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A PARADIFFERENTIAL REDUCTION FOR THE
GRAVITY-CAPILLARY WAVES SYSTEM AT LOW
REGULARITY AND APPLICATIONS

Thibault de Poyferré & Quang-Huy Nguyen

Abstract. — We consider in this article the system of gravity-capillary waves
in all dimensions and under the Zakharov/Craig-Sulem formulation. Using a
paradifferential approach introduced by Alazard-Burqg-Zuily, we symmetrize
this system into a quasilinear dispersive equation whose principal part is of
order 3/2. The main novelty, compared to earlier studies, is that this reduction
is performed at the Sobolev regularity of quasilinear pdes: H S(Rd) with s >
3/2 +d/2, d being the dimension of the free surface.

From this reduction, we deduce a blow-up criterion involving solely the
Lipschitz norm of the velocity trace and the C3F_norm of the free surface.
Moreover, we obtain an a priori estimate in the H*-norm and the contraction
of the solution map in the H*"%_norm using the control of a Strichartz norm.
These results have been applied in establishing a local well-posedness theory
for non-Lipschitz initial velocity in our companion paper [23].
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1. Introduction

We consider the system of gravity-capillary waves describing the motion of
a fluid interface under the effect of both gravity and surface tension. From the
well-posedness result in Sobolev spaces of Yosihara [56] (see also Wu [50, 51]
for pure gravity waves) it is known that the system is quasilinear in nature.
In the more recent work [1], Alazard-Burg-Zuily showed explicitly this quasi-
linearity by using a paradifferential approach (see Appendix 6) to symmetrize
the system into the following paradifferential equation

(11) (at + TV(t,x) -V + iTv(t,x,f))u(t’ x) = f(t’ x)

where V' is the horizontal component of the trace of the velocity field on the free
surface, v is an elliptic symbol of order 3/2, depending only on the free surface.
In other words, the transport part comes from the fluid and the dispersive part
comes from the free boundary. The reduction (1.1) was implemented for

d
(1.2) ue L{PHS s>2+§,

d being the dimension of the free surface. It has many consequences, among
them are the local well-posedness and smoothing effect in [1], Strichartz esti-
mates in [2]. As remarked in [1], s > 2+ d/2 is the minimal Sobolev index (in
term of Sobolev’s embedding) to ensure that the velocity filed is Lipschitz up to
the boundary, without taking into account the dispersive property. From the
works of Alazard-Burq-Zuily [3, 5|, Hunter-Ifrim-Tataru [28| for pure gravity
waves, it seems natural to require that the welocity is Lipschitz so that the
particles flow is well-defined, in view of the Cauchy-Lipschitz theorem. On the
other hand, from the standard theory of quasilinear pdes, it is natural to ask
if the reduction (1.1) holds at the Sobolev threshold s > 3/2 + d/2 and then,
if a local-wellposedness theory holds at the same level of regularity? The two
observations above motivate us to study the gravity-capillary system at the
following regularity level:

(1.3) w€ X = LHS N LEW2>®  with s > g+g,

which exhibits a gap of 1/2 derivative that may be filled up by Strichartz es-
timates. (1.13) means that on the one hand, the Sobolev regularity is that
of quasilinear equations of order 3/2; on the other hand, the L I/VJC2 "*_norm
ensures that the velocity is still Lipschitz for a.e. ¢ € [0,T] (which is the
threshold (1.2) after applying Sobolev’s embedding).

By sharpening the analysis in [1], we shall perform the reduction (1.1) as-
suming merely the regularity X of the solution. In order to do so, the main
difficulty, compared to [1], is that further studies of the Dirichlet-Neumann
operator in Besov spaces are demanded. Moreover, we have to keep all the
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estimates in the analysis to be tame, i.e., linear with respect to the highest
norm which is the Holder norm in this case.

From this reduction, we deduce several consequences. The first one will be an
a priori estimate for the Sobolev norm LY°H? using in addition the Strichartz
norm LY W2 (see Theorem 1.1 below for an exact statement). This is an
expected result, which follows the pattern established for other quasilinear
equations. However, for water waves, it requires much more care due to the
fact that the system is nonlocal and highly nonlinear. This problem has been
addressed by Alazard-Burg-Zuily [5] for pure gravity water waves. In the case
with surface tension, though the regularity level is higher, it requires a more
precise analysis of the Dirichlet-Neumann operator in that lower order terms in
the expansion of this operator need to be taken into consideration (se Propo-
sition 3.6 below).
Another consequence will be a blow-up criterion (see Theorem 1.3), which im-
plies that the solution can be continued as long as the X-norm of u remained
bounded (at least in the infinite depth case) with p = 1, i.e., merely integrable
in time. It also implies that, starting from a smooth datum, the solution re-
mains smooth provided its C**-norm is bounded in time.

For more precise discussions, let us recall the Zakharov/Craig-Sulem formu-
lation of water waves.

1.1. The Zakharov/Craig-Sulem formulation. — We consider an in-
compressible, irrotational, inviscid fluid with unit density moving in a time-
dependent domain

Q= {(t,z,y) € [0,T] x R" x R: (w,y) € U}
where each €); is a domain located underneath a free surface
Y ={(z,y) e REx R :y =n(t,z)}

and above a fixed bottom I' = 99 \ ¥;. We make the following separation
assumption (H;) on the domain at time ¢:
Qy is the intersection of the half space

Q= {(z,9) e R x Ry <n(t,z)}
and an open connected set O containing a fized strip around X, i.e., there
exists h > 0 such that
(1.4) {(z.9) € R x Rinx) — h <y < nt,2)} € O.

The velocity field v admits a harmonic potential ¢ : @ — R, i.e., v = V¢
and A¢ = 0. Using the idea of Zakharov, we introduce the trace of ¢ on the
free surface

¢(t7 .%') = ¢(t7 xz, 77(’57 1‘))
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Then ¢(t,x,y) is the unique variational solution to the problem
(1.5) A¢p=0inQ, ot z,n(t,z)) =v(t,z), Oho(t)lr =0.
The Dirichlet-Neumann operator is then defined by
o¢
2( 2%
L+ [V <8n ‘ z)
= (9y9)(t,z,n(t, x)) = Van(t,z) - (Vo) (L, z,n(t, z)).

The gravity-capillary water waves problem with surface tension consists in
solving the following so-called Zakharov-Craig-Sulem system of (1, )

om = Gn)p,

1 1
Opp = —gn — H(n) — §|Vaﬂ/)|2 + 3

(1.6)

(1.7) (Van - Vath + G(n)y)?

L+ |Venl?

Here, H(n) denotes the mean curvature of the free surface:

H(n) = —div (L)
V1 (Vi?
The vertical and horizontal components of the velocity on ¥ can be expressed
in terms of n and ¥ as

V:v"? i vm¢ + G(U)T/)
1.8 B = = V= = - B .
(1.8) (Uy)’Z 1+ Va2 ) (vz)]s = Va1 Van
As observed by Zakharov (see [58| and the references therein), (1.7) has a
Hamiltonian canonical Hamiltonian structure

oy oH Yy  oH

ot sy ot oy’
where the Hamiltonian H is the total energy given by

(1.9) H= L YG(n)Y dx + g/ n*dzx +/ (V1+|Vn? —1)dz.
2 Rd 2 Rd Rd

1.2. Main results. — The Cauchy problem has been extensively studied,
for example in Nalimov [39], Yosihara [56|, Coutand- Shkoller [18], Craig
[19], Shatah-Zeng [40, 41, 42|, Ming-Zhang [38|, Lannes [34]: for sufficiently
smooth solutions and Alazard-Burqg-Zuily [1] for solutions at the energy thresh-
old. See also Craig [19], Wu [50, 51|, Lannes [33| for the studies on grav-
ity waves. Observe that the linearized system of (1.7) about the rest state
(n=0,% = 0) (modulo a lower order term, taking g = 0) reads

8”7 - ’Dl“w - 07
6t¢ - A’I’] =0.
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Put ® = ]Dx]%n -+ 42), this becomes
(1.10) O +i| D,y |20 = 0.
Therefore, it is natural to study (1.7) at the following algebraic scaling

(m.0) € H*"2 (RY) x HY(R).
From the formula (1.8) for the velocity trace, we have that the Lipschitz
threshold in [1] corresponds to s > 2 4 d/2. On the other hand, the threshold
s > 3/2 4 d/2 suggested by the quasilinear nature (1.1) is also the minimal
Sobolev index to ensure that the mean curvature H(n) is bounded. The question

we are concerned with is the following:
(Q) Is the Cauchy problem for (1.7) solvable for initial data

3 d
(1.11) (no,200) € HT2 x HS, s> 51357

Assume now that
(1.12)  (.9) € L® ([o,T];HS+% X H) nLP <[0,T]; W3 WT’°°>
with
3 d
(1.13) s>§—|—§, r>2

is a solution with prescribed data as in (1.11). We shall prove in Proposition 4.1
that the quasilinear reduction (1.1) of system (1.7) still holds with the right-
hand-side term f(t,z) satisfying a tame estimate, meaning that it is linear
with respect to the Holder norm. To be concise in the following statements,
let us define the quantities that control the system (see Definition 6.1 for the
definitions of functional spaces):

Sobolev norms : M, = H(UJ/J)HLOO([O T+ x o) My = ”(UOJ/JO)HHH%XH(,’

Strichartz normn” : Notr = 00 V0, 1o

Our first result concerns an a priori estimate for the Sobolev norm M, 7 in
terms of itself and the Strichartz norm N, 7.

Theorem 1.1. — Letd>1, h >0, r > 2 and s > % + %l, Then there exists
a nondecreasing function F : RT — R, depending only on (d,s,r,h), such
that: for all T € (0,1] and all (n,%) solution to (1.7) on [0,T] with

(n.) € L (0.7 T < H*)
(n, Vi) e L' <[07T]; W Béo,l) :

inf dist(n(t),T) > h,
ok dis (n(t),T)
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there holds
Myp < F(Msp + TF(Msr) + Npp).

Remark 1.2. — Some comments are in order with respect to the preceding
a priori estimate.

1. We require only Vi € B;OJ instead of ¥ € W,

2. The function F above can be highly nonlinear. It is not simply a straight-
forward outcome of a Gronwall inequality but also comes from estimates
of the Dirichlet-Neumann operator in Sobolev spaces and Besov spaces
(see the proof of Theorem 4.5).

3. When s > 2 4 d/2 one can take 7 = s — ¢ and retrieves by Sobolev

2
embeddings the a priori estimate of [1] (see Proposition 5.2 there).

Our second result provides a blow-up criterion for solutions at the energy
threshold constructed in [1|. Let C] denote the Zymund space of order r
(see Definition 6.1). Note that C, = W™ if r € (0,00) \ {1,2,3,...} while
wnee C 7 ifre {0,1,2,...}.

Theorem 1.3. — Letd>1, h >0 and o > 2+%. Let

(o, vo) € H° 2 x H?, dist(5p,T) > h > 0.

Let T* = T*(no, o, 0,h) be the mazimal time of existence defined by (4.17)
and

(n9) € L= ([0,77); H*5 x HO)
be the mazimal solution of (1.7) with prescribed data (ng, o). If T is finite,
then for all € > 0,
T*

(1.14) PAT+ | Qe+ s

= —|—QO,

where

Pe(T*) = sup |In(t)||g2+e + Ve (t)l 5o
te[0,T*) ’

Q:=(t) = In®)ll 3+ +1VY@)llcr,
hT*) = te[i(?g’*) dist(n(¢),T").

Consequently, if T* is finite then for all € > 0,

T*

* 1 .
(1.15) PY(T™) + i Q(t)dt + ok +00,
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where 0
PYT*) = sup [n(@)llgzee + 1V, B)YO)lpo -
te[0,7%) ’
Q2t) = In@®ll 3+ + IV, B)B)lles-
Remark 1.4. — 1. We shall prove in Proposition 4.7 below that the

Sobolev norm ||(n, ) o> 2+ g, is bounded by a

”Loo([o,T];H“% xHo)’
double exponential

exp (€ Jo Qe(Bdry

where C'(T") depends only on the lower norm P.(7'). In the preceding
estimate, Q. can be replaced by Q¢ by virtue of (4.23). These bounds
are reminiscent of the well-known result due to Beale-Kato-Majda [11]
for the incompressible Euler equations in the whole space, where the C-
norm of the velocity was sharpened to the L°°-norm of the vorticity. An
analogous result in bounded, simply connected domains was obtained by
Ferrari [24].

2. If in Q. the Zygmund norm [[Vi||c1 is replaced by the stronger norm
IVl 1 ,» then one obtains the following exponential bound (see Remark

4.8)

T
0 01y < CONOOBON iy 0 (OT) [ Q1)

where C(T') depends only on the lower norm P.(T) and ¢ > 3 + 4. The
same remarks applies to QY and (V, B).

In the survey paper [21| Craig-Wayne posed (see Problem 3 there) the
following questions on How do solutions break down?:
(Q1) For which o is it true that, if one knows a priori that sup(_r 7y [|(n, )| ce <
+oo then C* data (no,vo) implies that the solution is C™° over the time in-
terval [-T,T]?
(Q2) It would be more satisfying to say that the solution fails to exist because
the "curvature of the surface has diverged at some point”, or a related geomet-
rical and/or physical statement.

With regard to question (Q1), we deduce from Theorem 1.3 (more precisely,
from (1.14)) the following persistence of Sobolev regularity.

Corollary 1.5. — Let T € (0,400) and (n,v) be a distributional solution to
(1.7) on the time interval [0,T] such that inflg 7 dist(n(t),') > 0. Then the
following property holds: if one knows a priori that for some g9 > 0

1.16 ), Vo) s < +00,
(1.16) [Sol,lgll(n() w())HC*gﬁOXci +00
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then (n(0),4(0)) € H>®(RH? implies that (n,) € L=([0,T); H*(R%))2.

Theorem 1.3 gives a partial answer to (Q2). Indeed, the criterion (1.15) implies
that the solution fails to exist if

— the Lipschitz norm of the velocity trace explodes, i.e., supg 7+ [[(V; B) 1.0 =
+00, or
— the bottom rises to the surface, i.e., h(T*) = 0.

Some results are known about blow-up criteria for pure gravity water waves
(without surface tension). Wang-Zhang [48| obtained a result stated in terms
of the curvature H(n) and the gradient of the velocity trace

T*
(1.17) / I(VV, VB)(#)lg~dt + sup )IIH(n(t))Hanp =400, p>2d.
0 te|0,1*

Thibault [22] showed, for highest regularities,

T*
(IInll 2+ + I(V, B)|lc1+ ) dt = +o0;
0 o2

the temporal integrability was thus improved. In two space dimensions, us-
ing holomorphic coordinates, Hunter-Ifrim-Tataru [28| obtained a sharpened
criterion with ||(V, B)||c1+ replaced by |(VV,VB)|lgmo. Also in two space
dimensions, Wu [55] proved a blow-up criterion using the energy constructed
by Kinsey-Wu [54], which concerns water waves with angled crests, hence the
surface is even not Lipschitz. Remark that all the above results but [22] con-
sider the bottomless case. In a more recent paper, [49] considered rotational
fluids and obtained

sup ([[v(t)llwree + [1H(0(t))ll120120) = +o0 p > 2d,
te[0,7*)
v being the Eulerian velocity. In order to obtain the sharp regularity for Vi
and (V, B) in Theorem 1.3, we shall use a technical idea from [49]: deriving
elliptic estimates in Chemin-Lerner type spaces.

