CACHED MULTI-BOUNCE SOLUTION AND RECONSTRUCTION FOR VOXEL-BASED GLOBAL ILLUMINATION
Łukasz Piwowar, Rémy Malgouyres

To cite this version:

HAL Id: hal-01183724
https://hal.archives-ouvertes.fr/hal-01183724
Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CACHED MULTI-BOUNCE SOLUTION AND RECONSTRUCTION FOR VOXEL-BASED GLOBAL ILLUMINATION

Łukasz Piwowar
Institute of Computer Science, University of Wrocław
Łukasz.Piwowar@ii.uni.wroc.pl

Remy Malgouyres
Univ. Clermont 1, LAIC, EA2146, IUT Campus des Cézeaux, BP 86 63172 Aubière cedex, France
remy.malgouyres@laic.u-clermont1.fr

Keywords: Realistic Rendering, Global Illumination, Voxel, reconstruction, multi-bounce

Abstract: We address the main shortcomings of the voxel-based multi-bounce global illumination method of Chatelier and Malgouyres (2006), by introducing an iterated cached method which allows increasing sampling coarseness at each bounce for improved efficiency, and by introducing a ray-tracing based reconstruction process for a better final image quality. The result is a competitive accurate multi-bounce global illumination method with octree voxel-based irradiance caching.

1 INTRODUCTION

Comprehensive multi-bounce methods for global illumination have been extensively studied, and finding the right balance of speed vs accuracy is always painful. The most widely used approach consists in one step of coarse computation of a global illumination solution followed by a step of reconstruction by gathering the light by ray-tracing to provide good quality images.

In (Malgouyres, 2002) and (Chatelier and Malgouyres, 2006), a new to global illumination and a discretization of the diffuse illumination, based on voxel approximation of surfaces by voxels is proposed. The interest of the method is that visibility is determined in linear time with respect to the number of rays. Moreover, it directly provides a voxel-based irradiance lookup octree. However, the method presented in (Chatelier and Malgouyres, 2006) has two weaknesses: first, solid angle sampling is the same for each bounce, and in particular, direction sampling from light sources is insufficient while the cost of direction sampling after one or two bounces is very expensive. Second, no reconstruction process is presented and direct display of the voxel solution requires many voxels, which also increases the runtime.

In this paper, we address these two shortcomings by proposing an iterated cached coarse global illumination solution, in which direction sampling decreases after each bounce, followed by a reconstruction phase based on light cuts (Walter et al., 2005). It results in a competitive accurate multi-bounce global illumination method with a voxel irradiance cache octree.

In section 2, we have presented previous work and outline the method of (Chatelier and Malgouyres, 2006). In Section 3, we present the iterated cached global illumination method, and in Section 4, we explain our reconstruction process. In Section 5, we present experimental results. Finally, in Section 6 we present some perspectives for future works.

2 PREVIOUS WORK

The most widely used global illumination techniques consist in a first phase of computation of a coarse solution, for example by photon mapping (Jensen, 1996), (Jensen, 1997), (Jensen, 2001). This method traces random rays from light sources, and at each intersection, traces a new random ray with a probability that depends on the BRDF according to Russian roulette. Then, a second phase consists in a viewpoint-dependant ray-tracing for computing good
quality images. Instant radiosity ((Keller, 1997)) was
the first of such methods to be introduced. Other
methods for final gather steps have been produced
(Granier and Drettakis, 2004), (Arikan et al., 2005).

In all of these methods, determining visibility by
ray-object intersection is a very important time cost
factor. Attempts at getting rid of visibility problems
altogether have been made (Dachsbacher et al., 2007),
however at a cost of increased memory and reintro-
ducing hierarchical radiosity difficult problems of
refinement and meshing (Sillion and Puech, 1994).
For accelerating the gather step, photon splatting (Lav-
ignoret and Paulin, 2003), (Dachsbacher and Stam-
minger, 2006) can by used, but it neglects some occlu-
sions for indirect light and uses rough approximations
for speedup.

