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Abstract.

Image processing such as deformable image registration finds its way into

radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic

resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become

technically feasible.

magnetic resonance (MR) imaging provides the needed tissue signal for high-fidelity

image registration. However, acquisitions, especially in 3D, take a considerable amount

of time. Pushing towards real-time adaptive radiotherapy, MR imaging needs to be

accelerated without degrading the quality of information.

In this paper, we investigate the impact of image resolution on the quality of motion

estimations. Potentially, spatially undersampled images yield comparable motion

estimations. At the same time, their acquisition times would reduce greatly due to the

sparser sampling. In order to substantiate this hypothesis, an exemplary 4D dataset of

the abdomen is downsampled gradually. Subsequently, spatiotemporal deformations

are extracted consistently using the same motion estimation for each downsampled

dataset. Errors between the original and the respectively downsampled version are

then evaluated.

Compared to ground-truth, results show high similarity of deformations estimated

from downsampled image data. Using a dataset with (2.5mm)3 voxel size, deformation

fields could be recovered well up to a downsampling factor of 2, i.e. (5mm)3.

In a therapy guidance scenario MRI, imaging speed would accordingly increase

approximately fourfold, with acceptable loss of estimated motion quality.

Keywords: deformable image registration, local deformations, resampling, data

sufficiency Phys. Med. Biol.
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1. Introduction

Recent developments enabled on-line magnetic resonance imaging (MRI) during

radiotherapy (Raaymakers et al. 2009, Lagendijk et al. 2014). In further consequence,

new possibilities for elements in the feedback chain of adaptive radiotherapy (ART)

arise: in contrast to currently available real-time positioning devices which provide only

surrogate displacement data, MRI returns 3D anatomical information of both target

volume and organs at risk (OAR).

After acquisition, 3D displacements need to be estimated from the dynamic volumes

using image-based motion estimation algorithms (Oliveira & Tavares 2012). The

displacements become 3D deformation vector field (DVF) which can be used as feedback

variable for e.g. dose calculations or target tracking during intervention (de Senneville

et al. 2011). However, MRI is an inherently slow image modality and acquisition speed

depends directly on image resolution. Additionally, MRI acquisition speedup is limited

by both technical (gradient strength/noise bandwidth) and physiological (specific

absorption rate (SAR), peripheral nerve stimulation (PNS)) constraints (?). Similarly,

model based acceleration techniques such as parallel imaging (Blaimer et al. 2004) or

compressed sensing (Lustig et al. 2007) are limited by the validity of their underlying

model and the demand for reconstruction time.

The aspiration of this work is to investigate the impact of image resolution

on the quality of motion estimation. Potentially, with lower sufficient resolution

for comparable motion estimation, magnetic resonance (MR) acquisition could be

accelerated significantly. The gain in acquisition speed would enable applications which

demand for high-frequency, real-time MRI, such as 3D target and dose tracking for ART.

2. Methods

(a) original/(2.5mm)3 (b) 2×/(5mm)3 (c) 3×/(7.5mm)3

Figure 1: Downsampled images resampled back into the original grid. Images

exemplarily show the image information loss with higher downsampling factors
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2.1. Image data and imaging

As ground truth for all experiments, a 4D-MRI dataset depicting a volunteer’ s abdomen

was
✿✿✿✿✿✿✿✿

datasets
✿✿✿✿✿✿✿✿✿✿

depicting
✿✿✿✿✿✿✿✿✿✿✿✿

volunteers’
✿✿✿✿✿✿✿✿✿✿

abdomen
✿✿✿✿✿✿

were
✿

used. The use of volunteer data was

chosen for the lack of satisfying synthetic phantoms for deformable image registration.

To avoid image modulation from breathing motion, respiratory gating was employed

with a gating window of 5mm using navigator echoes on the interface between lung and

left liver-dome. Gating in end-of-expiration was chosen because of an expected low

residual breathing motion uncertainty for abdominal sites (Berbeco et al. 2006).

Since isotropic resolution is a prerequisite of the utilized image processing, the

acquisition was tailored to acquire data with (2.5mm)3 voxel size. k-space was filled in

3D manner in order to avoid malicious slice effects, such as slice overlap and inter-slice

motion. Additionally, 3D k-space sampling yields higher signal to noise ratio (SNR)

compared to sliced acquisitions.