Finally, we observe that the relation (1.13) exhibits a gap of 1/2 derivative
from H® to W2 in terms of Sobolev’s embedding. To fill up this gap we
need to take into account the dispersive property of water waves to prove a
Strichartz estimate with a gain of 1/2 derivative. As remarked in [23] this
gain can be achieved for the 3D linearized system (i.e. d = 2) and corresponds
to the so called semiclassical Strichartz estimate. The proof of Theorem 5.9
on the Lipschitz continuity of the solution map shows that if the semiclassical
Strichartz estimate were proved, this theorem would hold with the gain u = %
in (5.31) (see Remark 5.10). Then, applying Theorems 1.1, 1.3 one would end

up with an affirmative answer for (Q) by implementing the standard method
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of regularizing initial data. Therefore, the problem boils down to studying
Strichartz estimates for (1.7). As a first effort in this direction, we prove
in the companion paper [23] Strichartz estimates with an intermediate gain
0 < p < 1/2 which yields a Cauchy theory (see Theorem 1.6, [23|) in which
the initial velocity may fail to be Lipschitz (up to the boundary) but becomes
Lipschitz at almost all later time; this is an analogue of the result in [5] for
pure gravity waves.

The article is organized as follows. Section 2 is devoted to the study of the
Dirichlet-Neumann operator in Sobolev spaces, Besov spaces and Zygmund
spaces. Next, in Section 3 we adapt the method in [1] to paralinearize and then
symmetrize system (1.7) at our level of regularity (1.13). With this reduction,
we use the standard energy method to derive an a priori estimate and a blow-
up criterion in Section 4. Section 5 is devoted to contraction estimates; more
precisely, we establish the Lipschitz continuity of the solution map in weaker
norms. Finally, we gather some basic features of the paradifferential calculus
and some technical results in Appendix 6.

2. Elliptic estimates and the Dirichlet-Neumann operator

2.1. Construction of the Dirichlet-Neumann operator. — Let 1 €

WheRY) and f € H %(Rd). In order to define the Dirichlet-Neumann oper-
ator G(n)f, we consider the boundary value problem

(21) Am,y(b =01in Q7 (b‘z = f7 8n¢’f‘ =0.
For any h' € (0, h], define the curved strip of width A’ below the free surface
(2.2) Qpr = {(x,y) creRY () -0 <y< 77(36)} .

We recall here the construction of the variational solution to (2.1) in [3].

Notation 2.1. — Denote by Z the space of functions u € C°°(£2) such that
Vayu € L*(Q). We then define %y as the subspace of functions u € 2 such
that w is equal to 0 in a neighborhood of the top boundary 3.

Proposition 2.2 (see |1, Proposition 2.2]). — There exists a  positive
weight g € Lj5.(Y), locally bounded from below, equal to 1 near the top
boundary of 2, say in Qp, and a constant C > 0 such that for all u € 9,

23 [ sl dsy < C [[ (9o dsdy

Definition 2.3. — Denote by H'0(Q) the completion of Dy under the norm

Nl := llull 22(0.g(z,y)dedy) T 1V eyl L2 (0 dody)-
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Owing to the Poincaré inequality (2.3), H(Q) endowed with the norm ||u|| =
[Vayullz2(q) is a Hilbert space, see Definition 2.6 [1].

Now, let xo € C*°(R) be such that yo(z) =1if 2 > —%, xo(2) = 0if 2 < —1.
Then with f € H %, define

fi(z, 2) = xo(2)e*'P=) f(z), zeRL, 2<0.

Next, define
y—n(x
(2.4 J) = i, Ly e 0
This "lifting" function satisfies f|,—,) = f(z), f =01in Q\ Q4 /5 and
(2.5) £z () < B+ lnllwre) 1l 3 gay-
The map

= — /Q Vx,yi Ve ypdrdy

is thus a bounded linear form on H'?(£2). The Riesz theorem then provides a
unique u € H5%(Q) such that

(2.6) Yo € H(Q), / /Q Vgt Vi ypdody = — / /Q Vaut Vayeddy.

Definition 2.4. — With f andu constructed as above, the function ¢ := u+[f
is defined to be the variational solution of the problem (2.1). The Dirichlet-
Neumann operator is defined formally by

@7) G = VI+ V0P ouo| 0 = (0,0 = V-Vl |-

As a consequence of (2.5) and (2.6), the variational solution ¢ satisfies

(2.8) IVayllra) < KA+ [nllwre)lfll ;4 gay:

Moreover, it was proved in [22] the following maximum principle.

Proposition 2.5 (see |22, Proposition 2.7]). — Let n € WL*°(R?) and f €
H%(Rd). There exists a constant C' > 0 independent of n, 1 such that

[l (@) < Cllfll Lo (ray-

The continuity of G(n) in Sobolev spaces is given in the next theorem.
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Theorem 2.6 (see [3, Theorem 3.12]). — Letd >1,s> 31+ 9% andi <o <
s+3. Forallne HSJF%(Rd), the operator
G(n): H”—H"!

is continuous. Moreover, there exists a nondecreasing function F: Ry — Ry
such that, for all n € Hs+%(Rd) and all f € H°(RY), there holds

(2.9) IG) fllge-1 < Fnll e NS N e

2.2. Elliptic estimates. — The Dirichlet-Neumann requires the regularity
of V4 at the free surface. We follow [33] and [3] straightening out 2, using
the map

pla,2) = (14 2)e™Phn(a) — 2 { =+ () — )
(z,2) € S := R x (~1,0).

According to Lemma 3.6, 3], there exists an absolute constant K > 0 such
that if 0||n||j1.c < K then

(2.10)

h
(2.11) 0.0 1
and the map (z,z) — (x,p(x,2)) is thus a Lipschitz diffeomorphism from S
to €. Then if we call

(2.12) v(x,2) = ¢z, p(x,2)) Y(x,2z) €S
the image of ¢ via this diffeomorphism, it solves
(2.13) Lv:= (0 +al, +B-V.0, —70,)v=0 inS
where
2
= %, = —Q%, o= ai (0%p+ alyp+ B -Vi0.p).
2.2.1. Sobolev estimates. — Define the following interpolation spaces

XH(J) = C.(I; H*(RY) N L2(J; H** 3 (RY)),
YH(J) = LY(I; H*(RY) + L(J; H* 2 (RY)).

Remark that [|-|ly«(s) < ||| xn-1¢s) for any p € R. We get started by providing
estimates for the coefficients o, 3,7y. We refer the reader to Appendix 6 for a
review of the paradifferential calculus and notations of functional spaces.

(2.14)

Notation 2.7. — We will denote F any nondecreasing function from R™ to
R*. F may change from line to line but is independent of relevant parameters.

Lemma 2.8. — Denote I =[—1,0].
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1. For any o > % + %l and € > 0, there holds

(215) floo= 12 gmy g + 180 oy oy + 10 gog gy < Fllmllgaee) oy
2 If,u>% then
@16) ol oy 1B g+ o) < FOI i),

217) lollgaon + 1Bllzeqrcny +Iagcey < F (Il ey + Illzz).

Proof. — These estimates stem from estimates for derivatives of p. For the
proof of (2.15) we refer the reader to Lemmas 3.7 and 3.19 in [3]|. Concerning
(2.16) we remark that o and f involve merely derivatives up to order 1 of 7
while 7 involves second order derivatives of n. Finally, for (2.17) we use the
following smoothing property of the Poison kernel in the high frequency regime
(see Lemma 2.4, [10] and Lemma 3.2, [48]): for all K > 0 and p € [1, c0], there
exists C' > 0 such that for all j > 1,

le™ P Aju]| Lo ray < Ce™ || Ajul| Lo ra),

where, we recall the dyadic partition of unity in Definition 6.1: Id = Z;’;O A

The low frequency part Ay can be trivially bounded by the L?-norm using
Bernstein’s inequalities. O

We first use the variational estimate (2.8) to derive a regularity for V, ,v.
Lemma 2.9. — Let f € H:. Set
(2.18) E, f) = [Vay@lr2(0,)-

1. Ifne C'%jL€ with € > 0 then V, v € C([—l,O];H_%) and
(2.19) Vo] Fllnllga+e) EM; f)
Fllnlozee) (L +lInll g+ ) ECn, ).

2. Ifne H"2 with s > L L+ 2 then Vv € C([—l,O];H_%) and
(2.21) T R

X2[10}

Remark 2.10. — 1. By (2.8), we have
E(n, f) < K1+ [nllwre) £,

However, we keep in the estimates (2.19)-(2.20) the quantity E(n, f) instead
of || f HH 3 because E(n, f) is controlled by the Hamiltonian, which is conserved

under the flow. Moreover, as we shall derive blow-up criteria involving only
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Holder norms of the solution, we avoid using || f ||H i

2. The estimates (2.19), (2.20), (2.21) were proved in Proposition 4.3, [48] as
a priori estimates (see the proof there). It is worth noting that we establish
here a real regularity result.

Proof. — Denote I = [-1,0].
1. Observe first that by changing variables,

(2.22)  [Vavllrzgezy < Flnllwre)IVay@llizq,) = Fllnllwie)Em, f).
Applying the interpolation Lemma 6.22, we obtain V,v € X2 (I) and
HV$UHX—%(I) S “VJ:U“L?(I;L?) + Hazva”LQ(I;Hfl)

S IVazvllziezy) < Fllnllwe)En, f).

We are left with (2.20). Again, by virtue of Lemma 6.22 and (2.22), it suffices
to prove

(2.23)

1020l 21y < Flllmlgee) (1 + il g0) B, )
A natural way is to compute 92v using (2.13)
agv = —alAv— V0,0 +~0v

and then estimate the right-hand side. However, this will lead to a loss of %
derivative of 7. To remedy this, further cancellations coming from the structure
of the equation need to be invoked. We have

(0,0)(, (r,2)) = 500z, 2) = (Aro) (z, 2),

.p
(Vo) (x, p(z,2)) = (Vx — %az)v(x,z) =: (Agv)(z, 2).

Set U := Ajv — VpAgv, whose trace at z = 0 is actually equal to G(n)f.
Then, using the equation A, ¢ = 0, it was proved in [3] (see the formula
(3.19) there) that 0,U has the divergence form

0.U =V, - (9:pAzv).

Then, by the interpolation Lemma 6.22, it is readily seen that U € C'(I; H 7%)
and

1Vl gty S Fllnllc B, £).
Now, from the definition of A; 2 one can compute

 (U+Vep-Vev)d.p
0,v = T+ Vool =Ua+V,v-b
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with
9:p _ 0:pVap

T Vap2 T 14 [Vap2
We write Ua = T,U + Tyya + R(a,U). By Theorem 6.5 (i),

I TaU| S llalleas U1 S Fllnllgr)E, f)-
The term Tyra can be estimated by means of Lemma 6.14 as
[Toal SNl -3 lalloaes S Fllnleare) E, £)-

C(LH-3) ~
Finally, for the remainder R(a,U) we use (6.12), which leads to a loss of 1
derivative for n, to get

IR0 g1y Sl i W3y S Fllllozse) Ol ) B, )

*

C(;H™ %) C(H %) ~

C(I;H

where, we have used
la || obtey < Fllnllgzre) (1 + IIU\IC§+E)-
Finally, the term bvxv can be treated using the same argument as we have

shown that V,v e C(I; H_%) The proof of (2.20) is complete.
2. We turn to prove (2.21). Observe that by the embedding

(2.24) [nllcr+= < Clinll 11

with 0 < & < s — 4 — ¢, (2.19) implies the estimate of V,v in (2.21). For

0,v, we follow the above proof of (2.20). It suffices to prove aU € C(I; Hfé)
with norm bounded by the right-hand side of (2.21). To this end, we write
aU = hU + Tq—p)U +Ty(a —h) + R(a — h,U). The proof of (2.20), combined
with (2.24), shows that

1T (a Tty Ull gy gty S Flll ey EGL D)

Finally, by applying (6.11) (notice that Ql > %) and using the estimate

gy poey S all ety S F I )

Moty

we conclude that

IR, a) S Ul

C(I, H7§ C(I;H 2 C(I;H%+E)I(“n|’HS+%)E(Th f)

O

According to the preceding lemma, the trace V, .v|.—o is well-defined and

belongs to H ~3. Estimates in higher order Sobolev spaces are given in the
next proposition.
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Proposition 2.11 (see [3, Proposition 3.16]). — Lets >+ + 42 -1 <o <
s — 3. Assume that n € HV2 and f € H°t and for some z € (—1,0)
IV, ZUHXj o < +00.
Then for any z € (—1,0), 21 > zp, we have V, ;v € X([21,0]) and
IVl enipy < F ) { Uz + 190l oy o )

where F depends only on o and zg, 1.

A combination of (2.21) and Remark 2.10 implies
Vel o < F e

provided s > % + %l. With the aid of Proposition 2.11, we prove the following
identity, which will be used later in the proof of blow-up criteria.

Proposition 2.12. — Let s > % + g. Assume that n € H3 and fe H3.
Then ¢ € H2(Q3h/4) and the following identity holds

/R IGONS = V0l

Proof. — We first recall from the construction in subsection 2.1 that ¢ = u+f,
where [ is defined by (2.4) and u € H"?(Q) is the unique solution of (2.6).
By the Poincaré inequality of Lemma 2.2 and (2.6), (2.5)

ull2(,) < ClVayullz@) < K@+ lnllwe)llfI], 1

Therefore, ¢ € L?(€;,) and thus, by (2.8), ¢ € H' (). Now, applying Propo-
sition 2.11 we have that v = ¢(z, p(x, 2)) satisfies for any z; € (—1,0)

IVa 20l L2z 0500y < FIll oI g

Then using equation (2.13) together with the product rules one can prove that

1020l 212y 0:22) < Flnl e DIFI 3

By a change of variables we obtain V. ,¢ € H! (Q23,/4) and thus ¢ € H2(Q3h/4).
Now, taking ¢ = u € H%?(Q) in the variational equation (2.6) gives

/ Vx,z¢vm,zu =0
Q

Consequently

/’vx,y¢’2:/ ’v$,y¢’2_/vx,z(ﬁvx,zu:/var,y(ﬁvx,yi-
Q Q Q Q
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Since f =0 in 2\ /5, this implies

/ |V:v,y¢|2 :/ V:v,y‘lsvm,yi-
Q Q314

We have proved that in €3;,/4, the harmonic function ¢ is H 2. Notice in
addition that ¢ = 0 near {y = n—3h/4}. As 0Qsy,/4 is Lipschitz (n € HYF5+ ¢
W) an integration by parts then yields

[ 19asl = [ 0.0~ [ s,

which is the desired identity. U

The next proposition is an impovement of Proposition 2.11 in the sense that
it gives tame estimates with respect to the highest derivatives of n and f,
provided V, v € LE°LX.

Proposition 2.13 (see [22, Proposition 2.12]). — Lets > +4, —1 <o <
s — 3. Assume that n € H+3, feH and

Vv € L*([20,0]; L)

for some zy € (=1,0). Then for any z1 € (20,0) and ¢ € (0,5 — 3 — 4), there
exists an increasing function F depending only on s, o, zg, € such that

(2.25)
IVa 20l xo (12,0 < FlImll ee) {”f”HU‘H + 0l os 3 1V 20l oo (120,01 200
Vo0l -y o )
2.2.2. Besov estimates. — Our goal is to establish regularity results for V, .v

in Besov spaces. In particular, we shall need such results in the Zygmund space
1

with negative index C, 2, which is one of the new technical issues compared
to |6, 1, 3, 5, 48]. To this end, we follow the general strategy in [6] by first
paralinearizing equation (2.13) and then factorizing this second order elliptic
operator into the prodluct of a forward and a backward parabolic operator. The

study of Vv in Cy ? will make use of the maximum principle in Proposition
2.5. The proof of the next lemma is straightforward.

