Multi-layer radial solutions for a supercritical Neumann problem

Abstract : In this paper we study the Neumann problem \begin{equation*} \begin{cases} -\Delta u+u=u^p & \text{ in }B_1 \\ u > 0, & \text{ in }B_1 \\ \partial_\nu u=0 & \text{ on } \partial B_1, \end{cases} \end{equation*} and we show the existence of multiple-layer radial solutions as $p\rightarrow+\infty$.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01182832
Contributor : Denis Bonheure <>
Submitted on : Monday, August 3, 2015 - 9:23:19 PM
Last modification on : Tuesday, July 3, 2018 - 11:37:31 AM
Long-term archiving on : Wednesday, November 4, 2015 - 10:32:47 AM

Files

BGNT-tams.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Denis Bonheure, Massimo Grossi, Benedetta Noris, Susanna Terracini. Multi-layer radial solutions for a supercritical Neumann problem. Journal of Differential Equations, Elsevier, 2016, 261, ⟨10.1016/j.jde.2016.03.016⟩. ⟨hal-01182832⟩

Share

Metrics

Record views

267

Files downloads

156