A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes

Abstract : In this work, we develop and analyze a Hybrid High-Order (HHO) method for steady non-linear Leray–Lions problems. The proposed method has several assets, including the support for arbitrary approximation orders and general polytopal meshes. This is achieved by combining two key ingredients devised at the local level: a gradient reconstruction and a high-order stabilization term that generalizes the one originally introduced in the linear case. The convergence analysis is carried out using a compactness technique. Extending this technique to HHO methods has prompted us to develop a set of discrete functional analysis tools whose interest goes beyond the specific problem and method addressed in this work: (direct and) reverse Lebesgue and Sobolev embeddings for local polynomial spaces, $L^p$-stability and $W^{s,p}$-approximation properties for $L^2$-projectors on such spaces, and Sobolev embeddings for hybrid polynomial spaces. Numerical tests are presented to validate the theoretical results for the original method and variants thereof.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2016, 86 (307), pp.2159-2191. 〈10.1090/mcom/3180〉
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01183484
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : mercredi 7 décembre 2016 - 15:26:10
Dernière modification le : jeudi 21 juin 2018 - 14:12:05
Document(s) archivé(s) le : lundi 20 mars 2017 - 22:18:41

Fichier

hho-plap.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Antonio Di Pietro, Jérôme Droniou. A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Mathematics of Computation, American Mathematical Society, 2016, 86 (307), pp.2159-2191. 〈10.1090/mcom/3180〉. 〈hal-01183484v3〉

Partager

Métriques

Consultations de la notice

201

Téléchargements de fichiers

144