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Abstract 

Objective: The aim of this study is to provide an automatic framework for computer-aided 

analysis of multiparametric magnetic resonance (mp-MR) images of prostate. 

Method:  We introduce a novel method for the unsupervised analysis of the images. An 

evidential C-Means classifier was adapted for use with a segmentation scheme to address 

multi-source data and to manage conflicts and redundancy. 

Results: Experiments were conducted using data from 15 patients. The evaluation protocol 

consisted in evaluating the method abilities to classify prostate tissues, showing the same 

behavior on the mp-MR images, into homogeneous classes. As the actual diagnosis was 

available thanks to the correlation with histo-pathological findings, the assessment focused on 

the ability to segment cancers foci. The method exhibited global sensitivity and specificity of 

70% and 88%, respectively.  

Conclusion: The preliminary results obtained by these initial experiments showed that the 

method can be applied in clinical routine practice to help making decision especially for 

practitioners with limited experience in prostate MRI analysis. 

Keywords 

Computer-aided analysis, Prostate cancer, Multiparametric MR images, Evidential C-Means 

classifier 
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1. Introduction 

A current challenge in prostate cancer is the development of new strategies to improve the 

diagnosis of significant cancers while excluding insignificant ones. Presently, a volume 

threshold is used and cancers more than 0.5 cc are considered as significant.Systematic 

transrectal ultrasound biopsies (TRUS-B) remain the gold standard for prostate cancer 

diagnosis; however, these biopsies are invasive and miss a significant percentage of cancers. 

In contrast, prostate magnetic resonance imaging (MRI) can be used non-invasively for 

reliable characterization of prostate tissues/lesions, by taking advantage of multi-parametric 

protocols[1].  

A typical prostate multiparametric MR study includes a morphological T2-weighted (T2-W) 

series and a functional series, including diffusion weighted imaging (DWI) sequences and 

perfusion T1-weighted sequences, acquired before, during and after contrast agent 

administration (also called dynamic contrast enhanced [DCE] MRI). In some cases, these 

studies also include spectroscopic analysis. For multiparametric analysis, several DWI 

sequences with different diffusion gradients are acquired and used to compute the apparent 

diffusion coefficient (ADC) map. The DCE images are used to analyze the tissue 

enhancement, either visually or using time/intensity curves and semi-quantitative parameters, 

such as the area under the enhancement curve, wash in and wash out rates and time to peak. 

Computation of pharmacokinetic parameters can also be used to characterize tissue 

microcirculation, for example, using Tofts’ model, where Ktransis the transfer constant 

between the blood plasma and the extra-vascular extra-cellular spaces (EES), Kepis the 

exchange constant rate between the EES and the blood plasma, and Veis the extra-vascular 

extra-cellular volume[2;3] (Figure 1). 

In this context, and because MRI involves an enormous number of data to interpret, many 

authors have investigated automatic classification algorithms to design MRI-based computer-

aided diagnosis (CAD) tools and software for cancer characterization. The current standard 

paradigm for CAD systems is as a second reader. After the radiologist has evaluated multiple 

imaging sets, CAD is used to indicate the likelihood that a given suspicious region is 

malignant. Most of the employed methods are based on supervised classification techniques, 

in which a set of pre-interpreted patient data must be used as a learning step (Table 1). These 

approaches have presented two main limitations. First, the performance of the algorithm 

depends on the quality and volume of the training data. Second, the learning step requires 

retrospective data, which might be either obsolete or center-specific. 
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Figure 1: Examples of multiparametric magnetic resonance images: (a) T2 weighted sequence, (b) diffusion 

weighted images (DWI), (c) T1 weighted dynamic contrast enhance (DCE) images, (d) the apparent diffusion 

coefficient map computed from the diffusion weighted sequences and (e) and (f) pharmacokinetics parameters 

computed from the DCE sequences. The transfer constant between the blood plasma and the extra-vascular 

extra-cellular spaces (Ktrans) and the exchange constant rate between the extra-vascular extra-cellular spaces and 

the blood plasma (Kep) were determined in (e) and (f), respectively. 
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 MR Data 
Clustering/ 

Classification 

Algorithms 

Region of 

Interest 

Validation – 

Correlation with 

Histopathology 

Maps 

S
u

p
er

v
is

e
d

 

Chan et al. 2003 

[9] 

T2W, ADC 

and proton 

density 

Support vectors machine 

and Fisher linear 

discriminant  

Peripheral 

zone No 

Madabhushiet al. 