In (Chatelier and Malgouyres, 2006), a new global
illumination approach is considered, with a cost
which is linear with respect to the number of visibility
rays. This is a promising result, but there are short-
comings. The goal of this paper is to provide solution
to these, to obtain a competitive global illumination
technique. Up to the end of this section, we outline
the method of (Chatelier and Malgouyres, 2006).

In (Malgouyres, 2002), the (Lambertian) global il-
llumination equation

\[B(x) = E(x) + p(x) \int S B(y) \frac{\cos \theta}{\pi} d\sigma \]

is discretized as

\[B(x) = E(x) + p(x) \sum_{\sigma \in \sigma} B(I(x, \sigma)) \frac{\cos \theta(x, I(x, \sigma))}{\pi} \Delta \Omega(\sigma) \]

where \(x \) is now a voxel, \(D \) is a set of discrete di-
rections in space, \(I(x, \sigma) \) is the first point \(y \) viewed
from \(x \) in the direction of \(\sigma \) (as in a ray-object
intersection), and \(\Delta \Omega(\sigma) \) is the fraction of a solid
angle associated to the direction \(\sigma \). In (Chatelier
and Malgouyres, 2006), a solution of the discrete
equation is obtained with a linear complexity with
respect to the number of rays. We remind the reader
the main ideas of the method. More details can be
found in (Chatelier and Malgouyres, 2006).

Given a direction vector \((a, b, c) \in \mathbb{Z}^3 \) with \(a \geq
b \geq c \), a notion of a 3D line has been proposed
(Debled-Rennesson, 1995), as the set of points \((x, y, z) \in \mathbb{Z}^3 \) such that

\[\mu \leq cx - az < \mu + \omega \text{ and } \mu' \leq bx - ay < \mu' + \omega' \]

where \(\mu, \mu', \omega, \omega' \) are integers. Other cases can be
deduced by symmetry. Let us denote by \(\mathbb{Z}_b^3 \) the set
\(\{0, 1, \ldots, b\} \times \{0, 1, \ldots, b\} \times \{0, 1, \ldots, b\} \}. \) Given an integer vector \(\vec{v} \in \mathbb{Z}_b^3 \), the
set \(\mathbb{Z}_b^3 \) can be partitioned into 3D discrete lines, whose
direction vector is \(\vec{v} \) (see Figure 1).

Moreover, given a voxel \(x \in \mathbb{Z}^3 \), finding out which
3D discrete line in the partition the point \(x \) belongs to
can be done in constant time.

Now, to transfer energy from one voxel \(x \) to the
first voxel \(y \) visible from \(x \) in a direction \(\sigma \), for some
finite set of sample directions \(\sigma \), if we consider some
fixed direction \(\sigma \) and a partition of the voxel space
\(\mathbb{Z}^3 \) into discrete lines parallel to \(\sigma \), then the voxels of
the discretized surface (say mesh or implicit surface)
that lie on the same discrete line can be arranged in
an ordered list. In this ordered list, the first visible
voxel is the next voxel in the list. So, once the lists
are sorted, we can propagate the energy in linear time
\(O(N) \), where \(N \) is the number of voxels.

Now, the idea of the method is that by going over
the set of all surface voxels in a lexicographic order
(lexicographic orders are precomputed by radix sort),
we can build all the sorted lists in linear time \(O(N) \).
We do this for each of the \(D \) sample directions and
for each of the \(I \) Gauss-Seidel iteration, and we get a
numerical solution of the global illumination equation
in time \(O(N \times I \times D) \).

