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Abstract—The rapid proliferation of radio access technologies
(e.g., HSPA, LTE, WiFi and WiMAX) may be turned into
advantage. When their radio resources are jointly managed,
heterogeneous networks inevitably enhance resource utilization
and user experience. In this context, we tackle the Radio Access
Technology (RAT) selection and propose a hybrid decision frame-
work that integrates operator objectives and user preferences.
Mobile users are assisted in their decisions by the network that
broadcasts cost and QoS parameters. By signaling appropriate
decisional information, the network tries to globally control users
decision in a way to meet operator objectives. Besides, mobiles
combine their needs and preferences with the signaled network
information, and select their access technology so as to maximize
their own utility. Deriving network information is formulated
as a Semi-Markov Decision Process (SMDP). We show how to
dynamically optimize long-term network reward, aligning with
user preferences.

Index Terms—Radio access technology selection, Semi-Markov
Decision Process, hybrid decision-making approach.

I. INTRODUCTION

Devised with the vision of heterogeneity, next-generation

networks integrate and jointly manage various radio access

technologies (RATs). To exploit the potential of this conver-

gence, efficient RAT selection techniques need to be defined.

In the recent few years, many network-centric and mobile-

terminal-centric approaches have been proposed. Typically, in

[1]–[4], a Semi-Markov Decision Process (SMDP) is used to

model the RAT selection problem. The network, independently

of end-users, finds an optimal access policy that maximizes its

long-term reward function (i.e., its expected utility calculated

over an infinitely long trajectory of the Markov chain). Se-

lection decisions then meet operator objectives, without nec-

essarily aligning with user preferences. However, to enhance

user experience, multi-criteria decision-making methods are

presented in [5]–[8]. Based on their needs and preferences

(e.g., traffic requirements, QoS-maximizing, cost- or energy-

minimizing preferences), rational users select their access

technology in a way to selfishly maximize their utility. Yet,

because mobiles do not have a global vision of the network,

their decisions are eventually in no one long-term interest.

In this article, we introduce an SMDP-based hybrid method

combining benefits from both network-centric and mobile-

terminal-centric approaches. Mobile users are assisted in their

decisions by the network that broadcasts cost and QoS pa-

rameters. Two mutually dependent decision-making problems

are thus brought into play. The first one, on the network side,

consists in deriving appropriate network information so as to

guide users decision in a way to meet operator objectives. The

second one, where individual users combine their needs and

preferences with the signaled network information, consists in

selecting the radio access technology to be associated with so

as to maximize user utility. As a consequence, RAT selection

dynamically integrates operator objectives and user needs and

preferences.

The basic idea of our hybrid approach was first presented

in [9], where intuitive tuning policies are introduced to dy-

namically derive network information as a function of the

load conditions. In the present contribution, deriving network

information is formulated as a Semi-Markov Decision Process

[10]. Our goal is to dynamically optimize the long-term

network reward, by trying to globally control users decision.

Unlike previous studies [1]–[4] and since the network does not

completely control individual decisions, transitions between

the states of the SMDP do not only depend on network

actions, arrival and departure rates, but also on user needs and

preferences. The decision-making on the mobile side, using a

multi-criteria decision-making method, is implicitly modeled

as probabilistic transition rates.

The rest of this paper is organized as follows: The network

model is introduced in section II. Section III presents our

hybrid decision framework. The SMDP and the policy iteration

algorithm are described in section IV. Numerical results are

analyzed in section V. Section VI concludes the document.

II. NETWORK MODEL

A. Network Topology

Consider a heterogeneous wireless network composed of

two OFDM(A)-based radio access technologies. In RAT x,

x ∈ {x1, x2}, the user-perceived signal-to-noise ratio SNRx

determines the user modulation and coding scheme (modx,

codx), and therefore its instantaneous peak rate (i.e., its

perceived throughput when connected alone to RAT x). Since

practically the set of possible modulation and coding schemes

is limited, RAT x cell is logically divided into Nx
Z zones

(e.g., concentric rings). Users in zone Zx
k , k = 1, ..., Nx

Z ,

are supposed to have an SNRx between δxk and δxk−1, and

then to use (modx(k), codx(k)) as a modulation and coding

scheme. Although our solution adapts to different deployment

scenarios, we focus on the more realistic and cost effective

one where the two RATs base stations are co-localized (i.e.,



geographical cells overlap). The intersection of their respective

zones thus leads to NZ heterogeneous zones.

