Efficient Computation of Polynomial Explanations of Why-Not Questions
Nicole Bidoit, Melanie Herschel, Aikaterini Tzompanaki

To cite this version:

HAL Id: hal-01182101
https://hal.archives-ouvertes.fr/hal-01182101
Submitted on 6 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Efficient Computation of Polynomial Explanations of Why-Not Questions

Nicole Bidoit
Université Paris Sud / Inria
91405 Orsay Cedex, France
nicole.bidoit@lri.fr

Melanie Herschel
Universität Stuttgart
70569 Stuttgart, Germany
melanie.herschel@ipvs.uni-stuttgart.de

Aikaterini Tzompanaki
Université Paris Sud / Inria
91405 Orsay Cedex, France
katerina.tzompanaki@lri.fr

ABSTRACT

Answering a Why-Not question consists in explaining why a query result does not contain some expected data, called missing answers. This paper focuses on processing Why-Not questions in a query-based approach that identifies the culprit query components. Our first contribution is a general definition of a Why-Not explanation by means of a polynomial. Intuitively, the polynomial provides all possible explanations to explore in order to recover the missing answers, together with an estimation of the number of recoverable answers. Moreover, this formalism allows us to represent Why-Not explanations in a unified way for extended relational models with probabilistic or bag semantics. We further present an algorithm to efficiently compute the polynomial for a given Why-Not question. An experimental evaluation demonstrates the practicality of the solution both in terms of efficiency and explanation quality, compared to existing algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Why-Not question, explanation, provenance

1. INTRODUCTION

The increasing load of data produced nowadays is coupled with an increasing need for complex data transformations that developers design to process these data in every-day tasks. These transformations, commonly specified declaratively, may result in unexpected outcomes. For instance, given the sample query and data of Fig. 1 on airlines and destination countries, a developer (or traveller) may wonder why Emirates does not appear in the result. Traditionally, she would repeatedly manually analyze the query to identify a possible reason, fix it, and test it to check whether the missing answer is now present or if other problems need to be fixed.

Answering such Why-Not questions, that is, understanding why some data are not part of the result, is valuable in a series of applications, such as query debugging and refinement, data verification or what-if analysis. To help developers explain missing answers, different algorithms have recently been proposed for relational and SQL queries and other types of queries (top-k, reverse skyline).

For relational queries, Why-Not questions can be answered for example based on the data (instance-based explanations), the query (query-based explanations), or both (hybrid explanations). We focus on solutions producing query-based explanations, as these are generally more efficient while providing sufficient information for query analysis and debugging. Essentially, a query-based explanation is a set of query conditions that are responsible for pruning out data relevant to the missing answers. Existing methods producing query-based explanations are not satisfactory as they are designed over query trees, making the explanations depending on the topology of a given tree. Consequently, they return different explanations for the same SQL query and may miss explanations.

Example 1.1. Consider again the SQL query and data of Fig. 1 and assume that a developer wants an explanation for the absence of Emirates from the query result. Fig. 2 shows two possible query trees. It also shows the tree operators that Why-Not [7] (◦) and NedExplain [3] (⋆) return as query-based explanations as well as the tree operators returned as part of hybrid explanations by Conseil [13, 14] (●). Each algorithm returns a different result for each of the two query trees, and in most cases, it is only a partial result as the true explanation of the missing answer is that both the selection is too strict for the tuple (Emirates, 1985, 3) from table Airline and this tuple does not find join partners in table Country.

SELECT airline, country
FROM Airline A,
 Country C
WHERE ccode = code
AND year < 1985

Figure 1: Example query and data

Figure 2: Reordered query trees for the query of Fig. 1 and algorithm results (Why-Not ◦, NedExplain ⋆, Conseil ●)
The above example clearly shows the shortcomings of existing algorithms. Indeed, the developer first has to understand and reason at the level of query trees instead of reasoning at the level of the declarative SQL query she is familiar with. Second, she always has to wonder whether the explanation is complete, or if there are other explanations that she could consider instead. In this paper, we make the following contributions:

Extended formalization of Why-Not explanation polynomial. We have recently introduced polynomials as Why-Not explanations in the context of the relational model under set semantics [2]. A polynomial provides a complete explanation and is independent of a specific query tree representation, solving the problems illustrated by Ex. 1.1. We now extend Why-Not explanations to the relational model under bag and probabilistic semantics. This confirms the robustness of the chosen polynomial representation, making it a good fit for a unified framework for representing Why-Not explanations. In parallel, we considerably simplify our initial framework by eliminating the formerly used notion of query tableaux.

Efficient Ted++ algorithm. We show that a naive algorithm computing Why-Not explanations, as presented in [2], is impractical. We thus propose a novel algorithm, Ted++, capable of efficiently computing the Why-Not explanation polynomial, based on techniques like schema and data partitioning (allowing for a distributed computation) and advantageous replacement of expensive database evaluations by mathematical calculations.

Experimental validation. We validate our solutions both in terms of efficiency and effectiveness. Our experiments include a comparative evaluation to existing algorithms computing query-based explanations for SQL queries (or sub-languages thereof) as well as a thorough study of Ted++ performance w.r.t. different parameters. Note that such an evaluation was missing from [2].

The remainder of this paper is structured as follows. Sec. 2 covers related work. Sec. 3 defines in detail our problem setting and the Why-Not explanation polynomials. Next, we discuss the Ted++ algorithm in Sec. 4. Finally, we present our experimental setup and evaluation in Sec. 5 and conclude in Sec. 6.

2. RELATED WORK

The work presented in this paper falls in the category of data provenance research and specifically on explaining missing answers from query results. Due to the lack of space, we focus here on this sub-problem, thus on algorithms answering Why-Not questions, summarized in Tab. 1. This table classifies the algorithms according to the type of explanation they generate and reports the class of query and Why-Not question (simple or complex) they support.

Query-based and hybrid explanations. Why-Not [7] takes as input a simple Why-Not question and a selection, projection, join, and union (SPJU) query and returns the erroneous query operators as query-based explanations. Similarly, NedExplain [3] considers selection, projection, join, and aggregation and unions thereof (SPJU queries) and simple Why-Not questions as well. The common drawback of the two algorithms is that their design is dependent on a specific query tree representation, thus the explanations proposed are tied to this tree. Moreover, the generated explanations are incomplete. To address this problem, Ted [2] proposes explanations in the form of a polynomial. The shortcomings of this work have already been presented in Sec. 1.