3 SHOOTING FROM LIGHT SOURCES AND BOUNCE

CACHE METHOD

Although the method of (Chatelier and Malgo-
yuress, 2006) has a linear complexity with respect to
the number of rays, one of its drawbacks is that it
doesn’t sample solid angles according to power im-
portance. We consider small light sources which emit
much light per unit of area, as we can find in many
applications, first the voxel size needs to be small
enough to approximate light source shapes, thus many
voxels are required, and second, the solid angle sam-
pling must be fine enough to avoid artefacts. A natural
solution to this problem is the use of the raytracing
instead of discrete shooting in this step. We proceed as
follows: First we choose number of initial photons on
light sources with the random normal distribution that
deeps on light power and area. The energy of each
sample is equal to \(\frac{\text{overall energy}}{\text{number of samples}} \). Then we shoot
from each initial photon \(n \) rays into \(n \) directions, with
energy equal to \(\frac{E}{n} \). For each intersection point we
store the given energy and compute the corresponding
irradiance. The set of indirect photons is used as
initial voxel setup (the initial voxel irradiance is equal
to the sum of the irradiance of the photons inside the
voxel). We propagate this light using the linear voxel
method of (Chatelier and Malgouyres, 2006).

After each bounce of Lambertian surface, the en-
ergy amount is reduced significantly, and is getting
lower frequency (i.e. more smooth). We can use that
property by using less directions at each intersection
level, thus reducing the cost of multi-bounce simula-
tion. At each bounce we propagate only the light that
was created during previous shooting phase, summing
all the light in a global accumulation cache after each
iteration. We split computations into sets of indepen-
dent \(i\) to \(i+1\) bounces, and we use different (e.g. di-
vided by 2 at each bounce) number of directions at
each level. The algorithm can be sketched as follows:

- We shoot photons from light sources by raytracing
 at path length one (only first intersections).
- We sum the irradiance in the corresponding vox-
el and use the result as initialization of the linear
method of (Chatelier and Malgouyres, 2006). We
store this in \(currentCache\).
- for each iteration
 we propagate \(currentCache\) and store new
 values into \(CachePlus\)
 we add the energy from \(CachePlus\) to
 \(GlobalCache\)
 we swap \(CachePlus\) and \(currentCache\)
 we clear \(CachePlus\)

4 RECONSTRUCTION METHOD

We present two approaches to light gathering for
voxel-based global illumination: one similar to in-
stant radiosity (Keller, 1997) and one based on light-
cuts (Walter et al., 2005).

4.1 Random Sample Voxels

Our first reconstruction is inspired from instant ra-
diosity (Keller, 1997). Of course, the principle must
be substantially adapted to voxels. The intensity of
the voxels is proportional to their radiosity as ob-
tained in the output of the method of (Chatelier and
Malgouyres, 2006) improved by the iterated cached
method. However, in order to reduce the number of
point lights, and to take into account the nature of ra-
diosity (power per unit of steradian per unit of area)
we select the voxels randomly according to a proba-
bility proportional to their area, as defined below, and
multiplied by a solid angle.

The area of a voxel is the sum for all boundary voxel
of an object of the dot product of the normal to
the faces of the voxel with the normal to the underly-
ing surface.

\[
\Delta A(x) = \sum_{y \in N(x) \cap \Omega} x^y \cdot \vec{N}
\] (1)

So, we make a raytracing phase by tracing rays
from the viewpoint through the pixels. For each pixel,
we compute the ray hit point \(I\) that we must shade. In
order to shade the hit point \(I\), we use the sample vox-
els \(y\), randomly selected with probability proportional
to \(\Delta A(y)\), as point light sources with light contribu-
tion:

\[
C_y(I) = B(y) \cos \theta(I, y) \cos \theta(y, I) \frac{\cos \theta(y, I)}{||I - y||^2} V(I, y)
\] (2)

In fact, we select two random samples sets of vox-
els by monte-carlo sampling. We can use progres-
sive raytracing that allows the user to get approximate
results after a few seconds. This method generated
nice images, but its complexity is dependent on \(O(n)\)
where \(n\) is number of virtual point lights.