2005 [10] Ex vivo MRI Bayesian + Fusion Prostate Yes 

Voset al. 2008 

[11] DCE MRI Support vectors machine Peripheral 

zone Yes 

Puechet al. 2009 

[12] DCE MRI Decision tree Prostate Yes 

Voset al. 2010 

[13] 
DCE MRI and 

T2W Support vectors machine Peripheral 

zone Yes 

Lopes et al. 2011 

[14] T2W Support vectors machine 

and Adaboost 
Peripheral 

zone Yes 

Niafet al. 2012 

[15] 
T2W, ADC 

and DCE MRI 4 classifiers  Peripheral 

zone Yes 

Shah et al. 2012 

[16] 
T2W, ADC 

and DCE MRI Support vectors machine Peripheral 

zone Yes 

Chesnaiset al. 

2013 [17] 
T2W, ADC 

and DCE MRI 
4 classifiers (method from 

Niafet al.[15]) 
Peripheral 

zone Yes 

Hoekset al. 2013 

[18] 
T2W, ADC 

and DCE MRI 

Support vectors machine 

(methodfrom Vos et al. 

[13] ) 

Transition 

zone Yes 

Hambrocket al. 

2013 [19] 
T2W, ADC 

and DCE MRI 

Support vectors machine 

(methodfrom Vos et al. 

[13] ) 

Peripheral 

zone and 

transition 

zone 

Yes 

U
n

su
p

er
v
is

e
d

 

Tiwariet al. 2009 

[20] Spectroscopy Hierarchical Prostate No 

Liu et al. 2009 

[21] 
T2W, ADC 

and DCE MRI Markov random fields Peripheral 

zone Yes 

C
o
m

p
a
ri

so
n

 
Ozeret al. 2010 

[22] 
T2W, ADC 

and DCE MRI 

Supervised methods 

support vectors machine 

and relevance vector 

machine with 

unsupervised method; 

Markov random fields 

(method from Liu et 

al.[21]) 

Peripheral 

zone Yes 

 

Table 1: State of the art of classification and clustering methods applied for prostate magnetic resonance image 

analysis. The methods are grouped into two categories: supervised and unsupervised. Classification is also 

performed according to the criteria for the MR images sequences used: T2-weighted (T2W), dynamic contrast 

enhanced (DCE), apparent diffusion coefficient (ADC) computed from the diffusion weighted (DW) sequences 

and spectroscopy images, as well as the proton density sequence. The clustering technique used, region of 

interest (entire gland or specific area, such as the peripheral zone) and the validation with the ground truth from 

the histopathological maps are also indicated.  
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In this study, we began with the assumption that a multiparametric approach would be 

optimal for all of the images. We then proposed an unsupervised method for prostate tissue 

classification from multiparametric MR images. This method was not designed for the 

detection of cancer or suspicious lesions but rather was intended to be used as an analysis tool, 

allowing us to merge information from all available sources to address conflict and 

redundancy and to provide a unique homogeneous pattern (tissues) map. 

We investigated the use of evidence theory. This approach, also known as belief functions 

theory, is becoming widely used in multisource data analysis. It provides an advanced 

modeling of fusion, conflicts among sources and outliers[4]. Several applications of this 

reasoning in medical image analysis and CAD can be found (e.g., in brain MRI segmentation 

and tumor detection)[5;6].Our proposed approach is an adaptation of the evidential C-means 

classifier (ECM) introduced by Masson and Denoeux[7]. We successfully applied this method 

to multiparametric prostate MR data in a previous work, in which the aim was to segment and 

separate the prostate into two compartments: peripheral and transition zones[8]. 