Conseil [13, 14] produces hybrid explanations that include an instance-based and a query-based component. The latter consists in a set of picky query operators. However, as Conseil considers both the data to be possibly incomplete and the query to be possibly faulty, the set of picky query operators associated to a hybrid explanation depends on the set of source edits of the same hybrid explanation.

Ontology-based explanations. Cate et al. [6] have recently introduced this type of explanation that is based on external or data-workload generated ontologies. However, they are completely independent of the query to be analyzed.

Refinement-based explanations. Another approach to answering Why-Not questions is by directly proposing queries that include in their result the missing answers. Several algorithms follow this direction for different types of queries, like relational, Top-K, reverse skyline queries, etc, as listed in Tab. 1. Although these approaches are generally very interesting, they do not focus on pinpointing the erroneous parts of the query. Indeed, the refined queries may contain changes that are not necessarily tied to an erroneous part of the query. Moreover, the changes are based on the database values and do not take into account any semantics or domain knowledge that could render a refinement meaningful for the user.

3. WHY-NOT EXPLANATION POLYNOMIAL

This section introduces a polynomial formalization of query-based Why-Not explanations. We assume the reader familiar with the relational model [1], and we only briefly revisit some relevant notions in Sec. 3.1 while we formalize Why-Not questions. In Sec. 3.2, we define the explanation of a Why-Not question as a polynomial. In Sec. 3.3 we provide a unified general framework for Why-Not explanations in the context of set, bag, and probabilistic semantics databases.
3.1 Preliminaries

For the moment, we limit our discussion to relational databases under set semantics. A database schema S is a set of relation schemas. A relation schema R is a set of attributes. We assume each attribute of R qualified, i.e., of the form $R.A$ and for the sake of simplicity we assume a unique domain Dom. I denotes a database instance over S and I_{R} denotes the instance of a relation RcS. We assume that each database relation R has a special attribute $R.Id$ which is used as identifier for the tuples in I_{R}. For any object O (relational or database schema, condition etc), $A(O)$ denotes the set of attributes occurring in O. Finally, a condition c over S is defined as an expression of the form $R.A \theta a$ where $a \in \text{Dom}$ or of the form $R.A \theta B.B$, where $R.A, S.B \in A(S)$, and $\theta \in \{=, \neq, <, \leq\}$. A condition over two relations is complex, otherwise it is simple. In this article, we consider conjunctive queries with inequalities. Note that in our approach, the database schema S denotes the query input schema. In an SQL-like approach, each time we need an instance of a relation, we refer to it by a different name. In this way, we are able to correctly define Why-Not questions in case of self-joins as well.

Definition 3.1 (Query Q). A query Q is specified by the triple (S, Γ, C), where S is a database schema, $\Gamma \subseteq A(S)$ is the projection attribute set, and C is a set of conditions over $A(S)$. The semantics of Q are given by the relational algebra expression $\pi_{\Gamma}[\sigma_{c} \times \tau_{RcS}[R]]$.

The result of Q over \mathcal{I} is denoted by $Q[\mathcal{I}]$. Note here that we are not concerned about the evaluation/optimization of Q and that any equivalent rewriting of the algebraic expression given in Def. 3.1 is a candidate for evaluating Q.

Example 3.1. Fig. 3 describes our running example. Fig. 3(a) displays an instance \mathcal{I} over $S = \{R, S, T\}$. Fig. 3(b) displays a query Q over S, whose conditions have been named for convenience. $R.B=T.B$ and $T.D=S.D$ are complex whereas the others are simple conditions. Moreover, $Q[\mathcal{I}] = \{(R.B:5, S.D:4, T.C:9)\}$.

In our framework, a Why-Not question specifies missing tuples from the result of a query Q through a conjunctive set of conditions. A Why-Not question is related to the result of Q and so its conditions are restricted to the attributes of the output schema of Q.

Definition 3.2 (Why-Not Question). A Why-Not question WN w.r.t. Q is defined as a set of conditions over Γ.

The notion of complex and simple conditions is extended to complex and simple Why-Not questions in a straightforward manner.
Definition 3.6 (Why-Not Explanation). With the same assumption as before, the Why-Not explanation for WN is defined as the polynomial

\[PEX = \sum_{E \in \mathcal{E}} \text{coef}_E \prod_{e \in E} c \]

where \(E = 2^\mathcal{C} \) and \(\text{coef}_E \in \{0, \ldots, |\mathcal{C}|\} \).

Intuitively, \(E \) contains all potential explanations, and each of these explanations prunes from zero to at most \(|\mathcal{C}|\) compatible tuples. Moreover, an important property of \(PEX \) is the fact that \(\text{coef}_E = |\{\tau \in \mathcal{C} | E \}| \) is the explanation for \(\tau \), meaning that \(\text{coef}_E \) equals the number of compatible tuples with the same explanation.

Each term of the polynomial provides an alternative explanation to be explored by the user who wishes to recover some missing tuples. Additionally, the polynomial offers, through its coefficients, some useful hints to users interested in the number of recoverable tuples. More precisely, by choosing an explanation \(E \) to repair, we obtain an upper bound for the number of compatible tuples that can be recovered. The upper bound is the sum of the coefficients of all the explanations that are sub-sets of (the set of conditions of) \(E \). Consequently, the coefficients could be used to answer Why-Not questions of the form Why-Not \(\mathcal{X} \) missing tuples?.

Example 3.4. In Ex. 3.3 we found the explanation \{c_1, c_2, c_4\}, which is translated to the polynomial term \(c_1 \times c_2 \times c_4 \). Taking into consideration all the 12 compatible tuples of our example, we obtain the following PEX polynomial: \(2^4 = c_1 \times c_2 \times c_3 \times c_4 \times c_1 \times c_2 \times c_3 + 2 \times c_1 \times c_2 \times c_4 + 2 \times c_1 \times c_3 \times c_4 + 2 \times c_2 \times c_3 \times c_4 \). In the polynomial, each addend, composed by a coefficient and an explanation, captures a way to obtain missing tuples. For instance, the explanation \(c_1 \times c_2 \times c_4 \) indicates that we may recover some missing answers if \(c_1 \) and \(c_2 \) are changed. Then, the sum of its coefficient 4 and the coefficient 2 of the explanation \(c_1 \times c_4 \) indicates that we can recover from 0 to 6 tuples.