B. Network Resources

The radio resource is divided into elementary resource units

(RUs), requiring both a time and a frequency dimension.

When connected to RAT x in zone Zk, k = 1, ..., NZ , the

maximum amount of bits mx(k) transmitted on a RU depends

on (modx(k), codx(k)) and is given by:

mx(k) = Nos·Nsc·log2(mod
x(k))·codx(k)·(1−BLER) (1)

where Nos and Nsc respectively represent the number of

OFDM symbols and subcarriers per RU, and BLER the block

error rate obtained as a function of the user-perceived SNR. In

our work, and since we are interested in the large time scale

radio conditions, an average SNR value per zone is considered

for all RUs.

In the time domain, resources are further organized into

frames of length T x
f . When Nru resource units per frame

are allocated to a user in zone Zk connected to RAT x, its

perceived throughput D is expressed as follows:

D =
Nru ·mx(k)

T x
f

(2)

C. Traffic Model

In our work, the number of traffic classes NC is two. Users

belong to either streaming (c = 1) or elastic (c = 2) traffic

classes. Class c arrivals in zone Zk follow a Poisson process

of rate Λ(k, c). We assume that streaming sessions have an

average long-term throughput of Rav . Yet, to improve their

content quality, they can benefit from throughputs up to Rmax.

Their duration is considered to be exponentially distributed

with a mean of 1/µ1.

Elastic sessions, however, adapt to resource availability.

Their needs are expressed as comfort throughput denoted by

Rc, and their size is assumed to be exponentially distributed

with a mean of L bytes. Note that their service rate µ2 also

depends on their perceived throughputs.

III. HYBRID DECISION FRAMEWORK

A. Network Information

Using the logical communication channel (i.e., radio en-

abler) proposed by the IEEE 1900.4 standard [11], network

information is periodically sent to all mobile users. In our

work, this information is assumed to implicitly integrate

operator objectives, guiding users decision.

When a new or a handover session arrives, the mobile de-

codes network information, evaluates and then ranks available

RATs.

The network is fully described by the exact numbers of class

c users, in zone Zk, that are connected to RAT x. Yet, in our

work, only cost and partial QoS parameters are sent to mobiles.

This significantly reduces signaling load. Furthermore, by

masking RAT load conditions, even QoS parameters may be

tuned so that mobiles decisions are consistent with generic

operator objectives (e.g., enhance resource utilization, reduce

network energy consumption).

In this setting, cost and QoS parameters signaled by the

network are seen as incentives to join available RATs:

• Cost parameters: As flat-rate pricing strategies are proved

to waste resources, and thus not optimal in supporting

QoS, a volume-based model is proposed. Mobile users

are charged based on the amount of traffic they consume.

In our work, costs are defined on a per kbyte basis.

• QoS parameters: Mobiles are guaranteed an average min-

imum number of RUs, denoted by nmin. They also have

priority to occupy up to an average maximum number of

RUs, denoted by nmax. However, and since RUs may

have different descriptions in the different RATs (i.e.,

different Nos and Nsc), we express QoS parameters as

throughputs: dmin and dmax instead of nmin and nmax.

They are derived for the most robust modulation and

coding scheme (i.e., as perceived by users in zone ZNZ
).

Consequently, when evaluating available RATs, mobiles

should combine their individual radio conditions with the

provided QoS parameters: for that they multiply dmin and

dmax with a given modulation and coding gain, denoted

by g(M,C).

B. RAT Selection

For RAT x, the network broadcasts the three parameters:

dmin(x), dmax(x), and cost(x). Using the satisfaction-based

multi-criteria decision-making method [12], mobiles compute

a utility function for each of the available RATs, and select the

one with the highest score. This utility depends on user radio

conditions, needs and preferences (i.e., traffic class, throughput

demand, QoS-maximizing and cost-minimizing preferences)

as well as on the cost and QoS information sent by the

network.

In our work, when cost(x) is maintained fixed, dmin(x)
and dmax(x) are dynamically tuned trying to globally control

users decision. Let Nx
I be the number of possible (dmin(x),

dmax(x)) couples that may be signaled to incite mobile users

to join RAT x. In the next section, selecting the (dmin(x),
dmax(x)) couple to be broadcasted for each RAT x is formu-

lated as a Semi-Markov Decision Process (SMDP). The goal

is to dynamically optimize the long-term discounted network

reward, while mobiles maximize their own utility.