2. Methods 

Figure 2 depicts the pipeline of the method. 

Figure 2: The pipeline of the method. The multiparametric data are first spatially registered. After feature 

extraction, evidential theory-based clustering is used to reduce the data into homogeneous classes. 

 

Multiparametric MR images 

Spatial registration 

Clustering - Fusion 

Features extraction 

Redundancy/conflict distributions maps 

 

Display and initialization 

Tissues classes map 
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2.1 Data preparation: spatial registration and feature extraction 

The multiparametric MR sequences could not be processed directly for two reasons. First, 

most of the images were acquired from different fields of view and thus had different spatial 

resolutions. Second, there were patient movements between acquisitions. Therefore, the first 

step was spatial registration and normalization. Because T2W images are regarded as the 

cornerstone for prostate morphology evaluation, these images were considered the reference 

space, and the other sequences were strictly registered to this space using standard affine 

registration algorithms based on maximization of mutual information. Following this spatial 

matching, resampling and interpolation were used to match the other sequences with the T2W 

images in terms of resolution.   

After this pre-processing, each prostate voxel was described by a feature vector containing the 

image features as gray levels from the T2W images, the ADC and the pharmacokinetic 

parameters (Ktrans, Kep and Ve).  

A previous study [23] demonstrated that the local parameters, computed using fractal 

geometry, allowed for better detection of heterogeneities in prostate tissues from T2W MR 

images than from the native gray level values. Fractal geometry is a powerful tool for texture 

analysis that can be used to process medical imaging data efficiently. The fractal geometry 

can be measured using the fractal dimensions (FDs). We computed the local 3D FDs for each 

7x7x3 region of interest (ROI) using the Variance method [24]. Thus, instead of considering 

the T2W image gray levels, a local fractal dimension was estimated for each voxel.  

By combing all of the MR data, a features set including the local fractal dimension, the ADC 

value and the pharmacokinetic parameters Ktrans, Ve the was associated to each voxel as 

follows: 

Voxel (Vi) =  FD, ADC, Ktrans , Ve  (1)   

After processing, the data were normalized and standardized for the range of different features. 

For each feature, the mean and the standard deviation were computed. For each feature value, 

the mean was then subtracted, and the result was divided by the standard deviation.  
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2.2 Source modeling and clustering 

a. Initialization 

Our method was designed to assist radiologists in analyzing large numbers of images by 

fusing the sources into a single map. The voxels were described by their features (equation 1) 

and were grouped into homogeneous patterns. Class initialization is a key step in any 

clustering process for addressing this issue. Our proposed approach was inspired by 

radiologists’ behavior when cognitively analyzing MR images. Generally, the most sensitive 

images, typically pharmacokinetic and ADC images are analyzed first to detect and highlight 

the suspicious regions. To refine the analysis, several cross-analyses are performed using all 

of the image sequences.  

In this regard, the Ktrans map could be used to define the initial classes map. First, the image 

histogram was constructed, and a mode recognition algorithm[25] was applied to detect the 

class number. Then, the K-means algorithm was used for clustering. The results were applied 

to the remaining image sources to obtain the configuration of the first classes. 

b. Evidential modeling 

Evidential reasoning associates a data source or sensor, S, with a set of propositions, also 

known as the ―frame of discernment‖. In a classification context, the frame of discernment, 

denoted as , is the set of classes. If 𝜔1, . . , 𝜔𝑘  denote these classes, then =   ω1, . . , ωk  

Let P =  P1, … , PN  be the set of patterns/objects to be assigned to one of theclasses. 