As the visualization of the polynomial per se may be cumbersome and not easy for a user to manipulate, some post-processing steps could be applied. Depending on the application or needs, only a subset of the explanations could be returned like for instance minimum explanations (i.e., for which no sub-explanations exist), or explanations giving the opportunity to recover a specific number of tuples, or have specific condition types etc.

3.3 Extension: Bag & Probabilistic Semantics

So far, we have considered databases under set semantics only. In this section, we discuss how the definition of Why-Not explanation (Def. 3.6) extends to settings with conjunctive queries over bag and probabilistic semantics.

K-relations, as introduced in [10], capture in a unified manner relations under set, bag, and probabilistic semantics. Briefly, tuples in a \(K \)-relation are annotated with elements in \(K \). In our case, we consider that \(K \) is a set of unique tuple identifiers, similar to our special attribute \(\text{Id} \) in Sec. 3.1.

In what follows, we use the notion of how-provenance of tuples in the result of a query \(Q \). The how-provenance of \(t \in \text{res}(Q) \) is modelled as the polynomial obtained by the positive algebra on \(K \)-relations, proposed in [10]. Briefly, each \(t \) is annotated with a polynomial where variables are tuple identifiers and coefficients are natural numbers. Roughly, if \(t \) results from a selection operator on \(t_1 \) annotated with \(Id_1 \), then \(t \) is also annotated with \(Id_1 \). If \(t \) is the result of the join of \(t_1 \) and \(t_2 \), then \(t \) is annotated with \(Id_1/Id_2 \).

We compute the generalized Why-Not explanation polynomial \(PEX_{gen} \) as follows. Firstly, we compute the how-provenance for compatible tuples in \(CT \) by evaluation of the query \(Q_{WN} \) (Def. 3.3) w.r.t. the algebra in [10]. Recall that \(Q_{WN} \) contains only selection and join operators. Thus, each compatible tuple \(\tau \) in \(CT \) is annotated with its how-provenance polynomial, denoted by \(\eta_{\tau} \).

Then, we associate the expressions of how and why-not provenance. In order to do this, for each compatible tuple \(\tau \) in \(CT \), we combine its how-provenance polynomial \(\eta_{\tau} \) with its explanation \(\tau \) (Def. 3.5). So, each \(\tau \) is associated with the expression \(\eta_{\tau} \).

Finally, we sum the combined expressions for all compatible tuples, which leads to the expression \(\sum_{\tau \in CT} \eta_{\tau} \).

We now briefly comment on how \(PEX_{gen} \) is instantiated to deal either with the set, bag, or probabilistic semantics. Indeed, the ‘specialization’ of \(PEX_{gen} \) relies on the interpretation of the elements in \(K \), that is on a function \(\text{Eval} \) from \(K \) to some set \(L \). For the set semantics, each tuple in a relation occurs only once. This results in choosing \(L \) to be the singleton \{1\} and mapping each tuple identifier to 1. It is then quite obvious to note, for the set semantics, that \(PEX_{gen} = PEX \) (Def. 3.6). In the same spirit, for bag semantics, \(L \) is chosen as the set of natural numbers \(\mathbb{N} \) and each tuple identifier is mapped to its number of occurrences. Finally, for probabilistic databases, \(L \) is chosen as the interval \([0, 1]\) and each tuple identifier is mapped to its occurrence probability.

Thus, the generalized definition of Why-Not explanation is parametrized by the mapping \(\text{Eval} \) of the annotations (elements in \(K \)) in the set \(L \).

Definition 3.7. (Generalized Why-Not explanation polynomial) Given a query \(Q \) over a database schema \(S \) of \(K \)-relations, the generalized Why-Not explanation polynomial for WN is

\[PEX_{gen} = \sum_{E \in \mathcal{E}} \left(\sum_{\tau \in CT \times E} \text{Eval}(\eta_{\tau}) \right) \]

where \(E = 2^\mathcal{C} \), \(\eta_{\tau} \) is the how-provenance of \(\tau \), and \(\text{Eval}: K \rightarrow L \) maps the elements of \(K \) to values in \(L \).

4. TED++ ALGORITHM

The naive Ted algorithm [2] implements the definitions of [2] for Why-Not explanations in a straightforward manner. Essentially, Ted first enumerates the set of compatible tuples. Then, it computes the explanation for each compatible tuple, leading to the computation of the final Why-Not explanation. However, both of these steps make Ted computationally prohibitive. Not only is the computation of the set of compatible tuples time and space consuming as it often requires cross product executions, but the same holds for the iteration over this (potentially very large) set. Ted’s time complexity is \(O(n^{3M}) \), \(M = \max(|IR|) \), \(IR \subseteq S \). As experiments in Sec. 5 confirm, this complexity renders Ted impractical.

To overcome Ted’s poor performance, we propose Ted++. The main feature of Ted++ is to completely avoid enumerating and iterating over the set \(CT \), thus it significantly reduces both space and time consumption. Instead, Ted++ opts for (i) iterating over the space of possible explanations, which is expected to be much smaller, (ii) computing partial sets of passing compatible tuples, and (iii) computing the number of eliminated compatible tuples for each explanation. Intuitively, passing tuples w.r.t. an explanation are tuples satisfying the conditions of the explanation. Finally, we compute the polynomial based on mathematical calculations.

Alg. 1 provides an outline of Ted++. The input includes the query \(Q = (S, \Gamma, C) \), the Why-Not question WN and the input instance \(I \). Firstly in Alg. 1, line 1, all potential explanations (combinations of the conditions in \(C \)) are enumerated (\(E = 2^\mathcal{C} \)). The remaining steps, discussed in the next subsections, aim at computing the coefficient of each explanation. To illustrate the concepts
Algorithm 1: Ted++

Input: \(Q=(S, \Gamma, C), I, WN\)
Output: PEX
1. \(E \leftarrow\) powerset(C);
2. \(P \leftarrow\) validPartitions(S, WN) * Def. 4.1 *
3. for Part in P do
 4. \(CT_{\text{Part}} \leftarrow (\text{Part}, \mathcal{A}(\text{Part}), WN_{\text{Part}})[I_{\text{Part}}];\)
5. coefficientEstimation(E, Part);
6. PEX \leftarrow\) post-processing(); * Eq. (F) *
7. return PEX.

introduced in the detailed discussions, we will rely on our running example, for which Fig. 4 shows all relevant intermediate results. It should be read bottom-up. For convenience, in our examples, we use subscript \(i\) instead of \(c_i\).