Lemma 2.14. — Set
(2.26) Riv = (o —To)Agv+ (B —1T3) - Vo,v— (y —T,)0v, Rov="T,0,v.
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Consider two symbols

o —

| =

S(—iB-€— \J1alef - (8-6)2),

1

1 : 2

AW = (= if €+ \J1aleP - (5-€)2),
which satisfy a + A = —iB - €, aA = —alé|?. Next, set
(2.28) Ry = —(T,0Taw) — Tol) + Ty_40)-

a

(2.27)

Then we have

Loy = (3Z — Ta(l))(az — TA(U)U + Riv + Rov + Rav.
The next proposition provides a regularity bootstrap for V; ;v in B, | with
r > 0. Its proof is inspired by that of Proposition 4.9 in [48|.
Proposition 2.15. — Let ¢g > 0 and r € [0,1 4+ &9). Assume that n €
C?teon[? fe H%, Vf e B, and for some 2 € (—1,0)

~ 1~

(2:29) Va0 € L([20,0]; B ) N L% ([20, 0]; B 1)
Then, for any z1 € (20,0), we have V; ;v € C([21,0]; BL, ;) and
(2.30) Ve z0lloga 08z, ) <Kney VB, + E, ),
where, K, ., is a constant of the form
(2.31) F(lInll gz+eo + llnll2)
with F : RT — R nondecreasing.

Remark 2.16. — It is important for later applications that our estimate in-
volves only the Besov norm of V f and not f itself.

Proposition 2.15 is a conditional regularity result. It assumes weaker regular-
ities of V ,v to derive the regularity in C([21,0]; BL, ;). The later will allow
us to estimate the trace V, ,v|.—o in the same space.

Proof. — Recall the definitions of R; j = 1,2,3 in Lemma 2.14. Pick € > 0
such that 2¢ < min {%, 1+e9 —r}. We shall frequently use the following fact:
for all s € R and for all § > 0, there exists C' > 0 such that

(2.32) %Hu\

oz < ullbs, , < Cllul

oco,l —

C;:‘+6 .

_1
Step 1. In this step, we estimate Rjv in L*(.J; B;f) for any J C [-1,0]. For
R; we write using the Bony decomposition

(0 — To)Apv = Ta v + R(ALv, ).
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Applying (6.28) and the assumption (2.29) (i) gives

ITael, oy Slal, opeclBetllzgioe S Kneo Vol s
oo, 1 oco,1 s

where we have used the facts that 7 + 3 + 2 < 2 + o and (by (2.17))

ol gy predee S Nl g oae € e

Next, noticing that (2 +e9) + (-1 —¢) > 0and 3 +eg—1—e > r— 3, we

obtain by using (6.29)
IR,y S ol

1
2

rT—5 ~Y ~

00,1

CQ+EO ||Axv‘|ioo3;of;6 N Kn,so HVIUHEOOB;fl

The term (8 — Tp) - V,0,v can be treated in the same way. Lastly, it holds
that

ot grd S0, stz S Koo 020l
0,1

and

1RO e S g 00, S Keall0s0lee
o, *

Gathering the above estimates leads to

H 1 H~2(JB 1 5 K’7750||vx7zv‘|zo°(J;B;Ofl)’
On the other hand, Ryv satisﬁes (using (6.28))
Ryv = ||T,0,v
Mt sty = V0
N H'V||Z2(J;Loo)‘|az HLOO(J Br—% S K, 20|02 U||~ o BT—Q )
which is finite due to the assumption (2.29).
Next, noticing that (see Notation 6.9)
Mi(aM) + M(AD) + M§(0.AD) S Ky,
we can apply Lemma 6.18 to deduce that Rjg is of order 1 and
N 1 < ||Rsvl. 1 S Kyl Vvl - 1.
RS0l ety S VR oy S Kol Vol oy,

In view of Lemma 2.14, we have proved that
(8Z — Ta(1))(az — TA(l))?} =F
with

IE] Sk Vel

_1 .
L2(J;BL. 2 o (J;BL 2mB 1)



A PARADIFFERENTIAL REDUCTION FOR THE GRAVITY-CAPILLARY WAVES 19

Step 2. Fix —1 < z9 < 21 < 0 and introduce x a cut-off function satisfying
Klzczg =0, Klzsz, = 1. Setting w = k(2)(0, — T 4))v, then
(0, —T,))w =G := k(2)F + £ (2)(0; — Ty))v.

a

As w|,—,, = 0, applying Theorem 6.21 yields for sufficiently large § > 0 to be

chosen, that w € C([z0,0]; B, ;) and
lwlleeo,087, ) S Hff(Z)FHZ (o015 7%)+
/
R R C )

Choosing 79 > ¢ and using (2.32) we deduce

w .Br V20
ol o Shney IVl oy

Now, on [z1, 0], v satisfies
(0: = Ty))Vev = Vuw + Ty 4)v, Vav|.—0 = Vf.
After changing z — —z, Theorem 6.21 gives for sufficiently large § > 0
IVavlloge 08z, ) Skaeo IVl s + IVl z (2 01871

(2,33) + HT xA(l)UHEoo ([21, 0].37"—1 + HVxUHZoo([zl,o];cﬁ)

S e R S

Then, from the equation 0,v = w + Tya)v we see that d,v € C([21,0]; B, ;)
with norm bounded by the right-hand side of (2.33). We split

v
Vel o 0B EnBL)

into two norms, one is over [zg,z1] and the other is over [z1,0]. The one
over (2o, z1] can be bounded by || f HH 4 using the estimate (2.8). Indeed, the

fluid domain corresponding to [zg, z1] belongs to the interior of €, where ¢ is
analytic, and thus the result follows from the standard elliptic theory (see for
instance the proof of Lemma 2.9, [1]) On the other hand, by choosing a large
0 > 0 and interpolating between B__ 1 and B’_,, the term

Ve z0l|

00,1

Lo ([21,0];B *%BE)

appearing on the right-hand side of (2.33), can be absorbed by ||V, ZUHZOO([zl OB 1)
M P01

on the left-hand side, leavmg a term bounded by ||V, ZUHLOO(zl 0sB=%)" Fi-

nally, choosing § > % + 5, we conclude by (2.32), Sobolev’s embedding and
(2.19)-(2.20) that

||V:szHLoo(Z1 0;B < Va0~ KnyeoE(n,f)-

Lo ([0, 0 H2) ™~
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O

Corollary 2.17. — Let s > 3+ %, g9 € (0,s — 3 — %) and r € [0,1 + &).
Assume that n € H5"2 and feH, VfeBL,. Then forany z € (-1,0),
we have Vv € C([2,0]; BL, 1) and

IVavlleqzoBr, ) Skae VB, + E, f)-

Proof. — Under the assumptions on the Sobolev regularity of 7 and f, we can
apply Proposition 2.11 in conjunction with (2.21) to get for any z € (—1,0),
1teo

Vv € C([2,0) Y > O((2,0); C270) 5 O([2,0): B, ).

1
Notice that n € H+3 C2te0 and Vf € H ! — BZ, 1. Then the bootstrap
provided by Proposition 2.15 concludes the proof. O

Considering the case r = —%, we first establish an a priori estimate.

Proposition 2.18. — Assume that n € C2T%0 N L? for some 9 > 0, and
_1 _1
feL>® VfeC,?. IfVyveC(z0];C ?) for some z € (—1,0) then

2.34 \Y% 1 S \Y% 1+ EMmf).
(2.34) Vo0l ooy Sy IV g+ B )
Proof. — We follow the proof of Proposition 2.17. The first step consists in
estimating R;v in L2C; ! Fix 0 < & < min{3$,&0}. For Ryv, a typical term
can be treated as

lce

—€

—To)Az0||72, 7.1y S _ 3 Azl _
(e = Ta) Agvll 32 g0y < e oo, 18012 :

L2(J;C C,

S K, Vv .
~ 77750H x HEOO(J7C:%_E)

On the other hand, Ryv satisfies

~ < <
||R2/UHL2(J;C;1) ~ ||7Hz2(‘];c*%+s)||8ZUHEOO(J;C*—%+5) ~ Kn,€0‘|azv||zoo(J;C:%_g)-

Since R3 is of order 1 with norm bounded by K, ., it holds that
HR3U||Z2(J;C;1) < Kn,soHV:vUHZoo(J;c;l)-
Consequently, we obtain
(0: = T,)(0: = Tpm)v = F
with

HFHE2(J;C:1) S Knveo”Vx,zUHZOO(J;C*—%_E)-

Now, arguing as in the proof of Proposition 2.17, one concludes the proof
by applying twice Theorem 6.21, then interpolating ||V, v . ode between
LOO

-5



A PARADIFFERENTIAL REDUCTION FOR THE GRAVITY-CAPILLARY WAVES 21

IV vl ot and ||V ,v||7en-s With large § > 0, where the later can be
Lo * *
controlled by E(n; f) via Sobolev’s embedding. O

Next, we prove a regularity result, assuming 1/2 more derivative of 7.

5
Proposition 2.19. — Assume that n € C*2+60 N L? for some ey > 0, and
_1
f e LOOHH%, Vf e C.?. Then, for any z € (—1,0) we have V v €
1

C([z,0];Cy ?) and

235) Vel |y < Kaeo {1911 g+ (U 0 o) U |-

Proof. — We still follow the proof of Proposition 2.17. The first step consists
in estimating Rjv in L>C 1. For Ry, a typical term can be treated as

(0 = Ta) Astllza oty S lalzagyicoo |1 Atll e et
S Ko (11 e IV 2 0y
On the other hand, Rov satisfies
B0l 200 S Iy 1950 5 ity S KopeollOotl i
Since Rj3 is of order 1 with norm bounded by K, ., it holds that
152201y S KooVl ze o
Consequently, we obtain
(0: = T,)(0: = Tyo))v = F
with
Pl zscsi0t S Kneo (L 1 o) IVl oy

Then, arguing as in the proof of Proposition 2.17, one concludes the proof by
applying twice Theorem 6.21: once with ¢ = 2, § > 1 and once with ¢ = 1
and § = 1 so that Proposition 2.5 can be invoked to have

||V£B,Zv‘|zoo(J;C:1) SKn,ao HfHL‘X’
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2.3. Estimates for the Dirichlet-Neumann operator. — We now apply
the elliptic estimates in the previous subsection to study the continuity of the
Dirichlet-Neumann operator. Put

L+ |Vmp|2

G = R

9 <2 = vll?p
By the definition (2.7), the Dirichlet-Neumann operator is given by

G(n)f =(10.v—(2- V:BUL,:O

2.36
( ) — hilazv + (Cl - hil)azv - C2 : V;,;’U‘

z=0’

where v is the solution to (2.1).

Proposition 2.20. — Let s > % + %l, n € H3 and f € H°. Then we have
(237) GO g Sy W s + Wl ey {IV e, + B0, )}
Proof. — Notice first that by the Sobolev embedding, n € C2*40. Using the

formula (2.36) and the tame estimate (6.21) we obtain

G f 1 S Kneo I Ve z0]=0ll -1 + [0l e

Under the hypotheses, Corollary 2.17 is applicable with » = 0. Hence, in view
of (2.32), it holds that

Vze (<1,0), [Vastllooguomn ) Sk 195150, + EG1 ).

v:1:,sz|z:O||L°°-

Noticing embedding ng1 — L, we deduce

IGOlarr Sieyg W+l ey {1V S, + B 1)}

which is the desired estimate. O

Proposition 2.21. — We have the following estimates for the Dirichlet-
Neumann operator in Zygmund spaces.

1. Let s > 3 +4, ¢y € (0,s—3—%) andr € (0,1+ey). Assume that
nEHS+% and f € H%, Vf € B, Then we have

00,1
(2.38) G fllBr,, SKyeo VB + E, ),
where recall that K, o, is defined by (2.31).
5 _
2. Let eg > 0. Assume that n € CE+€O, ferL™ NH? and VfeC,

239) NGOy Sy IV g+ (g 1l

2

1
2

, then
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_1
3. Leteg > 0. Assume thatn € C’f*eoﬂH1+g+ and f € H3+5, VfeC,?,
then

(2.40 GOy Sitye 1951y + E0. ).

2

Proof. — We first notice that ‘|<j|z:0||Ci+80 S Kyeo-

1. Using the Bony decomposition for the right-hand side of (2.36), we see that
(2.38) is a consequence of Corollary 2.17, (6.25), (6.26) and the embedding
BY | < L.

2. For (2.39) one applies the product rule (6.22) and Proposition 2.19.

3. For (2.40) we first remark that owing to Proposition 2.11, the assumptions

nE H1+g+, fe Hits imply

d _1

z€(=1,0), Va.ve C([z,0H278) < C([2,0);C, ?).

Therefore, the a priori estimate of Proposition 2.18 yields

<
IVavll g omby Snco 1l g + B, f),
which, combined with (6.22), concludes the proof. O

To conclude this section, let us recall the following result on the shape derivative
of the Dirichlet-Neumann operator.

Theorem 2.22 (see [34, Theorem 3.21]). — Lets > 3+ 9%, d>1 and ¢ €
H3. Then the map

G(): H 2 — H?
is differentiable and for any f € Hs+%,
G - [ = lim = (Gl + <) — GOn)f) = ~Gn)(Bf) — div(V f)

where B and V' are functions of (n,v) as in (1.8).
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3. Paralinearization and symmetrization of the system

Throughout this section, we assume that (7,) is a solution to (1.7) on a time
interval I = [0,7] and

1 1 Sten
ne LI H )N LYI;C2T),
€ Lo(I; H®), Vop € L'(I; BL 1)

> § + C—i >0
STy Ty
inf dist(n(¢),T") > h > 0.
tel

We fix from now on

)

0 < & < min{e,, 5

and define the quantities
A= |nllgzres + Il + IVt | + E(n,9),

3.2
(3:2) B=lnll_ge. +IVabllay, +1

Our goal is to derive estimates for (n,v) in L*(I; H5 2 x H?) by means of A
and B and keep them linear in B.

3.1. Paralinearization of the Dirichlet-Neumann operator. — Our
goal is to obtain error estimates for G(n)y when expanding it in paradifferen-
tial operators. More precisely, as in Proposition 3.14, [1], we will need such
expansion in terms of the first two symbols defined by

AL = ¢ 1+ |Vl €7 = (Vi - €)2,
(33) o . 1+|Va® (1) (1) o1
)\ = W |:le((1 VT]) + ’Lag)\ . V(X ]
with
1
.- = O L.
a‘ +11V .
11 yvnP( n-¢)

Set A := A 4+ A0,
To study G(n), we reconsider the elliptic problem (2.1), i.e.,
(34) Am,y¢ =01in Q’ ¢|E = TIZ), an¢|F = 0.
Let

v(z, 2) = ¢z, p(x,2) (2,2) € S =R x (~1,0)
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as in Section 2.2. Then, by (2.13), v satisfies Lv = 0 in S. Applying Propo-
sition 2.13 with ¢ = s — 1 and Corollary 2.17 with r = 0 we obtain for any
z € (—1,0)

IVe 0l o gy Sa lelae + ey {IV050, + B0},
Sallllms + lnll s -
On the other hand, Corollary 2.17 with r = 1 yields for any z € (—1,0)
(3.6) IV 2vllesom, ) Sa VYl |+ EM, f) SaB.
Lemma 3.1. — We have
%0 + Ty Ayv + Tp - Vi 0ov — To0pv — To. w7y = F1,
where, for all I € (—1,0], Fy satisfies

1Eil g gy St Bl oy + 1l }

(3.5)

Proof. — From equation (2.13) and the Bony decomposition, we see that
Fi=—-Rw=—(a—-T,)Av— (8—-1Tp) - VO.v + R(v,0,v).
Writing (o — To)Azv = (o — h? — Ty_p2)Agv + (h? — Tj2)Av, we estimate
using (3.6)
I = h? = Ty p2)Agll 2 s S 1 Tag0(@ = B2l 2 s + | R(Ta 00 0 — B2) || 2125
S A0l g2 i@ = B 2 s
<a Bl .-
Since (h? — Tj2) is a smoothing operator, there holds by Remark 2.10

1(h? = Th2) Aol poms S IVavllzzre S L+ [Inlwreo) 191,y Sa 1l rs

The other terms of F; can be treated similarly. O

The next step consists in studying the paradifferential equation satisfied by
the good-unknown (see [6] and the reference therein)

0,v
0:p
Notice that b|,—o = B. Estimates for b is now provided.

u:=v—"Typ with b:=

Lemma 3.2. — For any I € (—1,0], we have
(3.7) [0/ oo 15100y S 1

(3.8) [V :bl oo 1,00y Sa B,
(3.9) Hv?c,zb”Loo(I;C*_l) SaB.
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Proof. — We first recall the lower bound (2.11)

(3.10) 0.p> g

Observe that with respect to the L*°-norm in z, p and n have the same Zyg-
mund regularity, hence

(311) Hvi,szLoo(I;Cf*) + Hvi,szLOO([;C;lJFE*) S.A 1.