IV. SEMI-MARKOV DECISION PROCESS

At each user arrival or departure, signaled network informa-

tion may vary. The SMDP is then used to dynamically derive

QoS parameters in a way that optimizes the long-term network

reward. We first start by defining the state space, actions,

state dynamics, and reward functions. Then, using the policy

iteration algorithm, we find the optimal solution.

A. States of the SMDP

A state of RAT x is the (NZ × NC × Nx
I )-tuple nx(t) for

{k = 1, ..., NZ , c = 1, ..., NC , i = 1, ..., Nx
I }:

nx(t) = (nx(k, c, i, t)),



where nx(k, c, i, t) is a stochastic process representing the

number of class c users in zone Zk, having the ith (dmin(x),
dmax(x)) couple, at time t. In the remaining, we assume

stationarity, and thus omit t.
To protect ongoing sessions, an admission control is per-

formed: new arrivals may join RAT x with the ith (dmin(x),
dmax(x)) couple to the extent that RAT x available resources

are enough to meet their dmin, while not compromising the

QoS guarantees of ongoing ones. Consequently, the set of

admissible states in RAT x is:

N x
a =

{

nx ∈ N
NZ×NC×Nx

I |

NZ
∑

k=1

NC
∑

c=1

Nx
I

∑

i=1

nx(k, c, i) · nx
min(i) ≤ nxtotal

}

(3)

where nxmin(i) is the number of RUs necessary to guarantee

the dmin of the ith QoS parameters couple, and nx
total is the

total number of RUs used for data transmission in RAT x.

Let the (NZ × NC × Nx1

I + NZ × NC × Nx2

I )-tuple s =
(nx1 , nx2) be the state of the heterogeneous network defined

as the concatenation of RAT x1 and RAT x2 substates. The

state space S of the network is then defined as:

S = {s = (nx1 , nx2) | nx1 ∈ N x1

a , nx1 ∈ N x2

a }

B. Action Set

In each state s, an action is taken by the network: QoS

incentives to join each RAT are derived. An action a is the

quadruple defined by a = (dmin(x), dmax(x)), x ∈ {x1, x2},

where dmin(x) and dmax(x) represents the QoS parameters

of RAT x as perceived by users in zone ZNZ
. Based on their

needs (e.g., traffic class, throughput demand) and preferences,

as well as on their modulation and coding scheme (i.e.,

geographical position), users act differently to these actions.

Obviously, Nx1

I ·Nx2

I actions are possible. However, given

a state s = (nx1 , nx2), not all actions are feasible. We then

denote by A the set of all possible actions and by A(s) ⊂ A
the subset of feasible actions in state s.

When both RATs provide no QoS incentives (i.e.,

dmin(x1) = dmax(x1) = dmin(x2) = dmax(x2) = 0), new

arrivals are blocked and can not join any RAT.

C. State Dynamics

As the network does not completely control individual

decisions, transitions between the states of the SMDP do not

only depend on network actions, arrival and departure rates,

but also on user needs and preferences. The decision-making

on the mobile side, using a multi-criteria decision-making

method, actually appears as probabilistic transition rates.

Let px(k, c, a) represent the probability that class c users in

zone Zk select RAT x, when action a is adopted. As action

a may be blocking, px1(k, c, a) + px2(k, c, a), ∀k, c, is not

necessarily equal to one: it can be either zero or one. Transition

rates T (s, s′, a) between states s = (nx1 , nx2) and s′ are then

expressed as:























Λ(k, c) px1(k, c, a) if s′ = (nx1 + ex1(k, c, i), nx2)
Λ(k, c) px2(k, c, a) if s′ = (nx1 , nx2 + ex2(k, c, i))
nx1(k, c, i) µx1

c (s) if s′ = (nx1 − ex1(k, c, i), nx2)
nx2(k, c, i) µx2

c (s) if s′ = (nx1 , nx2 − ex2(k, c, i))
0 Otherwise

(4)

where ex(k, c, i) is defined as a (NZ × NC × Nx
I )-tuple

containing all zeros except for the (k, c, i)th element, that is

equal to one, and new arrivals join RAT x with the ith QoS

parameters couple proposed by action a. Hence, for example,

when a class c user in zone Zk joins RAT x1, with the ith QoS

parameters couple proposed by action a, the network moves

to state s′ = (nx1 + ex1(k, c, i), nx2).
The state dynamics can equivalently be characterized by the

state transition probabilities p(s, s′, a) of the embedded chain:

p(s, s′, a) = T (s, s′, a) · τ(s, a) (5)

where τ(s, a) is the expected sojourn time for each state-

action pair, defined as follows:
{

∑

x

∑

k

∑

c

[Λ(k, c)px(k, c, a) +
∑

i

nx(k, c, i)µx
c (s)]