The subsequent discussion on Ted++ can be considered as a proof sketch of the following theorem.

Theorem 4.1. Given a query \(Q\), a Why-Not question WN and an input instance \(I\), Ted++ computes exactly PEX.

4.1 Partial Compatible Tuples Computation

Using the conditions in WN, Ted++ partitions the schema \(S\) (Alg. 1, line 2) into components of relations connected by the conditions in WN (Def. 4.1).

Definition 4.1. *(Valid Partitioning of S).* Given WN, the partitioning of a database schema \(S\) into \(k\) partitions, denoted \(\mathcal{P} = \{\text{Part}_1, \ldots, \text{Part}_k\}\), is valid if each \(\text{Part}_i\), \(i \in \{1, \ldots, k\}\) is minimal w.r.t. the following property:
- if \(R \in \text{Part}_i\) and \(R' \in S\) s.t. \(\exists c \in WN\) with \(\mathcal{A}(c) \cap \mathcal{A}(R') \neq \emptyset\) and \(\mathcal{A}(c) \cap \mathcal{A}(R') \neq \emptyset\) then \(R' \in \text{Part}_i\).

The partitioning of \(S\) allows for handling compatible tuples more efficiently, by ‘cutting’ them in distinct meaningful ‘chunks’. We refer to chunks of compatible tuples as partial compatible tuples and group them in sets depending on the partition they belong to.

The set \(CT_{\text{Part}}\), where \(\text{Part} \in \mathcal{P}\), is evaluated by querying the \(Q_{\text{Part}}=(\text{Part}, \mathcal{A}(\text{Part}), WN_{\text{Part}})\) over \(I_{\text{Part}}\) (Alg. 1, line 4). \(WN_{\text{Part}}\) and \(I_{\text{Part}}\) denote the restriction of WN and I over the relations in Part, respectively.

Example 4.1. The valid partitioning of \(S\) is Part\(_1\)=\{R, S\} *(because of the condition R.B \leq S.D)* and Part\(_2\)=\{T\}. The sets of partial compatible tuples \(CT_{\text{Part}_1}\) and \(CT_{\text{Part}_2}\) are given in the bottom line of Fig. 4.

It is easy to prove that the valid partitioning of \(S\) is unique and that the set \(CT\) can be computed from the sets \(CT_{\text{Part}_i}\).

Lemma 4.1. Let \(\mathcal{P}\) be the valid partitioning of \(S\). Then, \(CT = \times_{\text{Part} \in \mathcal{P}} [CT_{\text{Part}}]\).

Lemma 4.1 makes it clear how to compute \(CT\) from partial compatible tuples. Our algorithm is designed in a way that avoids computing \(CT\) and relies on the computation of \(CT_{\text{Part}_i}\) only.

Next, we compute the number of compatible tuples pruned by each potential explanation, using the partial compatible tuple sets. In this way we calculate the coefficient of the terms in the polynomial. Since from this point on we are only handling compatible tuples, we omit the word ‘compatible’ to lighten the discussion.

4.2 Polynomial Coefficient Estimation

Each set \(E\) in the powerset \(E\) is in fact a potential explanation that is further processed. This process is meant to associate with \(E\) (i) the set of partitions \(\text{Part}_E\) on which \(E\) is defined, (ii) the view definition \(V_E\) meant to store the passing partial tuples w.r.t. \(\mathcal{E}^2\), and (iii) the number \(\alpha_E\) of tuples eliminated by \(E\).

Alg. 2 describes how we process \(E\) in ascending order of explanation size. This enables us to reuse results obtained for sub-explanations and in combination with mathematics, avoid cross product computations.

We first determine the set of partitions for an explanation \(E\) as \(\text{part}_E=\bigcup_{c \in E} \{\text{Part}_c\}\), where \(\text{Part}_c\) contains at least one relation over which \(c\) is specified.

Example 4.2. Consider \(E_1=\{c_1\}\) and \(E_2=\{c_2\}\). From Fig. 3(b) and the partitions in Fig. 4, we can see that \(c_1\) impacts only Part\(_1\), whereas \(c_2\) spans over Part\(_1\) and Part\(_2\). Hence, \(\text{part}_E_1=\{\text{Part}_1\}\) and \(\text{part}_E_2=\{\text{Part}_1, \text{Part}_2\}\). Then, \(E=\{c_1, c_2\}\) is impacted by the union of \(\text{part}_E_1\) and \(\text{part}_E_2\), thus \(\text{part}_E=\{\text{Part}_1, \text{Part}_2\}\).

We use Eq. (A) to calculate the number \(\alpha_E\) of eliminated tuples, using the number \(\beta_E\) of eliminated partial tuples and the cardinality of the partitions not in \(\text{part}_E\).

Intuitively, this formula extends the partial tuples to “full” tuples over \(CT\)’s schema.

\[
\alpha_E = \beta_E \times \prod_{\text{Part} \in \text{part}_E} |CT_{\text{Part}}|,
\]

where \(\text{part}_E=\mathcal{P}\setminus \text{part}_E\). Note that when \(\text{part}_E\) is empty, we absurly consider that \(\prod_{\text{Part} \in \text{part}_E} = 1\).

The presentation now focuses on calculating \(\beta_E\). Two cases arise depending on the size of \(E\).