4.2 Reconstruction Based on Lightcuts

In order to reduce the dominant reconstruction cost,
we use the lightcuts method (Walter et al., 2005). This
method enables us to render massive (thousands to
millions) number of point lights in a reasonable (sub-
linear) time. The only drawback is a small pixel po-
tential error value (determined by a user-set param-
eter, e.g. 2%). A cluster is a set of point light
sources which are approximated by a single represen-
tative light source. A common lightcut tree, the nodes
of which are clusters, is created which unifies illumina-
tion and enables transparent tradeoffs between ade-
quate components. During the reconstruction process,
at a ray hit point, the largest clusters compatible with
Scene 1	Scene 2
Antialiasing | off | on
number of triangles | 1,176 | 67,462
number of voxels | 108,455 | 22,615
Light path length | 4 | 6
Voxel directions | 146 | 256
Primary photons | 650 | 4000
Direct photons | 200 | 256
Continuous Rays | 87,913,202 | 184,834,570
Discrete Rays | 26,637,785 | 10,146,637
Rays/sec (continuous) | 140,819 | 68,983
Rays/sec (discrete) | 5,122,651 | 5,176,855
Propagation Time | 6.1 sec | 4.15 sec
Linear method Time | 5.2 sec | 1.96 sec
Reconstruction Time | 624.3 sec | 2679.27 sec
Overall Time | 630.5 sec | 2684.43 sec

Table 1: Statistics for Scene 1

the error criterion is selected, and summed to obtain the irradiance value. This method allows us, instead of using a random sample of voxels, to consider all the voxels. This simplifies the voxel selection process, at a cost of constructing lightcuts trees.

Our implementation of lightcuts is based on (Miksik, 2007). We divide direct and indirect virtual light points and create separate trees, and combine them in a root node as described in (Miksik, 2007). The direct tree is based on light source photons and the first irradiance cache (for direct light) of the method of Section 3. The indirect tree is based on the indirect accumulation voxel cache.

5 RESULTS

Tests were done on PC with Intel Core 2 Duo 6300 (1.86GHz). Only one core was used (single thread with Widows Vista).

The first test compares the method with a reference solution computed by path tracing. In Figure 3, a quality comparison with other classical methods is provided. The results shows that the method is accurate and without noise. We computed path-tracing at a constant rate samples per pixel (50) thus the time is sometimes better, but the noise is strongly visible. This test shows that the method is accurate.

In Table 1, we can see the statistics for runtime. The ratio of number of rays per seconds for continuous rays (KD-tree accelerated ray-object intersection) and discrete rays in 2.75%. For Scene 2, the ratio of number of rays per seconds for continuous rays and discrete rays in 1.33%. This result shows the relevance of the discrete linear method, even more so for complex scenes. Moreover, the discrete number of rays per seconds is little dependant on the scene complexity.

In (Hasan et al., 2007) Hasan et al. render similar views of the Sponza atrium in about 8s, but we can not compare that directly since it uses hardware acceleration vs our fully software single thread based raytracer. Moreover we used area light to simulate day light, shooting and multicache methods combined lasted 4.15 sec. We used 22,615 voxels and 256 directions.
6 CONCLUSION AND FUTURE WORK

Our results show that our voxel based method can be competitive and accurate for precise multi-bounce global illumination. It provides very large numbers of rays per seconds for discrete rays, which make the technique promising. To improve the method, we could possibly find a method with linear complexity with respect to the number of rays for the reconstruction process also, which could result in dramatic reduction of the reconstruction time, which is the dominant term. Then, a GPGPU acceleration for the discrete linear method could result in a very low-time propagation phase, and should be considered. The current version of the method works only for Lambertian material, and a method for general BRDF’s should be developed, by storing a more complex representation of outgoing light in voxels. Finally, we could find a method for fast animation by enabling to add an object into the scene without recomputing the whole solution by the use of antiradiance (Christensen and Batali, 2004).

REFERENCES

Figure 3: Comparison tests. The left column was computed by Monte Carlo path tracing (50 samples per pixel), the middle column is photon mapping with lightcuts for reconstruction, and the right column is the voxel-based method with lightcut reconstruction. All pictures were computed using 1600 direct photons. We used 1600 indirect photons for photon mapping. We used 128 directions in the linear voxel propagation, and 2 iterations. The discretization resolution was $64 \times 64 \times 64$ voxels.