}−1

(6)

D. Reward Function

To formulate optimization objectives, let r(s, a) denote the

permanence reward earned by the network in state s, when

action a is adopted. Unlike the impulsive reward, received

upon transitions, the permanence reward represents the benefit

and penalty continuously received by the network whilst in

state s (i.e., it is actually defined on a per unit time basis). In

our work, r(s, a) is expressed as the sum of a network utility

N(s, a) and a blocking cost B(s, a).
The network utility is given by:

N(s, a) =
∑

x

∑

k

∑

c

ux(c)nx(k, c, i)Rx(k, c, i) (7)

where ux(c) is the class c utility earned per unit time in

RAT x, and Rx(k, c, i) represents the data rate of class c users

in zone Zk, that have joined RAT x with the ith (dmin(x),
dmax(x)) couple. In fact, mobiles are first provided with their

minimum guaranteed throughput given by dmin · g(M,C).
Then, fair time scheduling is used to provide them with

up to their maximum throughput given by dmax · g(M,C).
Remaining resources may afterwards be equitably shared (i.e.,

after receiving their maximum throughput, all mobiles have

the same priority leading to fair time scheduling).

Furthermore, the blocking cost reflects the penalty of reject-

ing future arrivals. B(s, a) is thus proportional to the arrival

rates in blocking states, and is expressed as follows:

B(s, a) = − b ·
∑

k

∑

c

Λ(k, c)(1−
∑

x

px(k, c, a)) (8)

where b is the cost per unit time inflicted on the network

for blocking a new arrival.



E. Uniformization

Before we proceed to solving the SMDP problem (i.e., de-

termining the action the network should take in each state) us-

ing the policy iteration algorithm, the continuous-time Markov

Decision Process should be transformed into a discrete-time

Markov chain. This can be done using uniformization.

The time is thereby discretized into intervals of constant

duration τ , that is smaller than the expected sojourn times of

all states: 0 ≤ τ < τ(s, a), ∀s ∈ S .

Transition probabilities are then modified as follows:







p̄(s, s′, a) = p(s, s′, a) τ
τ(s,a) for s′ 6= s

p̄(s, s′, a) = 1−
∑

s′ 6=s

p̄(s, s′, a) Otherwise (9)

where p̄(s, s′, a) represents the probability that the network

moves from state s to s′ within τ , when action a is adopted.

Moreover, the reward is also modified as follows: r̄(s, a) =
r(s, a)τ , where r̄(s, a) is the reward earned for a time τ .

F. Policy Iteration Algorithm

A policy π is a mapping from S to A. π(s) represents the

action to take in state s. Let Hπ(s) = s, s1, s2, ..., sn, ... be

a trajectory of the Markov chain, when policy π is adopted.

The long-term discounted reward dr(Hπ(s)) of state s is the

discounted sum of the rewards earned on that trajectory (that

starts from s), and is expressed as follows:

r̄(s, π(s)) + ψr̄(s1, π(s1)) + ...+ ψnr̄(sn, π(sn)) + ...

where ψ is the discounting factor (0 < ψ < 1). In our work,

the value function of state s, denoted by Vπ(s), is set as the

expected value of dr(Hπ(s)) over all possible trajectories.

Our goal is to find an optimal policy πopt, that maximizes

the expected long-term discounted reward of each state s:

Vπopt
(s) ≥ Vπ(s), ∀s, π

We therefore use the following policy iteration algorithm:

• Step 0 (Initialization): We choose an arbitrary stationary

policy π.

• Step 1 (Value Determination): Given the current policy

π, we solve the following system of linear equations to

calculate the discounted value function Vπ of all states:

Vπ(s) = r̄(s, π(s)) + ψ
∑

s′∈S

p̄(s, s′, π(s))Vπ(s
′)

• Step 2 (Policy Improvement): When any improvement is

possible, we update the current policy π. For each s ∈ S ,

we find:

π̂(s) = arg max
a∈A(s)

{

r̄(s, a) + ψ
∑

s′∈S

p̄(s, s′, a)Vπ(s
′)

}

• Step 3 (Convergence test): If π̂ = π, the algorithm is

stopped with πopt = π. Otherwise, we go to step 1.

