ]), µ ⊗ λ;R2N ) where λ is the Lebesgue measure on [0, T ]. The statement

extends to the sequence of functions Gn(ξ, t) = (gn(ξ, t), ‖g
(a)
n (ξ, t)‖, ‖g

(b)
n (ξ, t)‖) which is

uniformly bounded in L1+ε(Ξ × [0, T ],T ⊗ B([0, T ]), µ ⊗ λ;R2N+2). We can extract from
this sequence a subsequence that converges weakly in this Banach space to a function F :
Ξ × [0, T ] → R

2N+2. We decompose F as F (ξ, t) = (f(ξ, t), κ(ξ, t), υ(ξ, t)) where κ, υ are
real-valued and f(ξ, t) = (f (a)(ξ, t), f (b)(ξ, t)) where f (a), f (b) : Ξ × [0, T ] → R

N . Using the

weak convergence (g
(a)
n , g

(b)
n )⇀ (f (a), f (b)), we obtain

z(t)− z(0) = −

∫ t

0
ds

(∫

Ξ
f (a)(ξ, s)µ(dξ) +

∫

Ξ
f (b)(ξ, s)µ(dξ)

)

.

It remains to prove that for almost every t ∈ [0, T ], f (a)( . , t) ∈ A( . , z(t)) and f (b)( . , t) ∈
B( . , z(t)) µ-almost everywhere, along with z(0) ∈ D. This shows indeed that z(t) = Φ(z(0), t)
for every t ∈ [0, T ], and the fact that x(t) is a.s. an APT of the differential inclusion (4) follows.

By Mazur’s theorem, there exists a function J : N → N and a sequence of sets of weights

({αk,n, k = n . . . , J(n) : αk,n ≥ 0,
∑J(n)

k=n αk,n = 1})n such that the sequence of functions
defined by

Ḡn(ξ, s) =

J(n)
∑

k=n

αk,nGk(ξ, s)

converges strongly to F . We define in the same way ḡn(ξ, s) =
∑

k αk,n gk(ξ, s) and similarly

for ḡ
(a)
n , ḡ

(b)
n . Extracting a further subsequence, we obtain the µ⊗λ-almost everywhere conver-

gence of Ḡn to F . By Fubini’s theorem, for almost every t ∈ [0, T ], there exists a µ-negligible
set such that for every ξ outside this set, Ḡn(ξ, t) → F (ξ, t). From now on to the end of this
proof, we fix such a t ∈ [0, T ].

As d(xn) → 0, it is clear that z(t) ∈ D (this holds in particular when t = 0, hence
z(0) ∈ D). Following the same arguments as in the proof of Proposition 2.1, it holds that
z(t) ∈ D(ξ) for all ξ outside a µ-negligible set.

Define ηn(ξ) = Jγm+1(ξ, xm − γm+1b(ξ, xm)) − z(t) + γm+1b(ξ, xm) with m = r(τn + t).
Using the same approach as in the proof of Proposition 2.1, it can be shown that, as n→ ∞,
ηn( . ) tends to zero almost surely along a subsequence. We now consider an arbitrary ξ outside
a µ-negligible set, such that ηn(ξ) → 0 and z(t) ∈ D(ξ).

Let (u, v) be an arbitrary element of A(ξ). By the monotonicity of A(ξ),

〈v − Yγ(ξ, x), u − Jγ(ξ, x− γb(ξ, x))〉 ≥ 0 , (∀x ∈ R
N , γ > 0)
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we obtain

〈v − ḡ(a)n (ξ, t),u− z(t)〉 =

J(n)
∑

k=n

αk,n 〈v − g
(a)
k (ξ, t), u − z(t)〉

≥

J(n)
∑

k=n

αk,n 〈v − g
(a)
k (ξ, t), ηk(ξ, t)− γr(τk+t)+1b(ξ, xr(τk+t))〉

≥ −



‖v‖ +

J(n)
∑

k=n

αk,n ‖g
(a)
k (ξ, t)‖



 sup
k≥n

(

‖ηk(ξ, t)‖ + γr(τk+t)+1‖b(ξ, xr(τk+t))‖
)

.

The term enclosed in the first parenthesis of the above right hand side converges to ‖v‖+κ(ξ, t)

while the supremum converges to zero using Assumption 6. As ḡ
(a)
n (ξ, t) → f (a)(ξ, t), it follows

that
〈v − f (a)(ξ, t), u − z(t)〉 ≥ 0

and by maximality of A(ξ), it holds that f (a)(ξ, t) ∈ A(ξ, z(t)). The proof that f (b)(ξ, t) ∈
B(ξ, z(t)) follows the same lines.

4.3 Proof of Corollary 2.1

The proof is based on the study of the family of empirical measures of a process close to x(t).
Using [14], we show that any accumulation point of this family is an invariant measure for
the flow Φ. The corollary is then obtained by showing that the mean of such an invariant
measure belongs to Z.

Let xn = Π(xn) be the projection of xn on D, and write

x̄n =

∑n
k=1 γkxk
∑n

k=1 γk
.