Evidential reasoning allows for the extraction of the partial knowledge of this assignment, 

called the ―basic belief assignment‖ (bba). A bba is a function that takes values in the range 

0, 1and defines the 2subsets of  ( ∅, ω1, . . , ωk , ω1 ∪ ω2, . . ,  ). For each pattern 𝑃𝑖 ∈ 𝑃, a 

bba(denoted as 𝑚𝑖) allows us to measure the assignment to each subset A of  such that the 

following relationship is true: 

 mi(A)  =  1

A 

 
(2) 

The higher the value of 𝑚𝑖 𝐴  is, the stronger the belief for assigning 𝑃𝑖  to A. For instance, 

𝑚𝑖  𝜔𝑗   = 1 implies that  ∀𝐴 ⊆ 𝛺, 𝐴 ≠  𝜔𝑗   , 𝑚𝑖 𝐴 = 0. This means that 𝑃𝑖  is assigned to 

 𝜔𝑗  . However, if 𝑚𝑖  𝜔𝑗   = 0.5 , 𝑚𝑖  𝜔𝑙  = 0.2  and 𝑚𝑖  𝜔𝑗 , 𝜔𝑙  = 0.3 , there is a 

stronger belief for assigning 𝑃𝑖  to  𝜔𝑗   than to  𝜔𝑙 . It also highlights that there is a 20% 
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belief for assigning 𝑃𝑖  to the union of the 2 classes, which can be interpreted as a doubt 

regarding pattern membership. In contrast to the fuzzy sets model, evidential reasoning can 

extend the partial membership concept by assigning beliefs not only to classes but also to 

unions of classes. This feature is particularly useful in cases in which the classes overlap. 

Using this model, Denoeux and Masson [26] introduced a new type of data partition called the 

―credal partition‖. This partition can be seen as an extension of the fuzzy partition, with bba 

functions replacing the fuzzy membership functions. The authors later proposed an evidential 

version of the C-means classifier (the ECM) that used a credal partition, which was inspired 

by the fuzzy C-means (FCM) algorithm [7]. This algorithm classifies N patterns into k classes 

of , based on the class centers and the minimization of a cost function. As is the case for 

fuzzy partitions in FCM, the credal partition (in which each line is a bba𝑚𝑖  associated with a 

pattern 𝑃𝑖) is optimized iteratively. Further details on this generic classification method can be 

found in [7].  

c. Spatial relaxation 

The ECM model, as previously described, extracts and optimizes partial knowledge for 

pattern assignments. The ECM model can be used to classify voxels directly as independent 

data objects. However, the voxel neighborhoods, defined by the connexity system, provide 

valuable information. In fact, the image segmentation supposes that the image regions share 

common features. Connexity and neighborhood systems model this assumption using region-

oriented segmentation methods, such as growing regions or hidden Markov field models. 

In a homogeneous region or class, a bba not only provides information on a pattern but also 

on its connected neighbors. Corrupted information, extracted from outliers/noise patterns, can 

be relaxed using the information from neighbors. Thus, introducing neighborhood information 

in ECM modeling can provide the following advantages: 

• Modeling of contextual region information by extracting information from the 

patterns/voxels; 

• Reduced corrupted information related to outliers and noise; and 

• Assimilation of the ECM classifiers into region-based segmentation processes. 

The bbami of pattern Pi (associated with voxel Vi) was relaxed by combining it with 

bbafunctions from spatially connected neighbors. Spatial connection was defined by a 3D 

connexity system (26 in this study). A combination was performed using a conjunctive 



10 

 

bbacombination operator [27].  

Let 𝑚𝑖  be the bba of the pattern 𝑃𝑖  and  𝑚𝑖1, ⋯ , 𝑚𝑖26 be the bba functions from 𝑃𝑖 ’s 26 

connected neighbors  𝑃𝑖1, ⋯ , 𝑃𝑖26 . We denote as 𝑚𝑖
′ , the result of combining 𝑚𝑖  and 

 𝑚𝑖1, ⋯ , 𝑚𝑖26  

∀ A 

𝑚𝑖
′ A =  𝑚𝑖  A1 ⋯𝑚𝑖26 Af 

A1∩⋯∩A f =A
A1⋯A f⊆Ω

 

(3) 

However, the contribution of each neighbor to this combination should be weighted by its 

distance from the considered voxel. This combination is particularly relevant for prostate MRI, 

in which the voxels are significantly anisotropic. Based on this reasoning, the neighboring 

bbafunctions were weighted as follows. 

