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The topology of the attraction basins provides the first characterization of the global behavior 

of any dynamical system. Therefore, the paper explores the morphological plasticity of the 

attraction basins of an asymmetric strange attractor with swirling scroll. Indeed, the 

bifurcation diagrams reports such basins of attractor transformation. The attractor is 

confined in a restricted domain of the phase space, and then the whole space is unified only 

for a single value of the control parameter, exhibiting a periodic cycle. Beyond this narrow 

field, the attractor reappears embodied in a basin utterly different from the first one. 

Eventually, the 3D chaotic attractor wings and scrolls shrink and/or expand monitor the 

contours of the basins. 
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1. Introduction 

The detection of chaotic systems and the 

derived 3D strange attractors have been 

widely explored from more than three 

decades [1-3] following the late 

(re)discovery of the Lorenzian strange 

attractor in 1963 [4]. Recently, chaotic 

system studies established that the strange 

attractor discoveries pursued its vigorous 

trend [5-10]. Purposefully creating chaos 

in the 3D phase space with a few number 

of nonlinearity can be a nontrivial task to 

explore such unpredictable patterns. This 

paper introduces a new chaotic system not 

developed from previous 3d models and 

embedding five nonlinear terms. The scope 

of this intentionally constructed system is 

the exploration of the domains of attraction 

plasticity. It denotes the remarkable (or 

not) amplitude of its turbulence scale.  
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Section 2 investigates the basic 

characteristics of the introduced 

autonomous three-dimensional system of 

first order differential equations.  

Section 3 points chiefly to the 

morphological plasticity of the basins of 

attraction.  

The final remarks report the 

extension/contraction of the wings and 

scrolls of the chaotic attractor. 

 

2. The new 3D chaotic system 

 

The new system is governed by the 

following three-dimensional nonlinear 

differential equations: 

dx/dt =  α x ( y - 1 )  +  β y z   

dy/dt =  φ ( 1 - x ² ) y  +  μ x z 

dz/dt =   η x y  +  s z  

   

where x, y, and z, the state variables of the 

model, and α, β, φ, μ, η, and s positive  

parameters. 

Equations embed height terms on the right-

hand side, five of which are nonlinear, four 

cross terms, i.e. two xy, xz, and yz, and a 

cubic cross-term x2y.   

The withdrawal of the z-equation leads to a 

2D system constituted by a Lotka-Volterra-

like system [11-12] applied also in 

previous 3D and 4D chaotic systems [13-

14]. Moreover, the determination of the 

equilibrium points can be easily found by 

solving the steady-state condition:  

dx/dt = dy/dt = dz/dt = 0 

For the set of parameters C0 (α, β, φ, μ, η, 

s) = (2, - 3, 0.8, 1, -2, 0.3), the unique 

equilibrium of the system in R3 is the 

origin S0 (0, 0, 0).  The four other solutions 

emerge in C3:  

S1 (i 0.294, -0.227, - i 0.667),  

S2 (-i 0.294, -0.227, i 0.667),  

S3 (i 0.294, 0.293, i 0.861), and  

S4 (-i 0.294, 0.293, - i 0.861).  

The elementary attributes of the real 

equilibria are given by the corresponding 

eigenvalues λi and found by solving the 

characteristic equation |J − λI| = 0, where 

I, the unit matrix and J, the Jacobian of the 

model: 

            α (y - 1)               α x + β z          β y  

J =   - 2 φ xy + μ z    φ (1 - x ²)     μ x

 η y        η x                 s     

The solution S0 reports a highly aspect of 

instability since all the three eigenvalues of 

its characteristic equation have positive 

real parts (Re (λ) > 0). 

In addition, the system exhibits an explicit 

chaotic nature since its Largest Lyapunov 

Exponent reaches the value: LLE ≈ 0.85. 