Next, applying Corollary 2.17 with r = 0 yields

(3.12) va,zU”C(I;Bgoyl) Sal
On the other hand, recall from (3.6) that
(3.13) ”Vx,zU”C(I;B}XJ’l) Sa B

Using equation (2.13), 9%v can be expressed in terms of (a,f3,7) and
(Azv, V30,v,0,v). It then follows from (3.13), (3.11) and Lemma 6.16 that

(3.14) ||831)HC(1;32071) SaB.
Let us now consider

D30 = —al 0.0 — 0.0l v — -V, 020 — 0.6 - Vidov + 020 + 0.70,v.
We notice the following bounds

-0l g 108, g #1031, oy S

1
C(I;02) ;C2)

which can be proved along the same lines as the proof of (2.17).
Then using the above estimates and (6.22) one can derive

(3.15) 18201001y S B-

;C:%)

The estimates (3.7), (3.8), (3.9) are consequences of the above estimates and
the Leibniz rule. O

Lemma 3.3. — We have
Pu := (fu +ToAyu+Tg - Vie0u—T,0,u = Iy,
where, for all I € (—1,0], Fy satisfies

1Pl ey Sa Bl ey + 161}

Remark 3.4. — Compared with the equation satisfied by v in Lemma 3.1,
the introduction of the good-unknown u helps eliminate the bad term Tj_,7,
which is not controlled in L2H?.
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Proof. — We will write A ~ B if

14 = Bllgaas Sa Bl ey + Il b
From Lemma 3.1, we see that
(3.16) Pu = Pv—PTyp =Ty,,y— Plyp+ Fi

and Fy ~ 0. Therefore, it suffices to prove that PT,p ~ T,0,v.
In the expression of PTjp, we observe that owing to Lemma 3.2, all the terms
containing p and V, .p are ~ 0, hence

(3.17) PTyp ~ Typd2p + T TyAp + Ts - T,V . p.
Next, we find an elliptic equation satisfied by p. Remark that w(z,y) := y
is a harmonic function in 2. Then, under the change of variables (z,z) —
(z,p(x, 2)), (v,2) € S =R x (—1,0),
w(z, z) = w(z, p(x, 2)) = p(x, 2)

satisfies

Lp=(0?+al, + - Vz0. —~9.)p = 0.
Then, by paralinearizing as in Lemma 3.1 we obtain

2p + Tolyp +Ts - Vi0:p — T,y ~ 0,
where we have used the fact that 75,0.p ~ 0. Consequently,

Tba,gp + Ty ToAep + Ty1}p - Vi0.p — TbTsz'Y ~ 0.
Comparing with (3.17) leads to
Plyp ~ [Ta, Tb]Ap + [Tﬁ, Tb]vazp + TbTazp'Y-
By Lemma 3.2, it is easy to check that [T, T3] is of order —1 and
ITe, To]Apll L2is S BllApll2ps=1 Sa Blnl| v 1 -

In other words, [T,,Ty|Ap ~ 0. By the same argument, we get [T, T;|V0.p ~
0. Finally, since

TbTazp7 ~ Tb82p7 = T82v7
we conclude that PTy,p ~ T,0.v. O

Next, in the spirit of Lemma 2.14, we factorize P into two parabolic operators.

Lemma 3.5. — Define

1
O = (i8:aV 1D _ ~g®
a 10 — a0 (285(1 0. A Ya ) ,

PO —

= g (00,4 —40)
a —
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so that

(3.18) aM + AW = —ig.¢, oWAD = —g|¢?.

Set a=aV) +a®, A=A0 4+ AO gnd R =T, T4 — T,A. Then we have
=(0: =Ta)(0: = Ta) + R

and for any I € (—1,0],

| Rullgarey Sa Bl ey + 01l } -
Proof. — From the definitions of a, A, we can check that
aM AW 4 %aga(l) 9, AW + MW AO L 4O AM = _q ¢,
a+A=—if-&+1.

A direct computation shows that

R = (TaTA — TaA) + ((Ta + TA) + (Tﬁ -V — Tq/)) 0, =T,Tr — T, A

(3.19)

by the second equation of (3.19). Now, we write
ToTa =T, Ty + T, Ty + Ty Ty0) + Too Tyo-
We have the following bounds
M (@) + M5 (AY) < F(|[nllgz+) (L + [l of)
Mi (D) + M%(A(l)) S Fllnllgz+e),
M%(G(O)) + MO%(A(O)) S Fllinlgzee) 1+ il g,

|

M(a @) + MY(A) S FlInllco+e)-
Then, applying Theorem 6.5 (ii) we obtain
[To0 Tao) = T a0 | a1y S5
(320) 1To0 Taw) = To@ a0l st g S5
1T Taor = Tom a0 | s g gy S5

1Ta Tac) = T a0 = Tipa 9,40l s g S 5

where = denotes any constant of the form
Flllllgzse )0+ g

Therefore, the first equation of (3.19) implies
[Rull 2= S Bl Vaull

L2H2
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where, we have replaced Hu||L 1 by || Vaul| 1 according to Remark 6.8.

2HS+§ I2HS" 2
Finally, writing V,u = Vv — Ty_pp — TpVip we conclude by means of (3.5)
and (3.7) that

(3.:21) IVl o ey S BN + 1]y -

Proposition 3.6. — It holds that
Gy =T\(¢Y —Tpn) +Ty -Vn+ F
with F' satisfying

VFN ey S B{I0lms + il ey } -

Proof. — A combination of Lemma 3.3 and Lemma 3.5 yields
(0, — T,)(0, — Ta)u = Fy,
where, F satisfies for all I € (—1,0],

(3.22) | Falla sy Sa B{ Ul + nll vy } -

The proof proceeds in two steps.

Step 1. As in the proof of Proposition 2.30, we fix —1 < zp < 21 < 0 and
introduce k a cut-off function satisfying k|.<., = 0, K|.>2, = 1 . Setting
w = k(2)(0; — Ta)u, then

(0, — Ty)w = G = k(2)Fou+ £'(2)(0, — Ta)u.

We now bound G in L?([20,0]; H). First, it follows directly from (3.22) that
(3.23)

1(2) Faul

vt oy S IR Rl a0z S B{Ie e+l vy | =210

Next, notice that p := «/(2)(9,—T4)u is non vanishing only for z € I := [z, 21].
In the light of Lemma 3.2,

3+ (1Vazvll L2 ;)

”vx,zuHLQ(l;HS) S.A B|’77HH5+7

Hence
(02 — TA)UHL2(I;H5) SA ”Vx,zu”L2(I;Hs) SA B”T/HHH% + HVmU”B(I;Hs)-

The fluid domain corresponds to [zp, 21| is a strip lying in the interior of Qp,
where the harmonic function ¢ is smooth by the standard elliptic theory. In
particular, there holds (see for instance the proof of Lemma 2.9, [1])

IVe2vllre(r;ms) Sa Il -
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Therefore, we can estimate

HPHL2([ZO,0];HS) S I0: — Ta)ul 22 ([20,21];H®)

SA Bl vy + Va2l L2 (fzg,01:09),

oty
Sa Bl ey + 10,4 }-
This, combined with (3.23) , yields

(3.24) 1G e 1y g 54 B{ Wl + 10l oy | =TT

Consequently, as w|,—., = 0, we can apply Theorem 6.20 to have HwHXs+ Y (rol) S
Z0
II, which implies

Step 2. We will write f; ~ fy provided ||f1 ngxs+2 o)

earizing (using the Bony decomposition and Theorem 6 12) we have

< II. By paralin-

141V
M@ v=VpVv ~T g2 0.0+2Tyv, Vp—T L1+l 0.p—T1v,Vv—Tg,-Vp.

0:p dzp 9zp

Then replacing v with u + Tpp we obtain, after some computations, that

1+ |Vpl

9. 0.v—=Vp-Vo~T  g,p20.u—Ty, Vu+Tyy,—v,- Vp.
z

9zp

Now, using (3.25) allows us to replace the normal derivative d,v with the
"tangential derivative" Tqv, leaving a remainder which is ~ 0. Therefore,

T1+\Vp\2 o,u — TVp -Vu~Thu+ Tpr7Vv . Vp
Ozp
with
1+ |Vpl
0.p

One can check that A|,—g =\ = A 420 a5 announced. On the other hand,
at z =0,

A= A—1iVp-E&.

bWp—Vu=DBVn—Vi=V, u=1v—Tgn.

In conclusion, we have proved that

G(n)p ~ Ta(yp —Tpn) + Ty - V.
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3.2. Paralinearization of the full system. —

Lemma 3.7. — There exists a nondecreasing function F such that
H(n) =T+ f,
where € = 02 + () with
1 9 .
2 Vi - §) v 2
3.26) (?) = (14 |vy? ( 2—(7>, (D = —— (8, - 9 )P,
(3.26) N I (S (0, - 3)

and f € H® satisfying
[ lls < F (Inllyre) H77HC§ IVl ey -

Proof. — We first apply Theorem 6.12 with w = Vn, p =5 — % and p = % to
have

\Y 1 Vn® Vn
——L__T,Vn+h, p= .- .
V1+|Vn| A+ vaP)z 1+ [Vnl?)?

with f1 satisfying

il gt = F UVl ) [V g IV ey -

Hence,
H(n) = —div(T,Vn + f1) = Tpe.c—idivpen — div f1.
This gives the conclusion with 12 = pg- ¢, 1V = —idivpe, f=—divfy. O

We next paralinearize the other nonlinear terms. Recall the notations

5 V0V + Gy

, V=V¢—BVn.
1+ |V
For later estimates on B, we write
Vn 1
B=—1 .Gyt ——— G
(3.27) 1+ |V 1+ |V

—=: K(Vn) - Vip + L(Vn)G(n)p + G(n)b,

where K and L are smooth function in L>(R?) and satisfy K (0) = L(0) = 0.
From this expression and the Bony decomposition, one can easily prove the
following.

Lemma 3.8. — We have
(3.28) |(V.B)lps | S4B,
(3.29) IV, Bl Sa L.
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Lemma 3.9. — We have
1(Vn-Vy 4+ Gn)y)?
2 14|V

with f € H® and

1
5 Vol - =Ty Vo~ TyTp - Vi = TpGn) + f,

11l Sa BAlInllas + 1ol s -

Proof. — Consider

1 2

F(a,b,c) = —M, (a,b,¢) € R? x R? x R.

2 1+ |a

We compute
aaF:(ab—i-cz) <b—(ab+02)a>, 8F:(ab+02)a, ) :(ab—i-cQ)‘
1+ |a 1+ |a 1+ |a 1+ |a

Taking a = Vn, b = Vi), and ¢ = G(n)y gives
0.,F =BV, 0O,F =BVn, 0. F=B.

The estimate (2.38) with r = 0 gives

1@, b, ¢)|lzee Sa L.
Next, Proposition 2.20 implies

(@, b, O s Sallnl ysr g + 1]

On the other hand, the estimate (2.38) with » = 1 implies

I(a,b,¢)lc: Sa B.
Using the above estimates, we can apply Theorem 6.12 with p = 1 to have

1(Vn-Vy = Gny)?
2 1+ |V
with

= TVB . V?]—FTBV” . Vl/) +TBG(77)1/J + fla

1l gemses S Bl vy + el }
By the same theorem, there holds
1
5 VO =Toy Vo + fo, | fallgsrsr Sa B¢l

At last, we deduce from Theorem 6.5 (ii) (with m = m’ =0, p = 1) and the
estimates for (B, V) in Lemma 3.8 that

|(Tev — TvTs) - Vall, .oy Sa BIVal

A combination of the above paralinearizations concludes the proof. O

1
H°" 2
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Lemma 3.10. — We have

I ToBnllgs Sa Blnll vy -
H> ™2

Proof. — Applying the paraproduct rule (6.16) gives

1 Tosnll s < ||<9tBHC:% 10l ors -

The proof thus boils down to showing ||(9tBHCf% <A B. By Theorem 2.22 for

the shape derivative of the Dirichlet—Neumannﬁ we have

0y [G(n)Y] = G(n)(0xp — BOm) — div(V o).

From the formulas of V, B and the definition of G(n)v, the water waves system
(1.7) can be rewritten as

om=B-V-Vn,
3.30 1 1
(3.30) 8t¢:—V-V¢—g77+§V2+§B2+H(n).
We first estimate using Lemma 3.8 and (6.21)

ldiv(Vom)ll -3 SIVB -V -Vn)ll 3 SIVE-V(V-Vn)lc: SaB.

3
* C*

Similarly, we get

100 — BOml|Le Sa, 100 — Bomllcr Sa B.

Consequently, the estimate (2.39) yields

1G (1) (O — Batn)HC—% Sa B,

from which we conclude the proof. Remark that the estimate (2.40) is not
applicable to G(n)(9;¢ — Bdyn) since under the assumption (3.1) we only have

o — Bom € He+ (due to the bad term H(n)) and not Hatst, O

We now have all the ingredients needed to paralinearize (1.7).

Proposition 3.11. — There exists a nondecreasing function F such that
with U 1= 1 — Tpn there holds

{ om+Tv -Vn—T\U =fi,

3.31
(3:31) QU + Ty - VU +Tpn —fo,

with (f1, f2) satisfying

N Sl ey e S BN e + 1l pery | -
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Proof. — The first equation is an immediate consequence of the equation 9y =
G(n)Y and Proposition 3.6. For the second one, we use the second equation of
(1.7) and Lemmas 3.7, 3.9 to get

oy —TpG(n)y +Ty (V) —=Tp-Vn) +T;n =R
with
1Rl Sa B{ NNz + Il yeey | -
Next, differentiating U with respect to ¢ yields
U = Opp — TpOm — Ty, gn = 0 — TG (n)h — To, BN,

where the H*-norm of Ty, g1 is controlled by means of Lemma 3.10.

On the other hand,
Vi —TpVn=VU+Typn
and by (3.28)
ITvTvenllgs SallTwsnllgs Sa VBl e (10l gs Sa Bllnllas-
The proof is complete. O

3.3. Symmetrization of the system. — As in [1] we shall deal with a
class of symbols having a special structure that we recall here .

Definition 3.12. — Given m € R, X denotes the class of symbols a of the
form a = a™ + o™= with

a(m)(mjg) = F(Vn(z),§), am=b) m§ Z Fo(Vn(z),8)0n(x)
|a|=2

such that

1. T, maps real-valued functions to real-valued functions;
2. F is a C™ real-valued function of (¢,€) € R% x R4\ {0}, homogeneous
of order m in &, and there exists a function K = K(¢) > 0 such that

F(C,€) > K(OI™, ¥(¢,€) € R x R\ {0};
3. the Fys are complex-valued functions of (¢,€) € R x R4\ {0}, homoge-

neous of order m — 1 in &.