Let x(ω, t) be the Ω× R+ → R
N process obtained from the piecewise constant interpolation

of the sequence (xn), namely x(ω, t) = xn for t ∈ [τn, τn+1). On (Ω,F ,P), let (Ft) be the
filtration generated by the process obtained from the similar piecewise constant interpolation
of (un). With this filtration, it is clear that x is progressively measurable. It is moreover
obvious that x(ω, ·) is an APT for (4) for almost all ω. Let {νt(ω, ·)}t≥0 be the family of
empirical measures of x(ω, ·). Observe from Theorem 2.1 that for almost all ω, there is a
compact set K(ω) such that the support supp(νt(ω, ·)) is included in K(ω) for all t ≥ 0, which
shows that the family {νt(ω, ·)}t≥0 is tight. Hence this family has accumulation points. Let
ν be the weak limit of (νtn) along some sequence (tn) of times. By [14, Th. 1], ν is invariant
for the flow Φ. Clearly, supp(ν) is a compact subset of D. Moreover, for any x ∈ supp(ν) and
any t ≥ 0, Φ(x, t) ∈ supp(ν). Indeed, suppose for the sake of contradiction that there exists
t0 > 0 such that Φ(x, t0) 6∈ supp(ν). Then Φ(B(x, ε) ∩ D, t0) ⊂ supp(ν)c for some ε > 0 by
the continuity of Φ and the closedness of supp(ν), where B(x, ε) is the closed ball with center
x and radius ε. Since ν(Φ(B(x, ε)∩D, 0)) > 0, we obtain a contradiction. We also know from
[8] (see also [30, Th. 5.3]) that there exists ϕ : D → Z such that

∀x ∈ D,
1

t

∫ t

0
Φ(x, s) ds −−−→

t→∞
ϕ(x).
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By the dominated convergence and Fubini’s theorems, we now have

∫

ϕ(x) ν(dx) =

∫

ν(dx) lim
t→∞

1

t

∫ t

0
dsΦ(x, s) = lim

t→∞

1

t

∫ t

0
ds

∫

ν(dx)Φ(x, s) =

∫

x ν(dx)

which shows that
∫

x ν(dx) ∈ Z by the convexity of this set. Since
∫

x dνtn →
∫

x dν as
n → ∞, we conclude that all the accumulation points of (x̄n) belong to Z. On the other
hand, sinceR2p(x⋆) 6= ∅ for each x⋆ ∈ Z, a straightforward inspection of the proof of Prop. 4.1-
3. shows that ‖xn − x⋆‖ converges almost surely for each x⋆ ∈ Z. From these two facts, we
obtain by [28] or [30, Lm 4.2] that (x̄n) converges a.s. to a point of Z. Since xn − xn → 0
a.s., the convergence of (x̄n) to the same point follows.

4.4 Proof of Corollary 2.2

We start with a preliminary lemma.

Lemma 4.4. Let A ∈ M be demipositive. Assume that the set zer(A) of zeros of A is non-
empty. Let Ψ : dom(A)×R+ → dom(A) be the semiflow associated to the differential inclusion
ż(t) ∈ −A(z(t)). Then, any ICT set of Ψ is included in zer(A).

Proof. Let K be an ICT set and let U be an arbitrary bounded open set of RN such that
K ∩ U 6= ∅. Define Gt =

⋃

s≥tΨ(U, s) for all t ≥ 0. For any x∗ ∈ zer(A) and any x ∈ U ,
‖Ψ(x, t)‖ ≤ ‖Ψ(x, t) − Ψ(x∗, t)‖ + ‖x∗‖ ≤ ‖x − x∗‖ + ‖x∗‖. Therefore, G0 is a bounded set.
By [13, Proposition 3.10], the set G =

⋂

t≥0Gt is an attractor for Ψ with a fundamental
neighborhood U . As K ∩ U 6= ∅, it follows that K ⊂ G by [11, Corollary 5.4]. We finally
check that G ⊂ zer(A). Let y ∈ G that is, y = limk→∞Ψ(xk, tk) for some sequence (xk, tk)
such that xk ∈ U and tk → ∞. By compactness of U , the sequence xk can be chosen such
that xk → x̄ for some x̄ ∈ U . Therefore, y = limk→∞Ψ(x̄, tk) which by demipositivity of A
implies y ∈ zer(A) [18, 30].

By theorem 2.1 and the discussion of Section 2.3, L(x) is an ICT set. Using Lemma 4.4
and the standing hypotheses, L(x) ⊂ Z. On the other hand, since R2(x⋆) 6= ∅ for all x∗ ∈ Z,
a straightforward inspection of the proof of Proposition 4.1-3. shows that ‖xn−x∗‖ converges
almost surely for any of those x∗. By Opial’s lemma [30, Lm 4.1], we obtain the almost sure
convergence of (xn) to a point of Z.

4.5 Proof of Corollary 3.1

Define on {0, 1, . . . ,m} the probability distribution ζ =
∑m

i=0 αiδi. On the space X ×
{0, . . . ,m} equipped with the probability µ = ν ⊗ ζ, let ξ = (η, i), and define the ran-
dom operators A and B by (2). The Aumann integral B(x) =

∫

∂f(η, x)dπ(η) coincides with
∂F (x) by [33] (see also the discussion in Section 3.1). Similarly,

A(x) = ∂(G(x) + ιC)(x) .

The operator A is thus maximal. It holds that A + B = ∂(F + G + ιC) which is maximal,
demipositive and whose zeroes coincide with the minimizers of F +G over C. The end of the
proof consists in checking the assumptions of Corollary 2.2. It follows the same line as [16]
and is left to the reader.
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