Atomic explanations. We start with atomic explanations \(E\) containing only one condition \(c\) (Algorithm 2 lines 3-5). We first compute the set of passing partial tuples w.r.t. \(c\), i.e., the tuples that satisfy \(c\), which we store in the view \(V_c\):
Then, the number of eliminated partial tuples by E is

$$\beta_E = \prod_{i=1}^{P} |CT_{part_i}|-|V_e|$$ \hspace{1cm} (B)

Example 4.3. For c_2, we have $part_{c_2} = \{Part_1, Part_2\}$, so $V_{2} = \pi_{R, Id, S, Id, T, Id}(CT_{part_1}) \cap \pi_{R, E, R, T, B}(CT_{part_2})$. This results in $|V_{2}|=4$, and by Eq. (B) we obtain $\beta_{c_2} = |CT_{part_1}|-|V_{e}|=3 \times 4 = 12$. Since all partitions of P are in $part_{c_2}$, applying Eq. (A) results in $\alpha_{c_2}=\beta_{c_2}=8$. For c_3, $\beta_{c_3} = |CT_{part_1}|-|V_{e}|=4-2=2$, so $\alpha_{c_3}=3 \times 2 = 6$. Fig. 4 (second level) displays the process for all atomic explanations.

Non atomic explanations. Now, assume that $E = \{c_3, \ldots, c_n\}$, $n > 1$ (Alg. 2, lines 6-16). For the moment, we assume that the conditions in E share the same schema, so the intersection and union of V_{e_i} for $i = 1, \ldots, n$ are well-defined. Firstly, we compute the view V_{e} of passing partial tuples w.r.t. E as $V_{e} = \bigcup_{i=1}^{n} V_{e_i}$. To compute the number of partial tuples pruned out by E, we need to find the number of partial tuples pruned out by c_1 and ... and c_n, i.e., $\beta_E = |\bigcap_{i=1}^{n} V_{e_i}|$. By the well-known Demorgan law \cite{22}, we have $\beta_E = |\bigcup_{i=1}^{n} V_{e_i}^c|$, which spares us from computing the complements of V_{e_i}.

To compute the cardinality of the union of the V_{e_i}, we rely on the Principle of Inclusion and Exclusion for counting (11):

$$|\bigcup_{i=1}^{n} V_{e_i}| = \sum_{\emptyset \neq J \subseteq [n]} (-1)^{|J|+1} \big| \bigcap_{j \in J} V_{e_j} \big|$$

We further rewrite the previous formula to reuse results obtained for sub-combinations of E, obtaining Eq. (C).

$$|\bigcup_{i=1}^{n} V_{e_i}| = \sum_{\emptyset \neq J \subseteq [n]} (-1)^{|J|} \big| \bigcap_{j \in J} V_{e_j} \big|$$ \hspace{1cm} (C)

At this point, we can compute β_E. However, so far we assumed that the conditions in E have the same schema. In the general case, this does not hold and we have to “extend” the schema of a view V_e to the one of V_{e_i} in order to ensure set operations to be well-defined. The cardinality of an extended $V_{e_i}^{ext}$ is given by Eq. (D).

$$|V_{e_i}^{ext}| = \prod_{part \in P \setminus \{part_e\}} |CT_{Part}| \times |V_e|$$ \hspace{1cm} (D)

Based on Eq. (D) we obtain Eq. (E) that generalizes Eq. (C).

$$\big| \bigcup_{i=1}^{n} V_{e_i} \big|^{ext} = \big| \bigcup_{i=1}^{n-1} V_{e_i} \big|^{ext} + \big| V_{e_n}^{ext} \big|$$

$$+ \sum_{\emptyset \neq J \subseteq [n-1]} (-1)^{|J|} \big| \bigcap_{j \in J} V_{e_j} \big|^{ext}$$ \hspace{1cm} (E)

In Eq. (E) we have replaced the intersection with natural join. The cardinalities of the views $V_{e_i} = \pi_{R_j \ldots R_n}(V_{e_i})$ associated with E' for $|J| < n-1$, have already been computed by previous steps and have only to be extended to the schema of V_e. When $|J| = n-1$, then $V_{e_i} = V_e$. A detailed discussion on how and when we materialize the view V_e is given shortly after.

Now, we trivially compute the number β_E of eliminated partial tuples as the complement of $|V_e|$ (Alg. 2, line 17). The number of ‘full’ eliminated tuples is then calculated by Eq. (A).

Example 4.4. To illustrate the concepts introduced above, please follow on Fig. 4 below discussion.

For the explanation $c_2 c_3$, Eq. (E) gives:

$$|V_{2} \cup V_{3}|^{ext} = |V_{2}^{ext}| + |V_{3}^{ext}| - |V_{2}^{ext} \cap V_{3}^{ext}|.$$ The schema of $part_{c_2 c_3} = \{ Part_1, Part_2 \}$ is $\Gamma_{23} = \{ R, Id, S, Id, T, Id \}$. The view V_{23} has already a matching schema, thus $|V_{23}^{ext}|=|V_{23}|=4$. For V_{2}, $\Gamma_2 = \{ T, Id \}$, we thus apply Eq. (D) and obtain $|V_{2}^{ext}|=|V_{part_1}| \times |V_{2}| = 3 \times 2 = 6$. Still, $|V_{23}| = |V_{2} \times V_{3}|^{ext}$ remains to be calculated. Intuitively, because V_{2} and V_{3} target shared schema attributes T, Id, V_{23} is $V_{2} \times M_{T, Id, T}$. The view V_{23} is materialized and contains 2 tuples (as shown in Fig. 4). So, finally, from Eq. (E) we obtain $|(V_{2} \cup V_{3})^{ext}| = 4 + 6 - 2 = 8$. Since $|\{ Part_1 \}| \times |\{ Part_2 \}| = 12$ then $\beta_{23} = 12 - 8 = 4$, and by Eq. (A) $\alpha_{23} = 4$.

We now focus on the explanation of $c_3 c_4$. The schemas of V_{3} and V_{4} are disjoint and intuitively $V_{35} = V_{3} \cup V_{4}$. Here, V_{35} is not materialized, we simply calculate $|V_{35}| = |V_{3}| \times |V_{4}| = 6$. Then, $|\Delta_{35}| = 12 - (12 + 6 - 6) = 0$. As we will see later, these steps are never performed in our algorithm. The fact that c_n does not eliminate any tuple (see $\alpha_{n} = 0$ in Fig. 4) implies that neither do any of its super-combinations. Thus, a priori we know that $\alpha_{35} = \alpha_{235} = \ldots = 0$.