In what follows, we often need an estimate for u from T,u. For this purpose,
we prove the next proposition.
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Proposition 3.13. — Letm, u, M € R. Then, for all a € ¥™, there exists
a nondecreasing function F such that

(3.32) [ull pruem < F(lnllcz) (1Taullme + lull g-20)

(3.33) lull s < Flallez) (ITatllcs + ullgoae)

here F depends only on m, u, M and the functions F, F, given in Definition
3.12 of the class ™.

Remark 3.14. — The same result was proved in Proposition 4.6 of [1] where
the constant in the right hand side reads F(||n(t)||gs—1), s > 2 + 4.

Proof. — We give the proof for (3.32), the proof for (3.33) follows similarly.

We write a = a™ + a1, Set b = ﬁ Applying Theorem 6.5 (ii) with
a

p = ¢ gives Ty T (my = I 4+ r where r is of order — and

(3.34) [rull o < F([Vallce) llull e < F ((Inllcrve) lull e
Then, setting R = —r — T}, T (m—1) we have
(3.35) (I — R)u =TT u.

Let us consider the symbol a1 having the structure given by Definition
3.12. Applying (6.22) and (6.24) yields for |a| = 2 and uniformly for || = 1,

1Ea(Vn, )0z nllco1ve < 1Fa(Vn, Ol 107l co1+e < F(|In]

Similar estimates also hold when taking ¢-derivatives of Fy,(Vn,£)0¢n. Con-

sequently, a(™m~1 e I.’Cnllle and thus by Proposition 6.7,

c2)-

[ Tam— ull gu-m+= < F(lInllcz)lullgx-
Because b € T'y"™ with semi-norm bounded by F(|n]|o1+<) we get
(3.36) 1Ty Ty m—v ull e < F(In]
Combining (3.34) with (3.36) yields
[ Rul| e < F(l[nllc2)lull 0.

c2)||ul e

In other words, R is a smoothing operator of order —e. Now, multiplying both

sides of (3.35) by 1+ R+ ... + R" leads to
uw— RNy = (1+R+ .. —i—RN)TbTau.
On the one hand, using the fact that R is of order 0, we get
10+ Rt oo+ RVt e < F(Inlle2) Ty Tt g
< FlInlle2) | Taullgn.
On the other hand, that R is of order —e implies

IRY wll em < F(|Inll o2 )l prsm—ov=
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Therefore, by choosing N sufficiently large we conclude the proof. O

For the sake of conciseness, we give the following definition.

Definition 3.15. — Let m € R and consider two families of operators of
order m,
{A(t) : t € [0,T]}, {B(t):te€][0,T]}.

We write A ~ B (in ¥™) if A— B is of order m—% and the following condition

1s fulfilled: for all p € R, there exists a nondecreasing function F such that for
a.e. t€[0,7T],

1AW~ BO,, wmey < Fn®llez) (1 00l 3 )-

Proposition 3.16. — For any a € ™ and b € ¥™ | it holds that
1Ty ~ T¢
(in =) with

¢ = ampm) 4 qm=Dpm) | m=1ym) L Lo qomg gm),
(3

Proof. — 1. Since the principal symbol a(™(t) contains only the first order
derivatives of 1, applying the nonlinear estimate (6.23) we obtain

$a(a™ () < F(lln(®)ll gree ) (1 + ()]l .5 )-
On the other hand,
(@™ (t)) < f(ll??(t)\lc*g)

and

Mg (@™ (8) < F(lIn()]l gree )

2. The subprincipal symbol a(™~Y(t) depends linearly on %7 ,|a| = 2 and

nonlinearly on V7. Hence a1 ¢ I’T};l and by (6.21) and (6.23) we have

uniformly for |¢| = 1,
[ Fa(Va(t 2), )05 n(t, o)l g
< Fa (Tt ).€) = Fal0.00070(t ) g + [Fa(0. ) 100 (2, )]
< Z(ln®ll 3) lIn(®)

The same estimates hold when taking £-derivatives, consequently
MY @D @) < F(lln()] _g) lIn(t)

1
(oF
I 5.

(o]

[ | 5.
C2 (o]

On the other hand,
Mgl (8) < F(In(t)lloz)-
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3. We now write
ToTy = Ty m) Tyomy + Lyom—1 Lyemny + Toom) Tyonr—1) + Toom—1) Tym/ -1y

a

Using 1. and 2., we deduce by virtue of Theorem 6.5 (ii) with p = 3/2 that

T Tymty = Tgomypom 123 9,500 | s, ppn—mermi+3

< F(In@®llga+e ) X+ Im®1 .3 )-
The same theorem, applied with p = 1/2, yields
T Tyimy = Taomsyom |y, gyicmimn e < Fln@lloz ) (1 + @ 5 ),
T Ty 1) = Tytm—syyons |y i imamnrs g < FUnllez ) (1 + In(@)ll 5 )-
Finally, applying Theorem 6.5 (i) leads to
1Ty Ty~ gy grio-ommir 2. < F([n()ll 2 )-

Putting the above estimates together we conclude that T,T, ~ T, in L™+

O

Using the preceding Proposition, one can easily verify that Proposition 4.8 in
[1] is still valid:

Proposition 3.17. — Let g€ X°, p € E%, v E 3 defined by
g = (1+]9n) 2,
p =1+ 01 _%\/A—er U,

where

1 ,
P12 = ) {q<0>e<1>—7<1/2>p<1/2>+za§7<3/2>axp<1/2>}.

Then, it holds that
T,I ~T,1,, T,1,~T,T, (T))" ~T1T,.

We are now in position to perform the symmetrization.

Proposition 3.18. — Introduce two new unknowns
Dy =Ty, P=T,U.

Then ®1, ®9 € L>(]0,T],H®) and

{&@1 + Ty - VO, — TP = I,

3.37
( ) 0r Py + Ty 'V‘PQ—FT,Y(PQ = I,
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where, there exists a nondecreasing function F independent of 1,1 such that
for a.e. t € [0,T], there holds

(3.38) 1P Bl e S B0l oy, + 10l }

Proof. — Tt follows directly from system (3.31) that ®;, ®9 satisfy
(3.39) 01+ Ty - VO, =T, Py =T, f1 + To,pn + [Tv - V, Tp]n + Ry,

' 0iPo+ Ty - VOy + T, Py =T, fo + T5,qU + [Ty - V, T,]U + Ro,
where

Ry = (T,T\ — T, T,), Ry = —(T,T, — T,T,)n.
Let IT denote the right-hand side of (3.38). According to Proposition 3.17,
[ Bl s + || Rllms S TL.
On the other hand, Proposition 3.11 implies
1Ty fill s + [T fol s S TL.

Owing to Lemma 3.8 and the norm estimates for symbols in Proposition 3.16,
the composition rule of Theorem 6.5 (ii) (with p = 1) yields

I[Tv -V, Tl gs + [ Tv - V, Tg)U || g < 1L
It remains to prove
[T,

To this end, we first recall from the first equation of (3.30) that 9;n = B—V-Vn.
Hence |01l Sa B and

M@ Y) + ME(Dig) S4B,
which, combined with Theorem 6.5 (i), yields

HS+%*>HS + ”Tatq”HS_)Hs SA B

”Tatp(l/Q)”Hs-F%HHS + HTatqHHS—)HS S.A B

We are thus left with the estimate of || Ty, -1/2 ||
sition 6.7, it suffices to show

JE According to Propo-

(3.40) M2 (0,pY) <4 B.
Recall that p(~1/2) is of the form
ptVA =" Fu(Vn, a8,

|af=2
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where the F,, are smooth functions in { # 0 and homogeneous of order —1/2.
Hence,

oD = 3 [ Fu(Vn, )10+ D Fa(Vn,€)0:09,
|| =2 |or|=2

It is easy to see that

_1

My * ([0 Fa(V,§)105m) Sal.

For the main term F,(Vn,§£)0,0%n we use the first equation of (3.30) to have

;0% = 0B — VV.1).
Hence

Hata(mlnuc;l < HB - vanHC} S.A B.

The product rule (6.22) then implies

_1
MC§ (Fa(V,€)0:05m) Sa B,
which concludes the proof of (3.40) and hence of the proposition. O

4. A priori estimates and blow-up criteria

4.1. A priori estimates. — First of all, it follows straightforwardly from
Proposition 3.18 that the water waves system can be reduced to a single equa-
tion of a complex-valued unknown as follows.

Proposition 4.1. — Assume that (n,v) is a solution to (1.7) and satisfies
(3.1). Let ®1, Py be as in Proposition 3.18, then

O = By +i®y = Tyn + iT,U

satisfies
(4.1) (8 +Tv -V +iT,) ® = F,
(42) IE@ e Sa BLl vy + 100 -

In order to obtain H* estimate for ®, we shall commute equation (4.1) with
an elliptic operator p of order s and then perform an L?-energy estimate. Since
73/2) is of order 3/2 > 1, we need to choose p as a function of 7(3/2) as in [1]:

(4.3) o = (413/2))25/3,

and take ¢ = T,,®. To obtain energy estimates in terms of the original vari-
ables 77 and 1, it is necessary to link them with this new unknown ¢.
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Lemma 4.2. — We have

(4.4) el Salinll oy + 1100 gs
(4.5) 170l yor g + 10l s Sallelize +lnllze + 4]l

Proof. — Recall that p € %5 ¢ € X9 and p € ¥° since 'y(%) € ¥3. The
estimate (4.4) is then a direct consequence of Theorem 6.5 (i). To prove (4.5)
we apply Proposition 3.13 twice to get

1l oy Sa ITeTpnll 2 + llnll 2
[l s SANTeToll 2 + 1 -

Clearly, || T,Tpnl 2 < ¢l 2 » hence

1 vy Sallellzz + [Imll 2
On the other hand,
||Tqu¢||L2 < ||TquUHL2 + ||TquTB77||L2
< lellpz + 17Ty Tanll 2
Sallelze + Il oy
Sallellze + Il
This completes the proof of (4.5). O

Proposition 4.3. — There exists a nondecreasing function F : RT — RT
depending only on s, e, h such that for any t € [0,T],

d
(4.6) 7 leliz < FAB(Inllze + 1922 + llellz2) el 12 -

Proof. — We see from (4.1) that ¢ solves the equation
(4.7) O+ Ty -V+ily) o =T, F+G
where

G = T@tpq) + [TV : V,Tp]q) + Z[T"/’Tp]q)

First, remark that since (%pamw(?’/z) = (957(3/2) -0y we can apply Lemma 3.16
3 3 3

twice: once with m =s, m' =2, p=2 and once with m =3, m'=s, p=3
to find

H[TK)’T'Y”|HS~>L2 SA B.
On the other hand, Theorem 6.5 (ii) applied with p =1 gives

1Ty -V, Tolllgsm > Sa B.
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Next, we write O,p = L(Vn,£)0;Vn for some smooth function L homogeneous
of order s in &, where by the first equation of (3.30) [|0;Vn||r~ < B. Hence

| Toroll s 12 Sa B.
Putting the above estimates together leads to
1Gll L2 Sa BlI®|gs -
On the other hand, Proposition 3.13 applied to u = ®, a = p € ¥° yields
19l gzs Sallpllze + lImllz2 + 1]l z2-

Therefore,

G2 Sa Bllellzz + [1nll 22 + 9] 22)-
On the other hand, (4.2) together with (4.5) implies

(4.8) [ToF [l 2 Sa Blloll 2 + [1nllz2 + 1l 22)-
Now, using Theorem 6.5 (iii) and he proof of Lemma 3.16 we easily find that

(4.9) [(Tv - V) + (Tv - V)* |22 Sa B.

On the other hand, according to Proposition 3.17, (T)* ~ T, so

(4.10) I(T5) = (T)* 212 S B.

Therefore, by an L2-energy estimate for (4.7) we end up with (4.6). O

Proposition 4.4. — Set W = (n,v¢), H" = H™3 x H. Then, there exists a
nondecreasing function F : RT — R™ depending only on s, ey, h such that for
a.e. t €[0,T],

W)

’?_Ls dr

b < FPHO) W (0|3 +7:(P1(t))/0 B(r)[[W(r)]
with
PY(t) :== sup A(r).

rel0,t]

Proof. — Integrating (4.6) over [0,¢] and using (4.4)-(4.5), we obtain
(4.11)

IW@)I3e SallW Oz 2 + el
t
Sa W@l 2 + W (0) 15, +/O F(A@)B) W (r) |3 dr.

Recall the system (3.30) satisfied by W:
On=B-V-Vn,

1 1
oY =V -V — gn+ 5v2 - 532 + H(n).
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A standard L? estimate for each equation gives
AW Oz Sa BIW ) e
Hence
t
WOl sz < IWO s+ [ FAEDBOIW () B dr
Plugging this into (4.11) we conclude the proof. O

Let us denote the Sobolev norm and the "Strichartz norm" of the solution by

MO’,T = ||(77’ ¢)HL<X,([O7T};HJ+% ><H‘7)’
(4.12) Moo = 1, V)le=0ll yor | 1o
Ny = (0, Vi)

L0 TW X BL L)
We next derive from Proposition 4.3 an a priori estimate for tM 7 using the

control of N,.1.s

Theorem 4.5. — Letd>1, h >0 and
3
-+ — 2.
s>2+2, r >

Then there exists a nondecreasing function F : RT — R™ depending only on
(5,7, h,d) such that for all T € [0,1) and all (n,v) solution to (1.7) with

(n,9) € L™ <[0,T];HS+% X HS) :

(1, V) € L* ([0, T); W3 x BL ).
inf dist(n(¢),T) > A,
ot dis (n(t),T)

there holds

(4.13) Mgy < F (Mo + TF(Myr) + Nor) -

Proof. — Pick

1 . 1 3 d
0<€<§m1n{§,r—1,s—§—§}.

By Remark 2.10, E(n, ) < .7:(||77H01+5)H¢||H%. Therefore, by applying Propo-
sition 4.4 we obtain
+1) dt>

T
Mo < Mook (Dyexp (KT [ (107001 ..

0,1
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with

K(T) = f<t§[‘é% (D lezrec: + I 1))

Therefore, it suffices to show for all t < T

1, 9) D)l c2+2 e + (0, ) (@) < F(Msp+TMsr).

1
L2xH2 —

By Sobolev’s embeddings, this reduces to

1, V)OI o 1 < F(Mso+TMsz) Vt<T.

X Hs=¢ =

Using the Sobolev estimate for the Dirichlet-Neumann in Proposition 2.20 in
conjunction with Remark 2.10 we get
(4.14)

7€) =1 (0) || == S/O Ham(T)lle—ldTZ/O IGn(T) ()| gs—1dr < TF(Msr).

Consequently, it follows by interpolation that
(4.15)

IO vy < MO er g + In(@) = n(O)] or s
< Myo + [[n(t) = n(0)[|%— [In(t) = n(0)] ;f% 6 €(0,1)
< Mo+ TOF(M(T)).

The estimate for ||¢(t)| gs—- follows along the same lines using the second
equation of (1.7) (or (3.30)) and interpolation. O

4.2. Blow-up criteria. — Taking o > 2 + % and

(4.16) (0, %0) € HV2 x H?,  dist(10,T) > h > 0,

we know from Theorem 1.1 in [1] that there exists a time T' € (0, 00) such that
the Cauchy problem for system (1.7) with initial data (no,v0) has a unique
solution

(1,0) € C ([0, T); H7*3 x H)

satisfying

|

sup dist(n(¢),T) >
t€[0,T
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The maximal time of existence T* > 0 then can be defined as

(4.17)
% =T*(no,vo,0,h) := sup {T/ > 0: the Cauchy problem for (1.7) with data

(n0,v0) satisfying (4.16) has a solution (n,1) € C([O,T’];H”‘Fé x H?)
satisfying [Oirgpfl] dist(n(t),T") > 0} .