The navigator triggered an echo planar imaging (EPI) readout with an EPI-factor

of 21, TR/TE/α = 47ms/9.8ms/25◦. Binomial pulses (1− 2− 1) (Hore 1983) were used

for selective water excitation, concurrently suppressing the fat signal. Furthermore,

moderate sensitivity encoding (SENSE) (P = 1.5, S=1.5) was used to further accelerate

imaging.

In total ,

✿✿✿✿✿✿✿✿✿✿

Volunteer
✿

#
✿✿

of
✿✿✿✿

3D
✿✿✿✿✿✿✿✿✿✿

dynamics
✿ ✿✿✿✿✿

total
✿✿✿✿✿

scan
✿✿✿✿✿✿✿✿✿✿

duration
✿

✿

1 100
✿✿✿✿✿✿✿

17min

✿

2
✿✿✿

150
✿ ✿✿✿✿✿✿✿

15min

✿

3
✿✿

80
✿ ✿✿✿✿✿

8min

Table 1:
✿✿✿✿✿✿✿✿✿✿

Overview
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

acquired
✿✿✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿

data
✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿✿

volunteer.

✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

amount
✿✿✿

of
✿✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

acquired
✿✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿✿

volunteer
✿✿

is
✿✿✿✿✿✿✿✿

stated
✿✿✿

in
✿

table 1
✿

.
✿✿✿✿✿✿✿

From
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

total
✿✿✿✿✿✿

scan
✿✿✿✿✿✿✿✿✿✿

duration
✿✿✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

amount
✿✿✿

of
✿

3D dynamicswere measured over

17min, with an approximate time per dynamic of 3s. The volunteer was
✿

,
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿

possible
✿✿

to

✿✿✿✿✿

infer
✿✿✿✿✿✿✿

gating
✿✿✿✿✿✿✿✿✿✿✿

efficiencies
✿✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿✿

volunteer:
✿✿✿✿✿✿✿

While
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿

first
✿✿✿✿✿✿✿✿✿✿✿

volunteer,
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximate

✿✿✿✿✿✿✿✿

amount
✿✿✿

of
✿✿

6
✿✿✿✿✿✿✿

images
✿✿✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

extracted
✿✿✿✿✿

per
✿✿✿✿✿✿✿✿

minute,
✿✿✿✿✿✿✿✿✿✿

scanning
✿✿✿✿

the
✿✿✿✿✿✿

other
✿✿✿✿✿

two
✿✿✿✿✿✿✿✿

yielded
✿✿✿

10

✿✿✿✿✿✿✿

images
✿✿✿✿

per
✿✿✿✿✿✿✿✿✿

minute,
✿✿✿

on
✿✿✿✿✿✿✿✿✿

avarage.
✿✿✿✿✿✿✿✿✿

During
✿✿✿✿

the
✿✿✿✿✿✿

scans
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

volunteers
✿✿✿✿✿

were
✿

breathing freely

and was
✿✿✿✿✿

were
✿

not commanded any breathing alteration.

2.2. Image Processing

To simulate coarser sampling, downsampled data was synthetically generated using

MATLAB’s (The Mathworks, Natick, MA, USA) tri-cubic reconstruction kernels. The

cubic kernel was chosen over linear interpolation to more closely resemble the ideal

reconstruction kernel.

The original grid with (2.5mm)3 voxel size was downsampled with factors ki =

[1.5, 2, 2.5, 3, 4] to simulate the loss of image content by coarser imaging. After
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downsampling, the data was again upsampled by the respective inverse factor in order

to be able to compare data on a common (the original) grid (see figure 1).

For the registration, baseline intensity variations throughout the imaging stack

had to be removed. Accordingly, all images were equalized into the same dynamic

range by normalizing the (magnitude) images to the median of the maxima found in

all individual images. Subsequently, intensity values were capped to the estimated

median-max. This was necessary because the T1-weighted imaging sequence yields the

brightest signal for blood. Consequently, since the cardiac cycle has a similar time scale

as the dynamic imaging, these signal maxima appeared modulated in vicinal vessels.