Let 𝑚
𝑖𝑗

𝑗
 be the result of weighting 𝑚𝑖𝑗  

∀ A  

 
𝑚

𝑖𝑗

𝑗  𝐴 = 𝑗 . 𝑚𝑖𝑗 (𝐴)

𝑚
𝑖𝑗

𝑗   = 1 − 𝑗 +  𝑗 . 𝑚𝑖𝑗 ()
  

Where  

(4) 

αj =
γ

dij
2  

(5) 

0 ≤ 𝛾 ≤ 1is a parameter, and dij is a normalized Euclidean distance between voxel 𝑣𝑖  and its 

spatial neighbor 𝑣𝑖𝑗 . Using equation (3) and replacing the neighboring bba functions with the 

weighted ones (4), we define 𝑚𝑖
′as follows. 

∀ A 

𝑚𝑖
′ A =  𝑚𝑖  A1 . 𝑚𝑖1

1 A2 ⋯𝑚𝑖26
26  Af 

A1∩⋯∩A f =A
A1⋯A f⊆Ω

 

(6)   

This combination is used as a relaxation step that allows for correction of the evidential 

assignment of a voxel based on the information from its neighbors. 
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2.3 Decision-making 

At the level of bbafunction extraction and optimization, we measure belief for the 

membership of each voxel to one of the classes𝜔 ∈. However, we also measure belief for the 

empty set and subsets 𝐴, which could be interpreted as ―doubt‖ regarding the membership of 

the voxel. A decision still must be made to classify the voxels into one of the  classes. This 

decision is reached by transforming the bba 𝑚𝑖  into a probability measurement, as calculated 

by 

∀ωi ∈ 

Prob ωi =
1

1 − 𝑚𝑖()

 
𝑚𝑖(A)

 A 
ωA
A⊆Ω

 

(7) 

where 𝐴  denotes the number of elements in A and  is the empty set. 

Finally, we define the decision rule R that associates the pattern 𝑃𝑖  with one of the classes of 

as follows. 

R 𝑃𝑖 = argmax
ω ∈ 

 Prob ωi   (8) 

2.4 Results presentation 

For the presentation of the results, two levels are proposed. The first level displaysa single 3D 

class map with a color associated with each class. This map labels all of the voxels with one 

of the   𝜔1, . . , 𝜔𝑘   classes. It also renders the tissue distribution homogeneous. For 

interpretation purposes, the map can be merged with any of the original image sources. 

The second display level provides a more detailed description of the clustering results. The 

different probability maps resulting from the belief membership conversion (equation 7) are 

displayed using color maps. These maps could be very useful in addressing conflict regions. 

Indeed, they include the empty set probabilistic distribution. The empty set is associated with 

the reject class, grouping all of the voxels that could not be clearly associated with one of the 

classes (i.e., the probability of the empty set was the greatest).  

The maps also include all of the other subset cases. 

For instance, for a typical case with 2 classes, 𝜔1 =healthy tissue and 𝜔2 =suspicious tissue, 

the clustering produced 4 maps: a probability map for each class and a probability map for the 

2 class unions in which a voxel has the same probability of being in either class. The last map 
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is the empty set map, which groups the outliers. 

The first level display creates the homogeneous tissue map by combining the 2 results of 

classes 𝜔1and 𝜔2. 

3. Experiments and Results 

In this section, we report the results of the method applied to synthetic data with a known 

ground truth for class distribution and clinical images correlated with histopathology findings.  

3.1 Simulated image experiments 

The aims of these experiments were to test and evaluate the clustering process with regard to 

noise. 

a. Creation 

Simulation of multiparametric MR images is a difficult process. Moreover, a complete 

simulation should model and simulate the tumor behavior for all of the MR sequences (T2W, 

DCE, DWI and spectroscopy). To our knowledge, these behaviors are not yet well known. 