It should be emphasized that T depends not only on (19, y) and o but also
on the initial depth h. By the uniqueness statement of Proposition 6.4, [1] (it
is because of this Proposition that we require the separation condition in the
definition (4.17)) the solution (n,1) is defined for all ¢ < T and

(n,¢) € C <[O,T*);H(’+% X H”) 7

which will be called the maximal solution.
We recall the following lemma from [49] (see Lemma 9.20 there).

Lemma 4.6. — Let p > 1+ g. Then, there exists a constant C' > 0 such that
lull g, , < C(L+lluller) In (e + [lullZm)

provided the right-hand side is finite.

Proof. — For the sake of completeness, we present the proof of this lemma,
taken from [49]. Given an integer N, we have by the Berstein inequality

N
lullps = 2 Azulle + Y 2 [[Ajullz
0,1
7=0 >N
< (V4 Dl + 37 2009 A .
J>N

As 1+ %l — i < 0, it follows by Holder’s inequality for sequence that there exists
C > independent of N such that

d
lullps , < (N +Dluler +C27 N2 (Jul e+ o).

Choosing N ~ In(e + ||u||gn) so that 2_N(“_1_%)(HuHHu +e) ~ 1, we obtain
the desired inequality. O

Proposition 4.7. — Letd>1,h>0,0>2+ %l, T >0. Let

() € C(0.TLH 2 x H), inf_dist(n(t),T) > h >0
S ’
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be a solution to (1.7). Fize, € (0,0—3—4). Then there evists a nondecreasing

function F : RT — R™T depending only on (0,4, h,d) such that

J§ Qerydr
)ee v — 2e

M2y < F(P(0) (M2 + 26
with
Q(r) =1+ [[V(r)llcr + [In(r)|g2+e,

P(t) == sup (|[n(r)llgz+e- + V() | + H(0)).

rel0,t]

Proof. — Recall the definition of A(t):
At) = lInllczve +IVYlpe | + lInllc> + E(, ).
Proposition 2.12 tells us

En(t),v(t) < [ »G(n),

Rd
hence

Inllzz + E(n,v) < H(t) = H(0),
H(t) being the total energy (1.9) at time ¢. Here, we remark that the conserva-
tion of H follows by proving %H(t) = 0, which can be justified under our the
regularity H®. Therefore, Proposition 4.4 applied with s = o > % + % yields

(418)  [W(H)Ie < F(P2@)IW(O)3 +f(P2(t))/0 B(r)|W (r)|[3- dr

with
PA(t) == sup (|[n(r)llgz+= + V)l | + H(0)).

re(0,t]
Next, as Vi) € HS ! with s — 1 > 1 + ¢, we can apply Lemma 4.6 to have
2

IVYllg,, < CA+IVYler) In (e+l[vllne) < CA+[VElor) In (2e+[[l1F-).-
Consequently,
B(r) < C(1+[[Ve(r)]
In view of (4.18), this implies
W ()17 < FP2@0)IW(0)]I7+

F(P(t)) /0 Q(r)In (2e + [[W (r) I3 ) [|W () 3,s dr

with Q(r) = 1+ ||[Vy(r)|
argument as in [11] we conclude that

IW (0B < FP2O)(IW (O +2¢) exp (5P o Qi) g,

o1 + () gz+en ) In (2e + [|W (7)[[30).

c1 + [[n(r)]|g2+e. . Finally, using a Grénwall type
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O

Remark 4.8. — Using (4.18) and Gronwall’s lemma we obtain the exponen-
tial bound

t
IW ()3 < F(P2())[W(0)[1Fr exp (f(Pz(t))/O B(r)dr)

provided o > % + % only.

Theorem 4.9. — Letd>1,h >0, and 0 > 2+ g. Let

(0, %0) € HOF2 x H?,  dist(no,T) > h > 0.

Let T* = T*(no, o, 0,h) be the mazimal time of existence defined by (4.17)
and

(4.19) (n,) € L™ <[0,T*); Ho5 H”)

be the mazximal solution of (1.7) with prescribed data (no,vo). If T* is finite,
then for all € > 0, it holds that
T* 1
4.2 P.(T* t)dt + —— =
(4.20) =(17) + 0 Qe(t)dt + h(T™) +0o0,

where

P(T*) = sup |In(t)|| g2+ + [[VY(£)l 5o
tel0,T*) ’

Q=(t) = In®)ll 3+ +1V¥®llcr,
hT*) = te[i(?g’*) dist(n(¢),T").

Consequently, if T* is finite then for all e > 0

T*

* 1 o
(4.21) PYT™) + i QY(t)dt + T +00,

where

PUT) = sup |[n(®)llez+e + 1V, B)®) 3o,
t€[0,T] ’

Q1) = I 3+ + 1V B)Blley-

Proof. — Suppose that T* < +o00 and for some € > 0

T

. 1
K :=P.(T") + ; Q:(t)dt + T < +o0.
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Let T € [0,T*) be arbitrary then h(T) > h(T*) > 1/K > 0. As o > 2+ 4, it
follows from Proposition 4.7 that

T
(1.22) Myir < 7 (Moo + O+ PAD) + [ Qu0a1) =2
0

for some increasing function F : R* — R depending on 1/K. On the other
hand, from the a priori estimate in Proposition 5.2, [1] we deduce that the
existence time for local solutions can be chosen uniformly for data lying in a
bounded subset of Ho+3 x H” and satisfy uniformly the separation condition
(Hyp). In particular, call 7} be the time of existence for data in the ball B(0, L)
of H°*2 x H? whose surface is away from the bottom a distance (at least)
1/K. Choosing n(T™* — %) as such a datum we can prolong the solution up to

the time T + % This contradicts the maximality of 7" and thus the blow-up
criterion (4.20) is proved.
Finally, (4.21) is a consequence of (4.20) and the facts that

(423 IVYllgy, | < ClIVIIgo, , + CliBlsg, , Vallcs:
' IVYllg:, < ClIVIEL , +ClBlls [Vallgre.
O

Now we give the proof of Corollary 1.5 which is stated again for the reader’s
convenience.

Corollary 4.10. — Let T € (0,+00) and (n,v) be a distributional solution
to system (1.7) on the time interval [0,T] such that infy ) dist(n(t),I') > 0.
Then the following property holds: if one knows a priori that for some g > 0

(4.24) up (@) VD g4e0 o < F00

)

then (n(0),4(0)) € H>®(RH? implies that (n,) € L=([0,T); H*(R%))2.

Proof. — Take o > 2+% be arbitrary, it suffices to prove that if (r(0),%(0)) €
H% x H then (n,9) € LOO([O,T];H‘”'% x HY). Since o > 2+ 4, according
to the Cauchy theory in [1] one has a maximal solution

(n,w) € L(0,T,); H"> x H").

By the uniqueness statement of this Cauchy theory, we only need to show that
T, > T. Suppose that T, < T < +oo we get by applying (4.21) that for all
e>0

sup |[(n, VY)(@t)|]| s5.. + = +00.
Sap It JOLES cor TR
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On the other hand, by our assumption, h(T") > h(T,) > h(T) > 0 (by the
assumption) for all 77 < T, hence for all € > 0,

sup nav¢ t 5. = +00,
10Tl

which contradicts (4.24). O

5. Contraction of the solution map

Our goal in this section is to prove a contraction estimate for two solutions to
(1.7) in weaker norms. This will be used in the proof of the convergence of
the approximate scheme and in establishing uniqueness for the Cauchy theory
in our companion paper [23|. On the other hand, the proof will make use
of the Strichartz estimate in the same paper. To get started, we have by
straightforward computations the following assertion: (7,) is a solution to
system (1.7) if and only if

@+1v-5+£) (1) = for0)

with

(1 0\(0 -T\\( I 0 — (I O\(
(5.1) L:= <TB I> (Tg 0A> <_TB I>, ) = (TB 1) <f2>.
where

L) = Gy — (Ta(v — Tgn) — Ty - V),
2 1 o 1(Vn-ViY+Gn)v)?
(5.2) [ (n,v) = —§|V¢| t3 1+ [V
+ Ty -V =TTy - Vi — TpG(n)y — H(n) + Ty — gn.

Assume that (n1,%1) and (12,12) are two solutions of system (1.7) on [0, 7]
and satisfy

L) € L2 ([0,T]; Hs T2 x HS) N LP (0, T]; W2 x W —1.9
77]7 7 ) ) ) ) ) J )
with
> 5 + d > 2
s 5T 5 r .
Assume in addition that there exists A > 0 such that

sup dist(n;(t),I') >h j=1,2.
te[0,7
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Denote for j =1,2
T W(d T

MO’,T - ”(T’ 71/} )|’L°O([O,T];HU+%XH‘7)’

(5:3) Mzo = [l 97)|e=ol|

Z =07 )

HO 2 xH7
Lo([0,T; W+ syroo)”
Set
on=m—mn2, O0Y=1v¢1—1v2, OB=B1—By V=V-V.
Define the following quantities
Ps(t) = [16n(t) ]| gro-1 + [109:(2)

Pr(t) = [lon(®)ll -1 + 0w @] -3 -
(5.4) “ cl
Psr = HPSHLOO([O,T]) , Par= |PSHLP([O,TD )

P(t) = Ps(t) + Py(t), Pr= Psr+ Pur.

HHsf% )

Notation 5.1. — Throughout this section, we write A < B if there exists a
non-decreasing function F : RT™ — R such that A < F(M!,, M?,)B.

5.1. Contraction estimate for f?. — Recall that we consider B, V as
functions of (1, 1)) defined by (1.8).

Lemma 5.2. — We have for a.e. t € [0,T]
< P(1).

1SB®I -3 + VA -4 5

Proof. — Assume the estimate for 6 B. We have
0V =Véyp —dBVn, — BaVin.
Obviously,
Ve @)l _y < l16e(t)]]

i 3 <1600l -y < Pult)

On the other hand,

1B2Von()ll _y < IBaVon(®)ll e S I60(0)lyyne S Prrt)

I,
From the product rule (6.22) for negative Holder indices , we deduce

16BVm @Ol -3 SNBOI -4 IV @l 3+ S P

-
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|| . 1. There-
H*3

fore, we are left with the estimate for 6 B, for which we use again the formula

(3.27)

with ¢ > 0 sufficiently small so that ||V, (t)||c%+5 < C |V (t)

B = K(Vn) Vi + L(Vn)G(n)y + G(n)y

where K and L are smooth functions, vanishing at 0. Observe that G(n) has
order 1, hence these three terms have the same regularity structure. We give
the proof for the second one since it is a product with the Dirichlet-Neumann
operator

L(Vn)G(m)vr — L(Vn2)G(n2) 2 = [L(Vm) — L(Vn2)]G(n1 )
+ L(Vn2)[G(n1 )1 — G(m2)12].
Let us consider the more difficult term L(Vn2)[G(n1)11 — G(n2)2. By means
of the product rule (6.22) it suffices to estimate the C, : norm of
G(m)r — G(me)2 = G(m )oY — [G(m) — G(n2)]¢2.
The Holder estimate (2.40) together with Remark 2.10 implies that

1Gam)OYI -y SNVl g + 10914 S0V g + 109

2 H2 ™

where we have used the fact that s > 2.
For the second term on the right-hand side, we apply Proposition 2.22 to have

1 ~ ~
5.5 1Gm) = Gl = | {Glitm) (Bon(t) +div (Vm)on(t)) } am

where ﬁ(m) =m + m577, E(m) = B(ﬁ(m)a¢2)’ ‘7(7’)1) = V(ﬁ(m)’w2) Theo-
rem 2.6 applied with ¢ = s — 2 then yields

(5.6) I[G(m) — Gn2)]w2| =2 < 116n] s

The embedding H5 2 C,

N

then concludes the proof. O

We introduce the following notation.
Notation 5.3. — Let f:R? — C9 be a function of u, we set
Qo ()i = i {f (u + i) — F(u)).
Proposition 5.4. — With f? defined in (5.2), it holds for a.e. t € [0,T] that
[ £2(m,00)(8) = 2 (2, 2)(B)]| omg S P(1)-

HS—— ~Y
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Proof. — It suffices to prove that
(5.7)

| dnt2 0+ duf? 019

S lillgs=r+ 0l er—+ 1901 +H¢HC:-%-

We have f2(n,1) = I + I + I3 with

I :== H(n) +Tin,

1(Vn- Vi +Gn)y)?
2 14 |Vn?

1
Iy = =3Vl + + Ty - VY = TpTy - Vi = TpG(n)¢,
I3 :=—gn.

Observe that dyI; = dyI3 = 0. The estimate for d, I3 = —gr) is obvious. Ob-
serve that I1 and I5 are the remainder of the paralinearization of nonlinear func-
tions in Lemmas 3.7 and 3.9, respectively. Putting f(z) = z(1+ |z|?)~ Y2, z €
RY, we have —H () = div f(Vn). Since

= dpf (V) = f'(Vn) Vi,
it follows that
—dpH(n)n = div(f'(Vn)V)i + f/(Vn)V - Va.
U sing the Bony decomposition we get
—dyH(n)1 = Tiaiv(p (vnye)n + T—promeen + R=T_m+ R
with || Rl gs—s/2 < 10l ggs—1 + [1ill gr-1. The Leibnitz rule then implies
dpIi(n)y =T+ R, £ :=dy,

so we only need to show that | Tyn|| ys-s/2 < |9l grs—1 [l or—1. Indeed, observe
that £ is of the form

3
j=1

where Fj, j =1,2,3 are smooth in R? x R?\ {0}, F} is homogeneous of order
2 in £ and F5, F3 are homogeneous of order 1 in £. By virtue of Theorem 6.5
(7) and Proposition 6.7 we see that to obtain the desired bound for ||T;n|| fs-s/2
it suffices to prove for j =1,2,3

sup 108G (- )l + sup 108G, () le=1 S Callillgr— Vo e N7
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This is true because (assuming without loss of generality that F}(0,&) = 0, for
all &) uniformly in [£| =1,

IEL (V) Vil oo S M1llwroe S llllr-1 s

3 d
| F2(V) V2| o1 S TE(VD)[lgaee [V o1 S liller—1 € € (0,8 =5 = 5),
HF?’(VW)V??VZWHC*—I S HF?’(VU)VﬁVQUHLoo S HﬁHWLoo S Hﬁ”(j;*l-

We have shown the desired estimate for I;. By inspecting the proof of Lemma
3.9, the estimate for the H53/2-norm of d,Ion + dyl2tp can be obtained by
the same method. O

5.2. Contraction estimate for f!. — Our goal in this subsection is to
derive the following estimate.

Proposition 5.5. — With fl defined as in (5.2), it holds for a.e. t € [0,T]
that

[ £ (s o) (8) = £ (2, 2) () || oes S Prr(t) + Ps(6)Q(t)
with

2 2
(5.8) Q(t) := 1+lem(t)llcr+% + D 1Ol -
j=1 - =

The key point is that the preceding estimate is tame with respect to the highest
Holder norms. Proposition 5.5 will be a consequence of

(5.9) [y )il S libll s (1 + Ill sy + 100y ) + Il
1

for all n € Hs"2 N C’:+2, and

(5.10) Iy S ) o S NI (1 Il rvg )+ Hl/}HcI*%

for all ¢» € HS N CT.
Lemma 5.6. — The estimate (5.9) holds.

