Skip to Main content Skip to Navigation
Journal articles

LIME, a new molecule associated with cytoskeleton is involved in stimulatory properties of DC

Abstract : Dendritic cells are sentinels of the immune system distributed throughout the body, that following danger signals will migrate to secondary lymphoid organs to induce effector T cell responses. We have identified, in a rodent model of graft rejection, a new molecule expressed by dendritic cells that we have named LIMLE (RGD1310371). To characterize this new molecule, we analyzed its regulation of expression and its function. We observed that LIMLE mRNAs were rapidly and strongly up regulated in dendritic cells following inflammatory stimulation. We demonstrated that LIMLE inhibition does not alter dendritic cell maturation or cytokine production following Toll-like-receptor stimulation. However, it reduces their ability to stimulate effector T cells in a mixed leukocyte reaction or T cell receptor transgenic system. Interestingly, we observed that LIMLE protein localized with actin at some areas under the plasma membrane. Moreover, LIMLE is highly expressed in testis, trachea, lung and ciliated cells and it has been shown that cilia formation bears similarities to formation of the immunological synapse which is required for the T cell activation by dendritic cells. Taken together, these data suggest a role for LIMLE in specialized structures of the cytoskeleton that are important for dynamic cellular events such as immune synapse formation. In the future, LIMLE may represent a new target to reduce the capacity of dendritic cells to stimulate T cells and to regulate an immune response.
Complete list of metadatas
Contributor : Yvan Le Bras <>
Submitted on : Monday, August 10, 2015 - 11:41:22 AM
Last modification on : Thursday, May 7, 2020 - 1:40:04 PM

Links full text



Laëtitia Le Texier, Justine Durand, Amélie Lavault, Philippe Hulin, Olivier Collin, et al.. LIME, a new molecule associated with cytoskeleton is involved in stimulatory properties of DC. PLoS ONE, Public Library of Science, 2014, pp.10. ⟨10.1371/journal.pone.0093894⟩. ⟨hal-01183591⟩



Record views