The dynamics become unpredictable. For 

the set of parameters C0, and the initial 

conditions IC0 (0.1, 0.1, 0.1), the 

simulations display an asymmetric strange 

attractor with a swirling scroll, connecting 

the trajectory to the second roll (Fig.1.a). It 

is confined in the upper domain of the 

phase space (x, z, y).  
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(a)  

(b)  

(c)  
 

Fig.1. Phase portraits of the attractor for C0 (α, β, φ, μ, η, s) = (2, - 3, 0.8, 1, -2, 0.3) 

(a) The attractor appears in the upper basin of the space (x, z, y) for the Initial Conditions 

IC0 (0.1, 0.1, 0.1), (b) the attractor in the lower basin for IC1 (-0.1, -0.1, -0.1), and (c) 
the disposition of the two chaotic trajectories gathered in the same representation  
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Besides, for the same parameters C0, and 

the negative initial conditions IC1 (-0.1, -

0.1, -0.1), the attractor reappears reversed 

and located in the lower part of the phase 

space (Fig.1.b).  

The position of the two attractors, 

independently sited in each basin of 

attraction, is exhibited in the figure 1.c.  

3. Basins of attraction Structure 

The computation of the diagrams of 

bifurcation can describe the array of the 

trajectory path of the chaotic dynamics.  

We retain s as the parameter of control of 

the bifurcations, varying in the interval 

[0.1, 6[.  

(a)  

    (b)   
 

Fig.2. Diagrams of Bifurcation for ŷ = 0.5, and s ∈ [0.1, 6[, with s step-size = 10-5.  

Sequences of chaotic bubbles and stability windows are displayed in (a) for the diagram of 

bifurcation of x, and (b) the diagram of bifurcation of z 
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The dots report the orbit crossing the level 

ŷ = 0.5. We notice the shrink of the 

dynamical amplitude of the variable x 

(Fig.2.a) beyond the value s = 2. At the 

contrary, the dynamical amplitude of the 

variable z (Fig.2.b) expands beyond the 

same threshold. It indicates the 

extension/contraction of the basin of 

attraction in two different directions. 

Besides, one can observe the wide range of 

dynamical patterns, within chaotic bubbles 

and several windows of stability.  

Focusing the distinctive value s = 2, the 

phase space is unified in a same domain of 

attraction for all variables, displaying a 

periodic orbit with peculiar shape (Fig.3).     

 

 

Fig.3. Periodic orbit for the parameters C1 (2, - 3, 0.8, 1, -2, 2) 

 

Beyond this value, the phase space shrinks 

in the direction of x and expands in the 

other direction z. On the other hand, for s = 

3, the system, leads to another attractor 

with dissimilar topology when the initial 

conditions are IC0 (Fig.4a.) Besides, with 

the IC1, the posture of the attractor is 

inversed, reporting also a shrink but in the 

direction of the negative values of the x-

axis (Fig.4.b). 

 

The figure 4.c displays the two 

simulations, each attractor in its basin of 

attraction. We notice the intricate 

arrangement of the rolls, so close to appear 

associated in a single contour. The 

remarkable morphological versatility of the 

attractors in figures 1 and 4 seems 

determined by the cubic nonlinear term in 

Eq.2. 
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(a)  

(b)  

(c)  
Fig.4. Portraits of the attractor for C2 (2, - 3, 0.8, 1, -2, 3) in the phase space (z, y, x). 

(a) The attractor appears in the positive domain of the x-axis, (b) the attractor located in 

the negative part of the x-axis, and (c) the disposition of the two chaotic trajectories 
gathered in the same representation.  
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4. Final Remarks 

At best of our knowledge, the paper 

introduces an intentionally constructed 3D 

chaotic attractor distinct from previous 

attractors. It depicts a shaped complex 2-

scroll exhibiting a swirling trajectory in its 

main loop.  Its mutating topology linked to 

the domain of attraction characterizes a 

strong sensitive dependency on parameters. 

This versatility is reported in the 

bifurcation diagram illustrating the split of 

the phase space in two domains. Before 

and beyond an edge of the control 

parameter, the phase space is restricted in 

an area with short amplitude of the chaotic 

frequency. Eventually, the main result of 

the paper emphasizes the plasticity of the 

basins of attraction determined by the 

extension/contraction of the chaotic 

amplitude.  
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