V. NUMERICAL RESULTS

The numerical results were obtained using Matlab on

IGRIDA1. For illustration, we consider a heterogeneous wire-

less network composed of mobile WiMAX (x = W ) and

LTE (x = L) RATs. They are supposed to utilize a channel

bandwidth of 3 and 5 MHz respectively. For the sake of

simplicity, the cell is assumed divided into two zones (i.e.,

NZ = 2). While users with good radio conditions (i.e., in zone

1) are considered adopting the (64−QAM, 3/4) modulation

and coding scheme, users with bad radio conditions (i.e.,

in zone 2) are supposed to employ the (16 − QAM, 1/2)
one. Their peak rates (i.e., their perceived throughput when

connected alone to mobile WiMAX and LTE technologies)

are depicted in Table I.

RAT 64-QAM: 3/4 16-QAM: 1/2

Mobile WiMAX (3 MHz) 9.9 Mb/s 4.4 Mb/s
LTE (5 MHz) 16.6 Mb/s 7.4 Mb/s

TABLE I
PEAK RATES IN MOBILE WIMAX AND LTE

We assume that class c arrivals are uniformly distributed

over the two zones and follow a Poisson distribution of rate

Λc = Λ (i.e., Λ(k, c) = Λ/NZ , ∀k, c). However, to analyze

more finely network performance, different cell arrival rates

will be considered.

Moreover, streaming sessions are supposed to have the

following parameters: Rav = 1 Mb/s, Rmax = 1.5 Mb/s and

1/µ1 = 45 s. Rc of elastic sessions are further considered

related to user preferences. On the one side, when users are

ready to pay for better performances, they have a comfort

throughput of 1.25 Mb/s. On the other side, when they seek

to save up money, they are content with a comfort throughput

of 0.75 Mb/s. Nevertheless, their session size L is set to 5
Mbytes.

Cost parameters are maintained fixed: cost(W ) = 4 and

cost(L) = 6. Yet, QoS parameters are dynamically tuned try-

ing to globally control users decisions. For RAT x, three pos-

sible (dmin(x), dmax(x)) couples belonging to Ix may be sig-

naled (i.e., NW
I = NL

I = 3 ). In this work, the following IW

and IL sets are considered: IW = {(0, 0), (0.5, 1), (1, 1.5)}
Mb/s and IL = {(0, 0), (0.75, 1.25), (1.5, 2)} Mb/s.

The probabilities px(k, c, a), that class c users in zone Zk

select RAT x when action a is adopted, are calculated accord-

ing to the satisfaction-based multi-criteria decision-making

method we have introduced in [12]. They mainly depend on

user preferences, traffic class and throughput demand. Note

that the probability class c users are ready to pay for better

performances is assumed equal to 0.5.

Besides, and since we suppose that no RAT is preferred for

any traffic class, ux(c), ∀x, c, are set to one. The network util-

ity then comes down to the sum of user-perceived throughputs.

Furthermore, so as to enlarge the number of states involved in

the value function, ψ is fixed at 0.99.

1A computing grid available to research teams at IRISA/INRIA in Rennes,
France



For comparison purposes, the staircase tuning policy [9]

is also investigated. The highest QoS parameters are first

signaled. Next, when the operator bandwidth guarantees –

identified as a generic load factor – exceed a predefined thresh-

old S1, these parameters are reduced for the corresponding

RAT following a step function, as shown in Fig. 1. However,

when S2 is reached, they are set to zero. Future arrivals are

thereby pushed to the less-loaded RAT.

Initial

parameters

Load factorS1 S2

QoS incentives

Fig. 1. QoS parameters reduction using the Staircase policy

A. Performance Evaluation

Figure 2 illustrates the average reward as a function of the

cell arrival rate Λ, for different blocking costs. When b is

zero, the reward function is reduced to the network utility

representing the total offered throughput. Otherwise, it also

includes a penalty term proportional to the blocking cost b
and the cell arrival rate.
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Fig. 2. The impact of the blocking cost on the average reward

At low arrival rate, no blocking occurs leading to similar

rewards regardless of b. The reward function, reduced to

the network total throughput, then increases with the cell

arrival rate. Yet, as the latter increases further, or equivalently,

when the average number of simultaneous sessions augments,

network resources are almost always exploited, and not enough

may be allocated to future arrivals. Therefore, the blocking

probability (i.e., the long-term fraction of time spent in a

blocking state) also increases. Moreover, and since the penalty

term is proportional to the cell arrival rate, the reward function

received by the network whilst in a blocking state is as reduced

as the arrival rate increases. For all these reasons, the average

reward decreases more when the cell arrival rate increases,

except for b equal to zero. In fact, when b is zero, the average

reward stagnates at high arrival rate. It represents the long-term

sum of user-perceived throughputs. Otherwise, the average

reward obviously decreases with increasing blocking costs.