Proof. — From the definition of f! and Proposition 2.22 we have
dy f (0,9 = =G(B1) — div(V)
—{T5(¢p — Tpn) — T\Tgn — TaTpn — Ty, Vn — Ty Vi }

:ZIJ’

Jj=1
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where B := d,B(n,%)1 (similarly for V, \) and

I :==TyVn, Iy:=-VViy+1TyVn, I3:=-T;(¢—1Tsn),

Iy :=T\Tyn, I5:=—G(Bn)— (divV)n+ T\Tpn.
1. For Iy we write Iy = =T,V — R(Vn),V) and use (6.11), (6.18) to estimate

2]l =1 S MV s IV 2o S 1]
2. Let us study B and V. For the former, the only nontrivial point is
(5.11) dy[G(m)ly = =G(n)(Bn) — div(Vn).
It holds that
I dg[G))il oz S Wl s + IV [ ro—s < Ml o -

Therefore, ||B||gs—2 < ||7]]|gs—1. This, together with the relation V = Vi —
BV, implies

0;’:71 .

Bl =2 + IV gs—2 S [l a1
A a consequence, the paraproduct rule (6.14) gives (keep in mind that s >
3..d
S 4 _)
272

Il gs—r S WVl =21Vl ooy S 0l s

Similarly,
all gs—r S W Tgnllas S NBllgs=2l1nll oy S 0l

3. For I3 one estimates A exactly as for [ in the proof of Proposition 5.4.
4. For I5 we follow [1] using the following cancellation in Lemma 2.12, [1]
whose proof applies equally at our regularity level:

G)B = —divV + R, | Rl o1 < 1.

On the other hand, applying Proposition 3.13 in [3] with ¢ = % o=5—
obtain the following paralinearizations

G(n)(Bn) = T\ B+ F(n, B), G0)(B) =Tyo B+ F(n, B)

we

N[

with
IE(n, Bl gs—1 S Wil gs—1 s [1F (0, B) || gs—1 S 1.

Then plugging these paralinearizations into the expression of I5 gives (see [1]
pages 482 — 483 for details) I5 = J; + Jo with

Ji = =T\o) (B — T — Ty B),
Jo =T\ Tpn + [Ty, T\ | B + Ty F(n, B) + (1) — Ty) divV — F(n, Bn) — Ty R.
Using (6.12) we estimate

[Tl s S INRB )| s S ill o1 (1 B

o1 S lilss (14l oy + bl )-
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For Jy we only need to take care of the commutator [Ty,T\u)|B. Since
|Bllgs—1 < 1 it suffices to prove that [Ty,T\1)] has order 0 and map
H! — H5~! with norm bounded by the right hand side of (5.9). This is in
turn a consequence of Theorem 6.5 (ii) and the fact that » —1 > 1. O

Finally, we prove

Lemma 5.7. — The estimate (5.10) holds.

Write B = B(n,v), V. =V (n,1). Since G(n)v is linear with respect to ¢ we
get

dwfl(n, 7/1)¢ = G(W)T/.} - TA(T/} - TB(n,@W) - Tv(mﬁ) -V =: R(n, 1/1)

Estimate (5.10) means that R has order —1/2 with respect to ¢ and map
H®3/2 to H~!. In fact, Proposition 3.6 shows that R maps H® to H5t1/2,
Here, we will follow the proof of Proposition 3.6 except that the good unknown
will not be invoked. Lemma 5.7 is a consequence of the following.

Lemma 5.8 — Letd>1, h >0 and
s>3+d > 2
—+—=, T .

2 27

Then there exists a nondecreasing function F : RT x R* — R such that for
any n € o5 satisfying dist(n,T') > h > 0 and v € HS N C", there holds
(5.12)

Gy —Th( —Ten) —Tv - V| g

< F(Imo) oy ) {uwum_% (L ey + 91

cr) + Il 3}

*

Proof. — We first apply Theorem 6.5 (i) to have

I3 Til e T -l < F U0 ey ) {13 171y b
On the other hand, as in Lemma 5.2 it holds that
1Bl + 1V g < FOO O g ) {10lg + 1003 -

Therefore, the proof of (5.12) reduces to showing
(5.13)
GV — Th| s

< F(I o)y ) {kum% (4l oy + Wller )+ 191,y } .
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To this end, let ¢ be the solution to (3.4). Let v be as in (2.12), which satisfies
equation (2.13).

Let zp € (—1,0) and denote J = [2p,0]. Let II denote the right-hand side of
(5.13). Again, to alleviate notations, we will write A < B provided

A<F(I0DN ey )

According to Proposition 2.18 and Remark 2.10 (notice that s — % > %), there
holds

5.14 Vaz,- -1 < _3 o3
(51 Va0l o) S 100 g + 191

3~k

On the other hand, applying Prop051t10n 2.11 with 0 =5 — g > —% gives
(5.15) [Va,2v]] ) Sl

We will write gy ~p ¢o if the E—norm of g1 — g2 is bounded by II. As in
Proposition 3.3, we set

P =0} +TyA, +T5-V,0. —T,0,.

XS*? o3

In view of equation (2.13), we have
0= (024 al; + B V0, —79:.)v = Pv+ Qu
with
Qu = [Tay(a — h?) + R(Av,a — h?)] + [(h? — Tj2) Av]+
[Tv0.06 + R(VO:v, B)] = [To.0v + R(020,7)].
For the first bracket, we use (6.16), (6.12) and (5.14) to have

|Taole = )| oy HIR(Av, @ = O] g S AN g llo = B2 e ST

The other terms can be estimated along the same lines. Consequently,

Pu Tr2gE ) 0
Next, with two symbols a, A defined in Lemma 3.5, the proof of Lemma 3.5
shows that

Pv= (0, —T,)(0, — Ta)v + (T, Ta — ToAz)v.

According to the symbolic estimate (3.20) and Theorem 6.5 (ii), (1574 —TaAz)
has order % and

[(TaTa—ToAz)v S (Tl g)IIWIILms—2 S (il gl

HL2H57%) ~ L2H57%’

owing to (5.15). We have proved that

(0; —T3) (0, —Ta)v 0,

~ .3
L2(J;H°"2)
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which implies
((92 - Ta)(8Z - TA)’U Nys—l(]) 0.
With this result, one can follow exactly Step 1. of the proof of Proposition 3.6
and obtain for some I = [21,0), z1 € (20,0) that
(516) HaZ'U - TAU||X571(I) S ]._.[

This allow us to replace the normal derivative 0,v with the "tangential deriva-
tive" Tyv, leaving a term ~ ys-1(y) 0. Therefore, we deduce by using the Bony
decomposition and the estimates (5.14)-(5.15) that

14 |Vp|?
M@v = Vp Vo~ xs1y Tiyv,2 0.v —Ty,Vv
0.p T 0zp
NXS*I(I) T1+\Vp\2 TAU - TVPVU
9zp

NXs—l(I)N T1+6‘VP‘QA/U - TVPV'U
74

NXsfl(]) TAU

with A = %A —1Vn - € satisfying A|,—o = A. The proof of (5.13) is
complete. O

5.3. Contraction estimate for the solution map. — In views of the
notations (5.2), (5.4) and (5.8) , we have proved in subsections 5.1, 5.2 the
following result for a.e. t € [0,T],

1 (s 1) () = f (12, 4p2) ()

Consequently, this together with Lemma 5.2 implies that the difference of two
solutions satisfies

(5.17) (8 + Ty, -V + L1) <§Z> - <9l>

Ly e < F (Mg, M27) (Par() + Ps(Q(1)

92

(518) o1, O, ey < F (Mhr, M27) (Pa(t) + Ps()Q()).

5.8.1. Symmetrization. — Now, as in Section 3.3 we symmetrize (5.17) using

the symmetrizer
(T O 1 0
1= < 0 Tq1> (-TB1 I)'

The dispersive part L. Recall the Definition 3.15 on the equivalence of two
families of operators A(t) and B(t), t € [0,T]: A~ B if

JA® = BON . yomres < F (10Ol ey ) (15 10Oy )
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By virtue of Proposition 3.17 we obtain
T,, O I 0 I 0 0 T\
0 T,)\-Tp, I)\Ip 1) \TIy 0
_(Tp O 0 =T\ _ 0 =T, Ty,
0 T, T, 0 T4, Ty, 0
~ 0 —T%qu _ 0 _T% Tpl 0
5T, 0 Ty, 0 0 Ty)
Consequently (see (5.1) for the definition of £)

0 -T,\ (T, O I 0
S1b1 (Tm 0 )(0 T,)\-Ts, I)

Therefore, if we set

P, = Tplén’ Py = qu (57,Z) - TB1677)’
then ®1, P, satisfy
)~ ()
SiL ~ )
=1 <5¢ T%(I)l
meaning that

0 T, ®
s (30) - ()|, 0 <7 itwnize) (15 mol oy ) Poco

The convection part 0y + Ty, V: one proceeds as in the proof Proposition 3.18
and obtain

51004109 (33) =0 905 () = (3o

where the remainder R verifies

VRO ey, ey < F (Mg, M22) (1 Il oy + I1]lr ) P

A combination of two parts yields

(5.19) 0i®1 + Ty, - VO =T, Py = F1 + Gy,
' 0y Py + TV1 -Voy + T,qu)z =I5+ Gy
where for a.e. t € [0,T],
(5.20)
VB e, e g < F (Mg, M22) (1 Il oy + e61llr ) Ps(2)

< F (Mg, M27) Q(t)Ps(t),

Gl _ Tplgl
G Ty (92 —Tpyg1))

and from (5.17)
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It follows from (5.18) that (G1,G2) also satisfy

(5:21) (GGl Ly S F (Mlr, M27) (Pa(t) + Ps(DQ()).

_3
H°"2xH®
5.8.2. Contraction estimates. — Put ® := ®1 4 iPy, then

(5.22) 0P+ Ty, - VO +iT, @ =F+ G := (F1 +iFy) 4+ (G1 +1iG2).

We are now back to the situation of Proposition 4.1: we shall conjugate (5.22)
with an operator of order s —3/2 and then perform an L2-energy estimate. As
in (4.3), we choose

3/2)\2(s—3
o1 = (VW=DB =T, @
After conjugating with T}, , one obtains
(5.23) (O +Ty, -V+ill, ) p =T, (F+G)+ H

with
H :=Tpy,,,® + [Ty, - V, T, ]® +i[T,, T, | .
It is easy to see as in the proof of Proposition 4.3 that
IHO g < F (Mg, MZ7) Q) 2] o3
< F Mgz, M27) Q) (le@)ll 2 + 1120 2 ),

where we have applied Lemma 3.13 in the second line.
On the other hand, from the estimates (5.20), (5.21) for F, G we get

(5.24)

(5.25) 1T, (F + G)l 2 < F (Mg, M27) (Pu(t) + Ps()Q() )

Now, multiplying both sides of (5.23) by ¢ and using (5.24), (5.25), (4.9),
(4.10) lead to

eI < F (Mg, M2p) x
{[Pr®) +QWPs®) + Q) 191)]1 2 | e @)l 2 + Q) (I3}

Notice that

1
o

T
)2 <F (Msl,Ta Ms2T) Ps(t), / Q(t)dt <T+Tw (Zrl,T + ZE,T),
0
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with I% =1- % > 0 (recall the notation ZﬁT in (5.3)). Gronwall’s lemma then
implies (see Notation 5.4) for all t <T <1

le®lye < F(.-.) <H<P(0)HL2 + [ @Um)Ps(om) + Pt dm>
(5.26) < F(.) (H‘P( N2+ v (1 + Z&,T + ZE,T)PS,T + PH7T])

< F(.) (Ps(O) +T?PT)

where

F(.)=F (Mlp, Mip, Z) 0, Z27) -
We want to show that [|(6n, 0¢)) HHS g3 1 also controlled by the right-hand

side of (5.26). To this end, one uses again Proposition 3.13 to have
167l o1 S N T Tponll 2 + o0l -3
1601, s S ITT0l 2 + 6011,

Then, in view of (5.26) it remains to estimate HénHHf% and H&ﬁHH*%' Indeed,

we write
lon@Il,, -3 < [16nO) -3 + [1on(t) — on(0)[] 1
< [|6n(0) 1 H/ —517 de
H™3
d
<60(O0) -y + T sup [ Zon)|
t€[0,T] H 2

The last term can be written as

%577( t) = Gm ) r(t)=G(n2(8))P2(t) = G(m)oY+[G () =G (n2(8)]¢2(t).

The Sobolev estimate for the Ditichlet-Neumann operator in Theorem 2.6 ap-
plied with ¢ = % gives

1G(m)dyll,, g S 11601 ,3 S 169
On the other hand, according to (5.6)

I[G(m) = Glm) 2|2 < [G(m) — Gn2)|ellms—2 < [16n]
Therefore,

o3

Hs—1.

16nll ,—3 < [16n(0)ll 3 +TPs,r-
Using the second equation of (3.30) and arguing as above, we find that
1691 -1 S N16vO) -3 +TPsr.
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Putting the above estimates together, we end up with

1), S0 s, ey < F (M, M2p, Zg, Z27) (Ps(0) + T7 P(1))
which implies (recall that we are assuming s > 3 + 4, r > 2)
(5.27) Py < F (Mbp, M2, ZLr, Z2) (Ps(0) + TV Pr).

Observe that (5.27) is an a priori estimate for the Sobolev norm of the differ-
ence of two solutions. To close this estimate, we seek a similar estimate for
the Holder norm, i.e., for Py 7. This is achieved by applying the Strichartz
estimates in our companion paper [23| to the dispersive equation (5.22). Ac-
cording to Theorem 1.1 of [23], if u is a solution to the problem

(O + Ty, - V+iTy )u=f
with f € L*>([0,T]; H?), o € R, then it holds that

(5.28) lullyogn < F(Zor) Il oo + el o o)
where,
(5.29) ,u:;’—o,pzél when d =1,

' p=3,p=2 whend>2.

Applying this result to u = ® with o = s — % leads to

S FZ) (IF+al R

This, combined with (5.20) and (5.21), implies for any 2 <7 <7/ <s— 4%+ p

1]l

d

E———" s+ el

LPH®™

s < F (Msl,T’ MSQ,T, Zy},Ta ZE,T) <PT + ||

/_3 «_ 3
LPW"™ ~2 L H? 2)

<SF(Mip, MZp,Z)p, Z2y) Pr.
By interpolating between r’ and some lower index, we gain a multiplication

factor of the form 7°, § > 0 on the right-hand side. Then using the symbolic
calculus in Theorem 6.5 to go back from ® to dn, d1) we obtain

(5.30) Pur < F (Mg, M2y, Z}p, Z27) T° Py
Combining (5.27) and (5.30) we end up with a closed a priori estimate for the

difference of two solutions of (1.7) in terms of Sobolev norm and Strichartz
norm: for any 7' < 1, there holds

Pr < F (Mg, Mly, 2} 5, 2} r) (PS(O) + T‘SPT) .

This implies Pp, < F(...)Ps(0) for some T; > 0 sufficiently small, depending
only on F(...). Then iterating this estimate between [T1,2T4],...,[T — T1,T]
we obtain the following result.
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Theorem 5.9. — Let (n;,v;), j = 1,2 be two solutions to (1.7) on I =
[0,T], 0<T <1 such that

(17, 5) € L (I H*F3 (RY) x HYR) 0 LY (L W2 (RY) x W (R)
with
(5.31) ~>3+d 2<r< d+ ;

: s>5+ 5 r<s— gt

where pi, p are given by (5.29) and such that inf,c(o 1) dist(n;(t),I') > h > 0.
Set

MSJ7T = H<77j7wj)”Loo([O,T];HS+%XHS)7 Zi,T = H(n‘j7wj)HLP([QT};WWF%’OOXWKOO).