Nevertheless, to highlight the performance of the ECM clustering combined with spatial 

neighboring relaxation on multi-source data, we rendered multi-parametric images using 3 

MR clinical sequences: T2W, DCE and DWI. For each sequence, a radiologist delineated the 

peripheral and transition zones. The transition zone (TZ) was then filled with its mean value. 

The peripheral zone (PZ) level was deduced using a pre-determined contrast value C defined 

as 

C =
 ITZ − IPZ  

 ITZ + IPZ  
 

(9) 

where ITZ and IPZ   are the mean MR signals of TZ and PZ in the considered sequence, 

respectively. 

Gaussian noise was added, and a median filter was applied to reduce the salt-pepper aspect of 

the noisy images so that they would be more similar to the real data. Figure 3 illustrates this 

process. 

The signal-to-noise ratio of the simulated data was defined as: 
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SNRdb = 10log  
  I0 

2
i=1..n

  I − I0 2
i=1..n

  
(10)   

where I0 and I are the intensities before and after adding the Gaussian noise, respectively. 

Finally, the rendered images had different quality levels. The signal-to-noise ratios ranged 

from 18.21 dB to 7.77 dB, and the contrast levels (C, equation 9) ranged from 0.1 to 0.25. 

 

Figure 3: The image simulation process. From left to right: original MRI with pre-delineated peripheral and 

transition zones, the zones labeled with their respective mean level, data with Gaussian noise and data after a 

smoothing median filter. The first, second and third lines represent the T2W, DWI and DCE images, respectively. 

b. Results 

The evaluation of the classification method for the synthetic data consisted of the accurate 

segmentation of the peripheral and transition zones. The evaluation was performed using the 

classification error from the voxel labeling. 

Figure 4 illustrates the classification errors observed for different noise levels. 
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Figure 4: The results expressed as classification errors for labeling voxels belonging to either the peripheral or 

transition zones from multi-source data with different noise levels.  

3.2 Real data evaluation 

a. Description 

For clinical evaluation, we considered the abilities of the method to segment cancerous 

regions. For this purpose, a retrospective study was done. Multiparametric MR images were 

collected from 15 patients. The data consisted of T2W images with a 0.48×0.48×4.00 mm
3
 

voxel size (15 slices by volume), T1W DCE MRI images with a 0.61×0.61×4.00 mm
3 

voxel 

size (15 slices by volume, 20 dynamics) and an ADC map computed from 2 DWI acquisitions 

using b=0 and b=600 with a 1.12×1.12×4.00 mm
3
 voxel size (15 slices by volume). The DCE 

images were processed in-house using software implementing Tofts’ model to generate the 

pharmacokinetic Ktrans, Ve, and Kepmaps. 

As described above, the MR volumes were registered and interpolated to fit the T2W 

resolution. 

All of the patients underwent radical prostatectomy. To have a true diagnosis, the histological 

findings were correlated with MRI data. The prostate specimens were stained, fixed and 
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sectioned according to the Stanford protocol[28] (Figure 5-a). A reconstructed histological 

map of each prostate was created (Figure 5-b). The contours of the histological zones, as well 

as the outlines of each cancer, were drawn on the slides under a microscope. The results from 

these analyses were reported on the MR images by manual correspondence with the histology 

images. This task was performed by experienceduro-radiologists, according to the method 

described in [29]. The prostate was divided into eight regions of interest by the octant 

technique. The top and bottom were divided into four quadrants, corresponding to the 

transition zone (TZ) and peripheral zone (PZ) on the left and right. Within each octant, the 

TZ, PZ and anterior fibromuscular stromal boundaries were traced. The tumor was located 

according to these histological zone boundaries. 

Out of 15 patients, a total of 43 tumors were considered, including 25 tumors with a volume 

greater than 0.5 cc (Table 2). 

Figure 5: (a) Histopathology image. (b) Cancer maps created from the histopathology images. 