We further note that the optimal policy always outperforms

the staircase one with S1 = 0.35 and S2 = 0.85, denoted as

Staircase policy (2). However, when S1 and S2 are carefully

set to 0.3 and 0.95, the Staircase policy provides an average

reward that is closer to the optimal one.
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Fig. 3. Network total throughput

Besides, the impact of the penalty term on the reward func-

tion, and thereafter on the optimal policy, strongly depends on

the blocking cost b. On the one hand, the higher b the more

the network avoids blocking actions, even if at the expense

of the network utility. On the other hand, the lower b, the

more the network tries to maximize its total throughput, even

if leading to more blocking states. We respectively depict in

figures 3 and 4 the network total throughput and the percentage

in number of blocking states as a function of the cell arrival

rate. The optimal policy is illustrated for different b values.

Particularly, when b is zero, the network total throughput, but

also the percentage of blocking states, are maximized. The

blocking cost b may therefore be tuned to control optimization

objectives. Further, the performance of the staircase policy

depends on S1 and S2. When S1 and S2 are respectively

set to 0.35 and 0.85, a lower throughput is achieved in

comparison with when S1 = 0.3 and S2 = 0.95. Actually,

when these thresholds are carefully chosen, the staircase policy

can provide quite similar performances as the optimal one

(b = 50). They both effectively avoid blocking actions and

guide users decisions. In the remaining, we only consider the

case where S1 = 0.3 and S2 = 0.95.

It is worth noting that for a given b, when the cell arrival

rate is different, the state dynamics and penalty terms are

also different. This may lead to dissimilar optimal policies.

Thus, and as shown in Fig. 4, the percentage in number of

blocking states first increases with the cell arrival rate. Then,

when the latter increases further, for b different from zero, this

percentage decreases as the penalty term becomes relatively

very significant.

Moreover, the blocking probability Pb depends not only on

the number of blocking states, but mostly on the stationary

distribution achieved by the different policies (i.e., on the
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Fig. 4. Percentage in number of blocking states

long-term fraction of time spent in the different states). In the

following, to efficiently analyze the impact of the blocking cost

on Pb, we separately consider streaming and elastic sessions.

The service time of elastic sessions depends both on their

size assumed to be exponentially distributed with a mean of 5
Mbytes, and on their perceived throughputs. As shown before,

the lower b, the higher the network total throughput leading

to lower average service times. When the optimal policy is

adopted (i.e., the actions are fixed to the optimal ones), the

SMDP may be reduced to a Markov chain, where departure

rates increases with decreasing blocking costs. As a result,

for a given cell arrival rate, the lower b, the lower the long-

term number of simultaneous sessions. This also means that,

although the lower b the higher the percentage of blocking

states, the long-term fraction of time spent in these states is

reduced as b is low. Accordingly, the lower b, the lower Pb

for elastic sessions as illustrated in Fig. 5.
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Fig. 5. Blocking probability for elastic sessions

Nevertheless, the service time of streaming sessions exclu-

sively depends on their duration, considered to be exponen-

tially distributed with a mean of 45 s. Thereby, maximizing the

network total throughput will not reduce average service times.

Consequently, as the number of blocking states increases with

decreasing b, the blocking probability for streaming sessions

also increases (cf. Fig. 6). The long-term fraction of time spent

in all blocking states will actually be higher. Here again, for

both traffic classes, the performance of the staircase policy

with carefully chosen S1 and S2 is comparable to the optimal

one (b = 50).
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Fig. 6. Blocking probability for streaming sessions

VI. CONCLUSION

In this paper, a Semi-Markov Decision Process is used

to dynamically derive QoS information for RAT selection in

heterogeneous wireless networks. Through numerical results,

we demonstrate the network ability to globally control users

decisions in a way to maximize its long-term reward. We also

show how the blocking cost may be tuned to control opti-

mization objectives, aligning with user needs and preferences.

Besides, we prove that the intuitive and logical staircase policy,

with carefully chosen S1 and S2 thresholds, provides very

close performances to the optimal one.
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