Siamese Multi-layer Perceptrons for Dimensionality Reduction and Face Identification

Lilei Zheng 1 Stefan Duffner 1 Khalid Idrissi 1 Christophe Garcia 1 Atilla Baskurt 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : This paper presents a framework using siamese Multi-layer Percep-trons (MLP) for supervised dimensionality reduction and face identification. Compared with the classical MLP that trains on fully labeled data, the siamese MLP learns on side information only, i.e., how similar of data examples are to each other. In this study, we compare it with the classical MLP on the problem of face identification. Experimental results on the Extended Yale B database demonstrate that the siamese MLP training with side information achieves comparable classification performance with the classical MLP training on fully labeled data. Besides, while the classical MLP fixes the dimension of the output space, the siamese MLP allows flexible output dimension, hence we also apply the siamese MLP for visualization of the dimensionality reduction to the 2-d and 3-d spaces.
Type de document :
Article dans une revue
Multimedia Tools and Applications, Springer Verlag, 2015, pp.,. 〈10.1007/s11042-015-2847-3〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01182273
Contributeur : Lilei Zheng <>
Soumis le : vendredi 31 juillet 2015 - 15:02:43
Dernière modification le : jeudi 19 avril 2018 - 14:38:05
Document(s) archivé(s) le : dimanche 1 novembre 2015 - 10:21:46

Fichier

mtap_smlp_R1.1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Lilei Zheng, Stefan Duffner, Khalid Idrissi, Christophe Garcia, Atilla Baskurt. Siamese Multi-layer Perceptrons for Dimensionality Reduction and Face Identification. Multimedia Tools and Applications, Springer Verlag, 2015, pp.,. 〈10.1007/s11042-015-2847-3〉. 〈hal-01182273〉

Partager

Métriques

Consultations de la notice

209

Téléchargements de fichiers

921