 

b. Results 

For quantitative evaluation, we measured the ability of the method to distinguish tumor 

patterns from healthy tissue patterns. For this purpose, at the end of the clustering process, the 

resulting 3D map was merged with the anatomical T2W MR images, allowing the radiologist 

to label and associate the different classes to the tissue classes (peripheral zone, transition 

zone, etc.) and thus isolate the suspicious regions (tumors). By comparing the results to the 
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actual diagnosis for each patient, the numbers of truepositives, falsepositives, truenegatives 

and falsenegatives could be evaluated for different regions of interest. Sensitivity and 

specificity were computed, respectively, as follows. 

sensitivity =
true positives

true positives + false negatives
 

specificity =
true negatives

true negatives + false positives
 

 

Patients 
Number of 

cancers 
Number of cancers 

with volume >0.5 cc 
Sensitivity Specificity  

1 3 2 67% 75% 

2 3 1 67% 100% 

3 2 1 75% 75% 

4 4 2 71% 80% 

5 3 1 66% 100% 

6 2 2 60% 100% 

7 4 3 75% 50% 

8 3 1 100% 100% 

9 4 3 80% 80% 

10 2 2 55% 71% 

11 2 1 50% 100% 

12 5 3 71% 71% 

13 1 0 0% 75% 

14 1 1 67% 80% 

15 4 2 71% 60% 

Table 2: Histopathologic analysis of the 15 patients included in the study and the results obtained using the 

proposed fusion method. 

The mean sensitivity and specificity were 65% (0%-100%) and 81% (50%-100%), 

respectively. The worst scores corresponded to tumors with volumes less than 0.5 cc. This 

value is currently accepted as a limit for tumor detection on MR imaging. By considering only 

tumors with volumes greater than the 0.5 cc threshold, the mean sensitivity and specificity 

grew to 70% and 88%, respectively. 

Figure 6 shows a case in which 3 classes were detected. The result (Figure 6-F) depicts the 

class map, which highlights a class for the peripheral zone, a class for the transition zone 
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tissue and a third class composed of data from 2 patterns that could be interpreted as a tumor. 

Returning to the MR images, one of these patterns was clearly depicted in the 4 images (T2W, 

ADC, Ktransand Ve), while the second was only visible as a hyper-vascular area on the 

Ktransmap. The fusion allowed us to place these two patterns in the same class. The ground 

truth image (G) revealed two tumors (circles).  

 

Figure 6: Classification results – Example 1. (A) T2W image with the region of interest to be analyzed. Three 

tissues are defined: part of the PZ, part of the TZ and a suspected area. (B) The ADC map. (C) The K trans map. 

(D) The Ve map. (F) Fusion map showing the distribution of the 3 tissues. (E) Basic belief assignment (bba) map 

showing the membership degree of each voxel to the 3 classes. (G) The ground truth. 

 

Figure 7 depicts a case in which the analysis focused only on the peripheral zone, using 3 

sources: the T2W (Figure 7-A), the Ktrans(Figure 7-B) and the ADC (Figure 7-C) maps. 

Initialization was performed starting with the ADC map. The result of the fusion (Figure 7-E) 

is displayed in the superposition mode for the T2W image, whereas Figure 7-D shows the bba 

map. Both maps (D and E) highlight a region corresponding to the optimal fusion among the 

hypo-signal of the ADC map, the hyper-signal of the Ktrans and the T2W hypo-signal. Figure 
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7-F shows the ground truth. 

Table 2 summariesthe histopathology data for the 15 patients and the results quantified using 

the sensitivity and specificity. 

 

Figure 7: Classification results – Example 2. (A) T2W image with peripheral zone delineation. (B) The Ktrans 

map. (C) The ADC map. (D) The basic belief map. (F) The fusion map of images A, B and C. The result is 

merged with the T2W (A) image. (F) The ground truth. 
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4. Discussion - Conclusion 

In this study, we described an unsupervised fusion scheme to analyze multiparametric MR 

images. This proposed framework was not designed for cancer detection or characterization 

but rather as a tool to assist radiologists in analyzing multi-source data. Because it is fully 

automatic, it can be applied in clinical routines for preliminary analysis and to fuse multiple 

MR sequences into a single 3D map in which the voxels that exhibit similar behaviors in all 

of the sequences are grouped into classes. 