Finally, we illustrate the case of a bigger size combination, for example $c_2 c_3 c_4$ of size 3. Eq. (E) yields:

$$|V_{2} \cup V_{3} \cup V_{4}|^{ext} = |V_{2} \cup V_{3}|^{ext} + |V_{3} \cup V_{4}|^{ext} - |V_{2} \cup V_{3} \cup V_{4}|^{ext}.$$ All terms of the right side of the equation are available from previous iterations, except for $|V_{2} \cup V_{3} \cup V_{4}|^{ext}$. As before, we check the common attributes of the views and obtain $V_{234} = V_{2} \times M_{R, Id, S, Id, T, Id}$. So, $|(V_{2} \cup V_{3}) \cup V_{4}|^{ext} = 6 + 6 - 2 - 1 = 0$ and $\beta_{234} = \alpha_{235} = 12 - 9 = 3$. In the same way, we compute all the possible explanations until $c_1 c_2 c_3 c_4$.

View Materialization: when and how. To decide when and how to materialize the views for the explanations, we partition the set of views associated with the conditions in E. Consider the relation \sim defined over these views by $V_e \sim V_{e_i}$ if the target schemas of V_e and V_{e_i} have at least one common attribute. Consider the transitive closure \sim^* of \sim and the induced partitioning of V_e through \sim^*.

When this partitioning is a singleton, V_e needs to be materialized (Alg. 2, line 9). The materialization of V_e is specified by joining the views associated with the sub-conditions, which may be done in more than one way, as usual. For example, for the combination $c_2 c_3 c_4$, V_{234} can either be computed through $V_{2} \times M_{V_{4}}$ or $V_{2} \times M_{V_{3}}$ or $V_{2} \times M_{V_{4}} \times V_{3} \times M_{V_{2}}$... because all these views are known from previous iterations. The choice of the query used to materialize V_{e} is done based on a cost function. This function gives priority to materializing V_{e} by means of one join, which is always possible: because V_{e} needs to be materialized, we know that at least one view associated with a sub-combination of size $n-1$ has been materialized. In other words, priority is given to using at least one materialized view associated with one of the largest sub-combinations. For our example, it means that either $V_{2} \times M_{V_{4}}$ or $V_{2} \times M_{V_{3}}$ or $V_{3} \times M_{V_{2}}$ is considered. In order to choose among the one-join queries computing V_{e}, we favour a one-join query $V_{e} \times M_{V_{4}}$ minimal w.r.t. $|V_{e}| + |V_{4}|$. For the example, and considering also Fig. 4 we find that $|V_{2}| + |V_{3}| = |V_{4}| + |V_{23}| = 5$ and $|V_{4}| + |V_{23}| = 3$. So, the query used for the materialization is $V_{23} \times M_{V_{4}}$ (its result being empty in our example). Nevertheless, we avoid the materialization of V_e if the partitioning is a singleton (Alg. 2, line 9).
& 16), when for some sub-combination \(\mathcal{E}' \) of \(\mathcal{E} \) it was computed that \(\alpha_{\mathcal{E}'} = 0 \). In that case, we know a priori that \(\alpha_{\mathcal{E}} = 0 \) (see Ex. 4.4).

If the partitioning is not a singleton, \(V_\mathcal{E} \) is not materialized (Alg. 2, line 14). For example, the partitioning for \(c_3c_5 \) is not a singleton and so the size \(|V_{c_3c_5}| = |V_3| \times |V_5| = 6 \).

Post-processing. In Alg. 2 we associated with each possible explanation \(\mathcal{E} \) the number of eliminated tuples \(\alpha_{\mathcal{E}} \). However, \(\alpha_{\mathcal{E}} \) includes any tuple eliminated by \(\mathcal{E} \), even though the same tuples may be eliminated by some super-combinations of \(\mathcal{E} \) (see Ex. 4.5). This means that for some tuples, multiple explanations have been assigned. To make things even, the last step of Ted++ (Alg. 1, line 6) is about calculating the coefficient of \(\mathcal{E} \) by subtracting the coefficients of its super-combinations from \(\alpha_{\mathcal{E}} \):

\[
\text{coef}_{\mathcal{E}} = \alpha_{\mathcal{E}} - \left(\sum_{\mathcal{E}' \subseteq \mathcal{E}} \text{coef}_{\mathcal{E}'} \right)
\]

(F)

Example 4.5. Consider known \(\text{coef}_{f_{1234}} = 2 \) and \(\text{coef}_{f_{123}} = 2 \). We have found in Ex. 4.4 that \(\alpha_{c_3} = 4 \). With Eq. (F), \(\text{coef}_{f_{23}} = 4 - 2 - 2 = 0 \). In the same way \(\text{coef}_{f_2} = 4 - 0 - 2 - 2 = 0 \). The algorithm leads to the expected Why-Not explanation polynomial already provided in Ex. 3.4.

4.3 Complexity Analysis

In the pseudo-code provided by Alg. 1, we can see that Ted++ divides into the phases of (i) partitioning \(S \), (ii) materializing a view for each partition, (iii) computing the explanations, and (iv) computing the exact coefficients. When computing the explanations, according to Alg. 2, Ted++ iterates through \(2^{|\mathcal{E}|} \) combination conditions and for each, it decides upon view materialization (again through partitioning) before materializing it, or simply calculates \(|V_\mathcal{E}| \) before applying equations to compute \(\alpha_{\mathcal{E}} \). Overall, we consider that all mathematical computations are negligible so, the worst case complexities of steps (i) through (iv) sum up to

\[
O(|S| + |W|N) + O(|S|) + O(2^{|\mathcal{E}|}|S| + |C|)^{2^{|\mathcal{E}|}} + O(2^{|\mathcal{E}|}).
\]

For sufficiently large queries, we can assume that \(|S| + |C| << 2^{|\mathcal{E}|} \), in which case the complexity simplifies to \(O(2^{|\mathcal{E}|}) \).