Consider the differences on := my — 2, 0¥ = Y1 — Yo and their norms in
Sobolev space and Hdélder space:

Pp i (6,50 -+ 6, 50)]

Then there exists a non-decreasing function F : RT x Rt — R™ depending
only ond, v, s, p, u, h such that

Pp < Fu (Mg, M2, Z) 7, Z2 1) || (61, 69) |0 |

3 3 .
)”L"O(I;Hs‘—le“? Le(I;Wr—100 x W™ 2:%°)

g3 -+
Hs=1xH*™2

Remark 5.10. — If the Strichartz estimate (5.28) had been proved with a
gain of y/ derivative, p/ € (0,3], then Theorem 5.9 would have held with
p = in (5.31).

6. Appendix: Paradifferential calculus and technical results

6.1. Paradifferential operators. —

Definition 6.1. — 1. (Littlewood-Paley decomposition) Let k € C§°(RY) be
such that

k(@) =1 for |0] <1.1, k(@) =0 for |6 > 1.9.
Define
kE(0) = K(Q_ké?) for k € Z, 0o = Ko, and @ = Kp—kKg_1 Jork > 1.
Given a temperate distribution u, we introduce
Sgu = ki(Dy)u  for k € Z,
Aou = Sou, Apu = Sgu— Sp_1u  fork > 1.

Then we have the formal dyadic partition of unity

00
k=0
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2. (Zygmund spaces) Let s € R and p, q € [1,00]. The Besov space Bg,q(Rd)
1s defined as the space of all the tempered distributions u satisfying

el = (29 1l gy ) 2 les < oo

When p = q = oo, By, becomes the Zygumd space denoted by C7.

8. (Hélder spaces) For k € N, we denote by WH(R?) the usual Sobolev
spaces. For p = k + o with k € N and o € (0,1), WP>(R?) denotes the
space of all function u € WE(R?) such that all the k' derivatives of u are
o-Hélder continuous on RY.

Let us review notations and results about Bony’s paradifferential calculus (see
[13, 27, 37]). Here we follow the presentation of Métivier in [37] (se also [3],

[5])-

Definition 6.2. — 1. (Symbols) Given p € [0,00) and m € R, F?(Rd)
denotes the space of locally bounded functions a(x,&) on R x (R \ 0), which
are C™ with respect to € for € # 0 and such that, for all o € N¢ and all € # 0,
the function x — Oga(z,§) belongs to WP (RY) and there exists a constant
Cy such that,

< Ca(1+ Jg)ymlol.

1
v‘ﬂ > 57 Haga(.7§)HWp,oo(Rd) =

Let a € F;”(Rd), we define the semi-norm

6.1 M™(a) = sup sup 1+ é‘ ‘a|*maaa ‘,5 ‘
oy ’ “ la|<d/2+1+p [€]>1/2 H( €D ¢ ( )HWP,OO(R‘I)

2. (Paradifferential operators) Given a symbol a, we define the paradifferential
operator T, by

62  Tou(e) = (2m) / X(€ — mma(E — mmyd(m)an) dn,

where @(0,&) = [ e~ Ya(z,&) dx is the Fourier transform of a with respect to
the first variable; x and i are two fized C*° functions such that:

1 1
(6.3) ) =0 forfnl <z, W) =1 for |n|= 7,
and x(0,7m) is defined by x(0,n) = 3320 kr_3(0)pr(n).
Remark 6.3. — We make the following remarks on the preceding definition.

1. The cut-off x satisfies the following localization property (see [37], page 73)
for some 0 < g1 < g9 <1

x(@,m) =1 for 0] <e1(1+[n])
x(0,m) =0 for [0] > ea(1 + [n]).
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Therefore, in the definition of T,u, on the Fourier side, T,u keeps only the
regime where u has higher frequency then a. In particular, when a = 1, we
have Thu = (D, )u, hence

(Thy —1): H® = H®, C;/* = Cr.
2. As usual, the paraproduct T,u is defined by

+oo

fau = Z Si_3aAu.
k=0

On the Fourier side, Tyu is thus given by the formula (6.2) with ¢ = 1. Con-
sequently

(T — Toyu = Tul(1 = 9(D))u)
and thus using the fact that for any m > 0 (see Theorem 2.82, [10]),
| Taolls < Cllallgm|[o] ssm
we obtain
(T, —T,): H>® = H®, C;®—=(C®
provided a € C°°. For this reason, we do not distinguish 7,u and Tau in this

paper.

Definition 6.4. — Let m € R. An operator T is said to be of order m if, for
all uw € R, it is bounded from H* to HF™".

Symbolic calculus for paradifferential operators is summarized in the following
theorem.

Theorem 6.5. — (Symbolic calculus) Let m € R and p € [0, 00).
(i) If a € TP(RY), then T, is of order m. Moreover, for all u € R there eists
a constant K such that

(6.4) 1 Tall g pru—m < K Mg (a).

) a € ,b € / wit > 0. en Ty Ty — Tyhup s of order m +
i) If a € TP(RY),b € T (RY) with p > 0. Then T, Ty — Ty d
m' — p where

ab = Z %8?@@,5)6?()(:6,5).
lajl<p

Moreover, for all p € R there exists a constant K such that

(6:5) 7Ty = Tusoll g prum-mrsp < KM (@) MG (b) + K Mg (@) M (b)-
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(7i1) Let a € F:)”(Rd) with p > 0. Denote by (T,)* the adjoint operator of Ty,
and by @ the complex conjugate of a. Then (Ty)* — Ty is of order m — p where

1
* b aagas
a” = Z ila‘a!ag oya.
lal<p
Moreover, for all p there exists a constant K such that

(6.6) N(T)* = Tor g s nsn < KM (a).

We also need the following definition for symbols with negative regularity.

Definition 6.6. — For m € R and p € (—00,0), F?(Rd) denotes the space
of distributions a(z,£) on RY x (R%\ 0), which are C™ with respect to & and
such that, for all o € N and all € # 0, the function x — 82‘@(36,{) belongs to
CL(RY) and there exists a constant C,, such that,

1
(67) V|£| > 5’ Haga(,f)ucf < Ca(l + |£|)m—\o¢\.
For a € T, we define
(6.8) M (a) = sup sup H(1 + |g|)\a|fma?a(.,5)‘ .

ol <2(d+2)+pl [¢[>1/2

Proposition 6.7 (see [3, Proposition 2.12]). — Let p <0, m € R and a €
I'7". Then the operator Ty, is of order m — p:

6.9) Tl s mrs-im—) < CMp*(a), | Tal

CfHCi_(m_p) S CM;”(CL)

Remark 6.8. — In the definition (6.2) of paradifferential operators, the cut-
off v removes the low frequency part of u. Therefore, estimates pertaining
to Tyu can be relaxed, for example, when a € T'j" and v € &' such that
Vu € H°T™ 1 we have

1Toul| e < CMY (a)||Vul| go+m—1.

Notation 6.9. — Let I C R and a(z,z,£) : I x R? x R? — C be a family of
symbols parametrized by z € I. We denote

M(a) = sup M™(p)(alz, ,-)).

zel

The set of such a with M(a) < oo is denoted by I’Zl(Rd x I).
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6.2. Paraproducts. — Given two functions a, b defined on R we define the
remainder
(6.10) R(a,u) = au — Tyu — Tya.

We shall use frequently various estimates about paraproducts (see chapter 2
in [10], [9] and [3]|) which are recalled here.

Theorem 6.10. — 1. Let o, 3 € R. If a+ 3> 0 then
E1) IR s gy < K Nolrogn el
(6.12) [R(a, w)| gro+smay < K [lall comay 1wl sy »
(6.13) |’R(aau)H03+5(Rd) <K Ha”CQ(Rd) ”uH(jf(Rd) .

2. Let sy, s1,8 be such that sy < so and sy < S + So — %l, then

(6.14) [ Tatll o < K [|al] gy

Jull e -
If in addition to the conditions above, sy + sy > 0 then

(6.15) law — Tyall o < K |lall gsi [Jull gss -
3. Let m >0 and s € R. Then

(6.16) [Taull grs—m < K lallg=m [lull gs »

(6.17) [Taul gs-m < K |lallg=m [[ullcs »

(6.18) [Taullgs < Kl poe ulles -
Proposition 6.11. — 1. If sg,s1,5 € R satisfying s + so > 0, s < 51,
So < sy and sy < 1 + Sy — g, then
(6.19) Jurua | oo < K fluall gy 1wl gss -
2. If s > 0 then
(6.20) lurual| s < K(luall g [Juzll oo + luzll g [lulloo)-
3. If s >0 then
(6.21) Juruzllos < K([[urlles luall e 4 llualles [lull foo)-
4. Let > a > 0. Then
(6.22) lurugll oo < K flurl s llull oo -

5. Let s > 0 and F € C®(CY) satisfying F(0) = 0. Then there exists a
nondecreasing function F: Ry — Ry such that, for all U € HS(RH)N N
LOO(Rd)N,

(6.23) V@)l < FUN ) 10
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6. Let F € C°°(CN) satisfying F(0) = 0, s > 0, and p,r € [1,00]. Then
there exists a nondecreasing function F: Ry — Ry such that for all
u € B;7T(Rd)N N L2 RHN,

(6.24) 1 o ullg;,, < F(llullzee)ulls;, -

Theorem 6.12 (see [10, Theorem 2.92|). — (Paralinearization) Let r, p be
positive real numbers and F be a C* function on R such that F(0) = 0.
Assume that p is not an integer. For any u € H*(R?) N CZ(R?) we have

HF(U) - TF’(u)uHHu-l»p(Rd) < C(HUHLW(RUZ)) ”u”Cf(Rd) ”uHHH(Rd) :

Remark 6.13. — In Theorem 2.92, [10], there is a restriction that p is not
an integer. In fact, by following the proof of the same result (but qualitative)
in Theorem 5.2.4, [37] one can check that this restriction can be dropped.

Lemma 6.14. — Let s,r,a € R satisfy
either r<0, s<a+r or r>0, s<a.
Then there exists C' > 0 such that

[Taullms < Cllal|zrlul

co-

Proof. — We have by the definition of paraproducts (see Definition 6.1 and
Remark 6.3),

I Taulfs $ D 2% Sk-salulfz S Y 2% (|Sk—sal72 | Apul Fe-
k>0 k>0

For small k, we have the easy estimate
3
> 22H(ISkall: [ Axullfe < llal7ellulEs.

k=0

Consider the case r < 0 and s < a+7r. Pick ¢ € (0,a+r—s). For k > 4, using
Si_za = Z?;g’ Aja we can apply the Holder inequality to estimate (notice
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that 7 < 0)
k—3 9
> 2|5 alFall Apulte S lullde 3022 (S 1Ayallrz )
k>4 k>4 j=0
k—3 k—3
< H H2 22(s—a)k QZTjHA‘ H2 9—2rj
~ Ul cg Jall L2
k>4 j=0 j=0
k—3 A
S llullge Y 226707 +IR Y 7227 Ajal
k>4 j=0
< llullEe lallf--

Now, if » > 0 and s < «, in the second line of the preceding estimate we

observe that the series
Z 2727"]', Z 22(570&)]?

Jj=0 k>4
converge. This concludes the proof in the second case. O
6.3. Paradifferential calculus in Besov spaces. — Concerning the sym-

bolic calculus in Besov spaces, we have the following results.

Lemma 6.15 (see [48, Lemma 2.6]). — Let s,m,m’ € R, q € [1,00] and
p € [0,1].

i) If a € TTHRY) then
() 0
HIGHB&)@—)BZ,_O? S CIWO ((Z)
ii) If a e TP(RY), b e T (R?) then
0 0

HTaTb - TabHBgo qﬁBZ’—ogm-Fm/Hp < CM;n(a)M(;n (b) + CM(;n(a)M;n (b)

Lemma 6.16 (see [49, Lemma 2.10]). — 1. Let s € R and p,q € [1,00].
Then for any o > 0 we have

(625  |T.ul

55, < Kmin ([l

O ) ey
2. Let s >0 and p,q € [1,00]. The for any o € R, we have

(6.26) [1R(a,u)||B;,, < Kal

p,q —

ce ’LL’ B;’:]o.
To deal with time-dependent distributions, we use the Chemin-Lerner spaces

defined as follows (see Chapter 2, [10]).
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Definition 6.17. — For T >0, s € R, and p,q,r € [1,00], we set
] o0
621 ulggorys.) = 1@ 18500 o mmmmay ) ol

Again, when p = r = 0o, we denote fﬂ([O,T];BISM,) = L9([0,T);C%). Notice
that HUHZOOU;@) = |lull oo (1,05)-

The next lemma then follows easily from the proof Lemma 6.15.
Lemma 6.18 (see [48, Lemma 2.6]). — Let s,m,m’ € R, p,q € [1,0¢], p €
[0,1] and I =[0,T7.
(i) If a € T (I x RY) then
Tellzogr s, )y Ermsy < CM'(@)-
(i) Ifa € TP(I x RY), b e TP (I x RY) then

ITTeTonl 1 sy < CME (@M B)+CMG (@M (),

Finally, the following lemma is a direct consequence of Lemma 6.25.

Lemma 6.19 (see [49, Lemmas 2.17, 218|). — Let I =[0,T].
1. Let s € R and q,q1,q2,7 € [1, 00| with % = q% + q%, Then for any o > 0 we

have
(6.28)

HT@UHE(I(I;B&’T) < K min (

10200 sy 1 o e,y Nl ol )

2. Let s >0 and q,q1,q2,7 € [1,00] with % = qll—l—q%. Then for any o € R we
have

629) IR zupe ) < Kl e 6l 70 e

6.4. Parabolic regularity. — Define the following interpolation spaces
6.30) X*(J) = C(I; H*(RY) N L2(J; H* 2 (RY)),

: 1
YH(T) = LL(I; H*(RY) + L2(J; H' 3 (RY)).

Theorem 6.20 (see |3, Proposition 2.18]). — Let p € (0,1), J = [29,21] C
R, pe F})(Rd xJ), q€ Fg(Rd x J) with the assumption that

Rep(z;2,£) > cl¢],
for some constant ¢ > 0. Assume that w solves
Ow+Tyw=Tw+f, W= = wp.
Then for any r € R, if f € Y"(J) and wo € H", we have w € X"(J) and
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leollxery < K {llwollgr + 1 lyrr } -

for some constant K = K(M;(p),/\/lg(q),c_l) nondecreasing in each argu-
ment.

Theorem 6.21 (see [48, Proposition 3.1]). — Letr € R, € [1,00] and 1 <
q <p<oo Letpe (0,1), J=lzn2] CR, aec TR xJ) with the
assumption that

Rea(z;z, &) > c[¢],

for some constant ¢ > 0. Assume that w solves

w+Tyaw=F, w,—y =wp.

If
~ B
wo € By, FeLU(J,B.,, ")
~ - 41
and there exists § > 0 such that w € LP(.J,C7°), then we have w € LP(J, B;;’)
and
ol ety < K ol UL, g+ ol -

for some constant K = K(M;(a), c1) nondecreasing in each argument. When
p = 00, the left-hand side can be replaced by Hw||C(JBr )

Finally, we recall a classical interpolation lemma.

Lemma 6.22 (see |36, th 3.1|]). — Let I = (—1,0) and s € R. Let
u € LI, HSJF%(Rd)) such that O,u € L*(I, Hsfé(Rd)). Then u €
CO([~1,0], H*(RY)) and there exists an absolute constant C' > 0 such that

zGS[EIl),O] Iz, Mire sy < C(HUHL%I,H”%(Rd)) * HazuHL2(LH“%(Rd>))'
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