The method is based on a spatial registration and a normalization step that standardizes the 

data, followed by a multi-source clustering step that is driven by the evidential c-means 

algorithm. A relaxation step is introduced in this algorithm to integrate the voxel spatial 

neighborhood information. As a result of this relaxation, the basic belief for the assignment of 

each voxel can be corrected using information from connected neighbors, via a conjunctive 

combination of the bbafunctions.  

The combination of the ECM algorithm with this spatial relaxation allowed us to perform 

clustering and segmentation on simulated multi-source data with different noise levels (Figure 

3), with accuracy of 95% (Figure 4).  

Two-level result reporting was proposed. The first level used a single map that represented 

homogeneous tissue distribution, while the second level was a membership degrees image. 

This image maps the source conflict regions.  

We validated our method by analyzing clinical data from 15 patients. The method had mean 

sensitivity and specificity of 65% and 81%, respectively. These tests considered data 

consisting of grouped tumors, with different volumes from both the peripheral zone and the 

transition zone. 

To our knowledge, there has been only one previously published study, by Liu et al.[21], in 

which the authors used an unsupervised classification method to diagnose prostate cancer 

using multiparametric MR images. The method was based on fuzzy Markov random fields, in 

which the parameters were implicitly estimated and combined with the segmentation process. 

However, the previous method was parametric because Gaussian distributions were assumed 

for the classes. Our approach was free from any assumptions regarding class distributions.  

Compared with the previously reported methods, which have mainly been based on 

supervised classification algorithms, our results might appear weak. Indeed, the supervised 
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techniques described in Table 1 reported sensitivity and specificity scores of at least 85%. 

However, as discussed in the Introduction section, supervised classification requires an 

extensive learning process, and the most important issue with this type of approach is that the 

learning step must be updated each time the data change due to changes in the acquisition 

protocol. 

In a study by Ozeret al.[22], two supervised methods were compared with an unsupervised 

algorithm (Liu et al. [21]). It was concluded that the supervised algorithms performed better 

than the unsupervised algorithm. In general, when the data are similar to those used during the 

learning process, in which all of the classification parameters are optimized, supervised 

approaches outperform unsupervised approaches. This situation changes if new data are used. 

In clinical practice, such a change often occurs due to changes in the acquisition protocols, 

when new MR sequences parameters or new machine are used. 

Without the inclusion of any learning or calibration steps, the preliminary results for our 

unsupervised approach to computer-aided analysis of multiparametric MR images showed 

promising results. Moreover, the global framework described here could be extended to other 

multimodality sources. Indeed, photon emission tomography (PET) has the ability to analyze 

quantitative biomarkers that assess a host of physiological and biochemical tumor 

characteristics. Ultrasound elastography could also be valuable for tissue characterization. 

The only limitation for the integration of all of these sources into the proposed approach is 

spatial registration.  

The fusion strategy employed in this study attributed equally distributed confidence levels to 

the different image sources. However, specific parameterization using different weights is 

also possible. Tiwariet al. [30] investigated the weighted combination of multiparametric MR 

imaging for the evaluation of radiation therapy outcomes, and they reported promising results. 

The weighted combination of multiparametric or multimodality sources provided specific 

confidence levels for each imaging modality, according to its sensitivity and specificity. This 

combination could easily be applied for basic belief assignment modeling. It could also be 

used at different stages during initialization or before final fusion and conversion of the 

bbafunctions into class membership degrees. 

Another important issue concerns validation. The evaluation described here was a single-

observer study. Currently, we are preparing a more extensive evaluation with a more relevant 

patient base and better selection criteria, such as limitation to only one zone (peripheral or 
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transition zones) and consideration of only clinically significant tumors larger than the 

threshold of 0.5 cc. This evaluation will be a multi-observer study. 

Lastly, it is understood that the proposed approach will not replace supervised approaches. As 

clearly indicated, our method is not a diagnostic technique. The development and 

implementation of supervised techniques for distinguishing aggressive tumors from benign 

lesions remain of great importance to clinical practice. 
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