The complexity analysis above does not take into account the cost of actually materializing views; in its simplified form, it only considers how many views need to be materialized in the worst case. Assume that \(n = \max(|I_E|, |R_e \in S|) \). The materialization of any view is bound by the cost of materializing a cross product over the relations involved in the view - in the worst case \(O(n^{|E|}) \). This yields a combined complexity of \(O(2^{|\mathcal{E}|}n^{|E|}) \). However, Ted++ in the general case (more than one induced partitions), has a tighter upper bound: \(O(n^{k_E} + n^{|E|} + \cdots + n^{|E|^k_E}}) \), where \(k_E = |part_\mathcal{E}| \), for all combinations \(\mathcal{E} \) and \(N = 2^{|\mathcal{E}|} \).

5. EXPERIMENTAL EVALUATION

We perform an experimental evaluation of Ted++ on real and synthetic datasets. In Sec. 5.1, we compare Ted++ to Ted [2], NedExplain [3], and Why-Not [7]. Sec. 5.2 studies the runtime of Ted++ w.r.t. various parameters that we vary in a controlled manner. All Java implementations of the algorithms ran on MAC OS X 10.9.5 with 1.8 GHz Intel Core i5, 4GB memory, and 120GB SSD. PostgreSQL 9.3 was used as database system.
5.1 Comparative Evaluation

The comparative evaluation to Why-Not and NedExplain considers both efficiency (runtime) and effectiveness (explanation quality). When considering efficiency, we also include Ted in the comparison (Ted producing the same Why-Not explanation as Ted++).

For each dataset, we have created a series of scenarios (crime1-gov5 in Tab. 3 - ignore remaining scenarios for now). Each scenario consists of a query further defined in Tab. 2 (Q1-Q7) and a simple Why-Not question, as Why-Not and NedExplain support only this type of Why-Not question. We have designed queries with a small set of conditions (Q6) or a larger one (Q1, Q3, Q5, Q7), containing self-joins (Q3, Q4), having empty intermediate results (Q2), as well as containing inequalities (Q2, Q4, Q5, Q6).

5.1.1 Why-Not Explanation Evaluation

Table 1 summarizes the Why-Not explanations of the three algorithms. These scenarios make apparent that the explanations by NedExplain or Why-Not are incomplete, in two senses. First, they produce only a subset of the possible explanations, failing to provide alternatives that could be useful to the user when she tries to fix the query. Second, even the explanation they provide may lack parts, which can drive the user to fruitless fixing attempts. On the contrary, Ted++ produces all the possible, complete explanations.

Ted++ vs. NedExplain and Why-Not. Fig. 5 shows the runtimes in logarithmic scale for each algorithm and scenario. We observe that Ted++ and NedExplain are comparable and that in some cases, Ted++ is significantly faster than Why-Not.

Ted++ traces compatible tuples based on tuple lineage stored in Trie. As already stated in [3, 7], this design choice slows down Why-Not. On the contrary, both NedExplain and Ted++ compute

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Query</th>
<th>Why-Not question</th>
</tr>
</thead>
<tbody>
<tr>
<td>crime1</td>
<td>Q1</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime2</td>
<td>Q1</td>
<td>[P.Name=Roget,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime3</td>
<td>Q2</td>
<td>[P.Name=Roget,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime4</td>
<td>Q2</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime5</td>
<td>Q2</td>
<td>[P.Name=Hank]</td>
</tr>
<tr>
<td>crime6</td>
<td>Q3</td>
<td>[C.Type=skid mapping]</td>
</tr>
<tr>
<td>crime7</td>
<td>Q3</td>
<td>[W.Name=Susan,C.Type=skid mapping]</td>
</tr>
<tr>
<td>imdb1</td>
<td>Q5</td>
<td>[name=Avalar]</td>
</tr>
<tr>
<td>imdb2</td>
<td>Q5</td>
<td>[name=Christmas Sturry,L.locationId=USA/New York]</td>
</tr>
<tr>
<td>gov1</td>
<td>Q6</td>
<td>[Co.firstname=Christopher]</td>
</tr>
<tr>
<td>gov2</td>
<td>Q6</td>
<td>[Co.firstname=Christopher,Co.lastname=MURPHY]</td>
</tr>
<tr>
<td>gov3</td>
<td>Q6</td>
<td>[Co.firstname=Christopher,Co.lastname=OBISON]</td>
</tr>
<tr>
<td>gov4</td>
<td>Q7</td>
<td>[spooned=401]</td>
</tr>
<tr>
<td>gov5</td>
<td>Q7</td>
<td>[SPO.sponsorIsIn=Lucas.E.camamount<>1000]</td>
</tr>
<tr>
<td>crime1</td>
<td>Q1,Q2</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime2</td>
<td>Q1,Q2</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime3</td>
<td>Q1,Q2</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime4</td>
<td>Q1,Q2</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime5</td>
<td>Q1,Q2</td>
<td>[P.Name=Hank,C.Type=Car theft]</td>
</tr>
<tr>
<td>crime6</td>
<td>Q3</td>
<td>[C.Type=skid mapping]</td>
</tr>
<tr>
<td>crime7</td>
<td>Q3</td>
<td>[W.Name=Susan,C.Type=skid mapping]</td>
</tr>
</tbody>
</table>

5.1.2 Runtime Evaluation

Ted++ vs. NedExplain and Why-Not. Fig. 5 shows the runtimes in logarithmic scale for each algorithm and scenario. We observe that Ted++ and NedExplain are comparable and that in some cases, Ted++ is significantly faster than Why-Not.
Figure 5: Runtime for Ted++, Ted, NedExplain, and Why-Not compatible data more efficiently. We claim that a better implementation choice for tuple tracing in Why-Not would yield a runtime comparable to NedExplain, a claim backed up by their comparable runtime complexities. Another problem of NedExplain and Why-Not lies in the choice to trace compatible data w.r.t. tuples from the input relations but not necessarily compatible ones.

Let us see what happens when Ted++ is slower than - but still comparable to - NedExplain, for example in gov1-gov3. In NedExplain all compatible tuples are pruned out by conditions very close to the leaf level of the query tree, so the bottom-up traversal of the tree can stop very early. Ted++ always “checks” all conditions so cannot benefit from such an early termination. However, this runtime improvement of NedExplain often comes at the price of incomplete explanations (e.g., gov1).