✿✿✿✿✿✿✿✿✿✿✿✿✿

Accordingly,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

median
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maxima
✿✿✿✿✿✿✿

found
✿✿✿

in
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿✿✿✿✿✿

(magnitude)
✿✿✿✿✿✿✿✿

images
✿✿✿✿

was

✿✿✿✿✿✿✿✿✿✿✿

calculated.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Subsequently,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

intensity
✿✿✿✿✿✿✿

values
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

capped
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿✿✿✿✿✿

median-max

✿✿✿✿✿✿✿✿✿✿

multiplied
✿✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

cut-off
✿✿✿✿✿✿✿

factor
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

kcutoff = 0.8.
✿✿✿✿✿✿✿✿

Finally,
✿✿✿✿

the
✿✿✿✿✿✿

mean
✿✿✿

of
✿✿✿✿✿✿

every
✿✿✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

image

✿✿✿✿✿✿✿✿✿

dynamic
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿✿✿

normalized
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

mean
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿

image.
✿✿✿✿✿✿

This
✿✿✿✿✿✿✿✿

proofed
✿✿✿

to
✿✿✿

be
✿✿✿✿✿✿

more

✿✿✿✿✿✿✿

robust
✿✿✿

to
✿✿✿✿✿

grey
✿✿✿✿✿✿

level
✿✿✿✿✿✿✿✿✿✿✿

variations,
✿✿✿✿✿✿✿✿✿✿✿

compared
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

referencing
✿✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dynamic
✿✿✿✿✿✿

range
✿✿✿

of
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿

image.
✿

2.3. Motion estimation

Motion throughout the imaging session was estimated with an implementation (Roujol

et al. 2010) of non-rigid registration based on optical flow. As derived by Horn &

Schunck (1981), the optical flow’s objective function is formulated as

∫∫∫

Ω

(Ixvx + Iyvy + Izvz + It)
2 + α2

(

‖∇vx‖
2
2 + ‖∇vy‖

2
2 + ‖∇vz‖

2
2

)

dxdydz (1)

The left side of the functional states that every spatio-temporal gray level variation

∇I and It is attributed to motion
(

vx vy vz

)T

. In addition, the regularization

term on the right side is introduced to penalize sudden spatial changes of motion,

which was validated for organ deformations (Østergaard Noe et al. 2008). Accordingly,

the unknown DVF is then extracted by minimization of equation 1 with respect to
(

vx vy vz

)T

.

In this work, the regularization parameter was set to α = 0.3. This value was

chosen phenomenologically, in order to avoid instabilities in the motion estimation, that

would lead to non-continuous estimations of the DVFs (Roujol et al. 2011).

Motion was estimated between the reference image (first image dynamic) and every

consecutive imaging dynamic, .
✿✿✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

yielded
✿

yielding 100 DVFs for the N = 100

dynamics. This process was repeated for every 4D stack of the respectively applied

resampling factor with index ith.

2.4. Error assessment

As depicted in figure 2, the quality of the motion estimation for the ith dataset was

assessed by taking the differences between the DVF from resampled data and the DVF
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Idyn(x,y,z,n)

Figure 2: Evaluation workflow for motion estimation and error quantification: ki
indicates the respective factors for the resampling operators (↓,↑), OF means the motion

estimation using optical flow. Subsequent L2-norm (‖ · ‖2), ∆ and RMS operators work

on a per-pixel basis. x,y,z are the spatial coordinates, n denotes the temporal index

and i is the index for the individual downsampling factors.

of the original data. However, the multidimensional, 4D vector fields

DVFi(x, n) =







vx
vy
vz






(x, n) (2)

require integral metrics for convenient quantification of the differences. For clarity, the

analyses are done solely in terms of absolute, component-wise differences (endpoint error

(Baker et al. 2011))

∆DV Fi (x, n) = ‖DVFi (x, n)−DVFref (x, n) ‖2, (3)

with n denoting the temporal index of a 3D-dynamic.

Locally, two salient voxels were selected and analyzed over time
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

longest

✿✿✿✿✿✿✿

dataset
✿✿✿✿✿✿✿✿✿✿✿✿

(volunteer
✿✿

1
✿✿

in
✿

table 1
✿

). Furthermore, for generating global statistics, we make

use of the root mean square (RMS) which is applied on the absolute component-wise

differences between two DVFs

ǫRMS,i(x) =

√

√

√

√

1

N

N
∑

n=1

∆DV Fi(x, n). (4)

2.5. Data selection

In order to limit the sample size, comparatively mobile voxels including continuous and

spontaneous motion events were elected for the global statistics.

Using linear regression, coefficients β(x) were calculated for every voxel over time

as

argmin
α(x),β(x)

{α(x) + β(x)n = ‖DV Fref(x, n)‖2} . (5)
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Voxels with β(x) > 0.02mm (dynamic)−1 were considered in the global statistics.