Ted++ vs. Ted. Fig. 5 reports runtimes for Ted on 6 out of 15 scenarios as for the others, Ted runs out of time. To examine this behavior, we compare the time distribution in Ted and Ted++ (Fig. 6). The algorithms are divided into four common phases. Note that in scenarios crime7, govl – gov3 the diagram bars for Ted are not displayed as the execution time is much higher compared to the other scenarios and to the runtime of Ted++ (the runtime of the coefficientEstimation phase is the label on the respective bars).

As said in Sec. 4, Ted’s main issue is its dependence on the number of compatible tuples. This is experimentally observed in Fig. 6: with the growth of the set of compatible tuples, the time dedicated to coefficientEstimation also grows (the scenarios are reported in an ascending order of number of compatible tuples). The number of compatible tuples affects Ted++ too, but not as much. This can be seen in crime8 and crime7, or gov3 and gov1; while the number of tuples grows, Ted++’s runtime remains roughly steady.

5.2 Ted++ Analysis

We now study Ted++’s behavior w.r.t. the following parameters: (i) the type (simple or complex) of the input query Q and the number of Q’s conditions, (ii) the type of the Why-Not question (simple or complex) and the number and selectivity of conditions the Why-Not question involves, and (iii) the size of the database instance I. Note that (ii) and (iii) are tightly connected with the number of compatible tuples, which is one of the main parameters influencing the performance. Another important factor is the selectivity of the query conditions over the compatible data.

For the parameter variations (i) and (ii), we use again the crime, imdb, and gov databases. To adjust the database instance size for case (iii), we use data produced by the TPC-H benchmark data generator (http://www.tpc.org/tpch/). We have generated instances of 1GB and 10GB and further produced smaller data sets of 10MB and 100MB to obtain a series of datasets whose size differs by a factor of 10. In this paper, we report results for the original query Q3 of the TPC-H set of queries. It includes two complex and three simple conditions, two of which are inequality conditions. Since the original TPC-H query Q3 is an aggregation query, we have changed the projection condition. The queries used in this section are Q4, Q1..Q10 (Tab. 2) and the scenarios are crime1–crime10 (Tab. 3).

Adjusting the query. Given a fixed database instance and Why-Not question, we start from query Q1 and gradually add simple conditions, yielding the series of queries Q1, Q2, Q3, Q4. The evolution of Ted++ runtime for these queries is shown in Fig. 7 (a). Similarly, starting from query Q4, we introduce step by step complex conditions, yielding Q4, Q5, Q6. Corresponding runtime results are reported in Fig. 7 (b). As expected, in both cases, increasing the number of query conditions (either complex or simple) results in increasing runtime. The incline of the curve depends on the selectivity of the introduced condition; the less selective the condition the steeper the line becomes. This is easy to explain, as the view for the explanations involving a low selective condition contains more tuples (=spawning partial tuples). This, leaves space for further optimization by dynamically deciding on passing vs eliminated tuples materialization.

Adjusting the Why-Not question. The scenarios considered for Fig. 8 (a) have as starting point the simple Why-Not question of crime9 (see Tab. 3). Keeping the same input instance and query, we add attribute-constant comparisons (i.e., simple conditions) to W, resulting in fewer tuples in each step. As expected, the more conditions (the less tuples) the faster the Why-Not explanation is returned, until we reach a certain point (here from crime15 on).
From this point, the runtime is dominated by the time to communicate with the database that is constant over all scenarios. In Fig. 8 (b) we examine complex Why-Not questions. As we add complex conditions in a Why-Not question, the number of generated partitions (potentially) drops as more relations are included in a same partition. To study the impact of the induced number of partitions in isolation, we keep the number of the compatible tuples constant in our series of complex scenarios (\(imidb_{\text{cc}3}\), \(imidb_{\text{cc}2}\), and \(imidb_{\text{cc}3}\) are 3, 2, and 1, respectively. The results of Fig. 8 (b) confirm our theoretical complexity discussion, i.e., as the number of partitions decreases, the time needed to produce the Why-Not explanation increases.

Increasing size of input instance. Now we increase the database size for scenarios with one simple or one complex Why-Not question \(WN\), over the same query \(Q_{\text{tech}}\). The simple \(WN\) includes two inequality conditions, in order to be able to compute a reasonable number of compatible tuples. The complex \(WN\) contains one complex condition, one inequality simple condition and one equality simple condition. It thus represents an average complex Why-Not question, creating two partitions over three relations.

Fig. 9 (a) shows the runtimes for both scenarios. The increasing runtime is tightly coupled to the fact that the number of computed tuples is augmenting proportionally to the database size, as shown in Fig. 9 (b). We observe that for small datasets (<500MB) in the complex scenario, Ted++ ‘s performance decreases with a low rate, whereas the rate is higher for larger datasets. For the simple scenario, runtime deteriorates in a steady pace. This behavior is aligned with the theoretical study; when the number of partitions is decreasing the complexity rises.

In summary, our experiments have shown that Ted++ generates a more useful and complete Why-Not explanation than the state of the art. Moreover, Ted++ is competitive in terms of runtime. The dedicated experimental evaluation on Ted++ verifies that it can be used in a large variety of scenarios with different parameters. Finally, the fact that the experiments were conducted on an ordinary laptop supports Ted++’s feasibility.

6. CONCLUSION AND OUTLOOK

This paper provides a framework for Why-Not explanations based on polynomials, which enables to consider relational databases under set, bag and probabilistic semantics in a unified way. To efficiently compute the Why-Not explanation polynomial under set semantics we have designed a new algorithm Ted++, whose main feature is to completely avoid enumerating and iterating over the set of compatible tuples, thus significantly reducing both space and time consumption. Our experimental evaluation showed that Ted++ is at least as efficient as existing algorithms while providing useful insights in its Why-Not explanation for a developer. Also, we show that Ted++ scales well w.r.t various parameters, making it a practical solution.

Why-Not explanation polynomials are easy to extend for unions of conjunctive queries, whereas an extension for aggregation queries is subject to future work. Currently, we have been working on exploiting the Why-Not explanation polynomial to efficiently rewrite a query in order to include the missing answers in its result set. As there are many rewriting possibilities, we plan to select the most promising ones based on a cost function, built with the polynomial. For instance, we may rank higher rewritings with minimum condition changes (i.e., small combinations), minimum side-effects (i.e., small coefficients), etc.

7. REFERENCES