In combination with the metric in eq. 5 this threshold extracts the elected dynamic

voxels.

In addition to regression coefficients, the RMS of the DVFs could be a feasible

quantifier of the target mobility in a voxel over time. However, for the chosen MR

acquisition type, it did not prove feasible because of high false-positive rates. These

were caused by the previously mentioned pulsation artifacts in the aorta and vena cava,

randomly modulating the individual dynamics and thus the extracted DVF.

(a) original (b) 1.5x (c) 2x

(d) 2.5x (e) 3x (f) 4x

ab
s.

 d
is

pl
ac

em
en

t/m
m

0

1

2

3

4

5

Figure 3: Absolute DVF in a selected slice of volunteer 1 for increasing downsampling

(a-f). Qualitative similarity is apparent until downsampling with factor 2.5.

3. Results

Figure 3 shows a selected slice of anatomy
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

anatomy
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

volunteer
✿✿

1
✿

in the original

image stack. A transparent overlay is applied onto anatomy, representing absolute

displacement fields estimated in the
✿✿✿

last
✿✿

(100th)
✿

imaging dynamic for either of the 6

(resampled) datasets(-).

Over the selected slice, the DVFs extracted from the individually resampled data

appear visually congruent. The stretched displacement at the edge of the liver, next to

the right kidney, appears consistently throughout all datasets and holds its structure up

to a two-fold downsampling before it disintegrates.

Large deformations in the region between stomach and duodenum are prominent

in all scenarios and retain shape. However, starting from factor 2.5, a visible blur is

introduced to the DVF distribution. At 4x-downsampling, formerly prominent spots

significantly decrease in motion magnitude.
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(a) Volunteer 1 (b) Volunteer 2 (c) Volunteer 3

re
gr

es
si

on
 c

oe
ff.

/m
m

/d
yn

.

0

0.01

0.02

0.03

0.04

0.05

Figure 4: Global error quantification: distribution of the extracted regression coefficients

β(x) over the anatomies of 3 volunteers

✿✿

In
✿✿✿✿✿✿✿

figure
✿✿

fig. 4,
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

intersubject
✿✿✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿

of
✿✿✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿

motion
✿✿✿

β
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

apparent.

✿✿✿✿✿✿

While
✿✿✿✿✿✿✿✿✿✿✿✿

volunteers
✿✿

1
✿✿✿✿✿

and
✿✿✿

3
✿✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿

motion
✿✿✿✿✿✿✿✿✿✿

hotspots,
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿✿✿✿

volunteer’s

✿✿✿✿✿✿✿✿✿

anatomy
✿✿✿✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿

steady
✿✿✿✿✿✿✿✿✿✿✿✿

throughout
✿✿✿✿✿

the
✿✿✿✿✿

scan
✿✿✿✿✿✿✿✿✿✿✿

duration.
✿✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

reduces
✿✿✿✿✿✿✿

points

✿✿✿✿✿✿

which
✿✿✿✿

are
✿✿✿✿

in
✿✿✿✿✿

line
✿✿✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

inclusion
✿✿✿✿✿✿✿✿✿✿

criterium
✿✿✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

global
✿

RMS
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

statistics

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(β > 0.02mm/dynamic).
✿

According to what was observed qualitatively
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

volunteer
✿✿✿

1
✿

in figure 3,

✿✿✿✿✿✿✿✿✿✿✿✿

qunatitative
✿✿

error statistics in figure 5 show the monotonous increase in RMS error

with increasing undersampling.
✿✿✿✿

This
✿✿✿✿✿✿

effect
✿✿✿✿✿✿✿✿

occurs
✿✿✿✿✿✿✿✿✿✿✿

repeatedly
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿

other
✿✿✿✿✿

two
✿✿✿✿✿✿✿✿✿

subjects.

In addition to the average error, higher moments of the error statistics increase equally,

which leads to outliers ǫRMS,i(x) > 2mm for downsampling with factors greater than 2.

In addition to the global statistics of many points (figure 5), local performance

evaluation is shown in figure 6, illustrating the transient impact of downsampling. In

the exemplarily selected point at the liver/kidney (figure 6a), a constant drift of about

2.5mm/17min is expressed over time. With coarser sampling starting from factor 3, the

deformation appears greatly deteriorated with RMS errors proportional to magnitude.

However, until factor 2.5, errors appear independent of the magnitude and stay lower

than 1mm.

Slightly different in the intestinal sample (figure 6b), absolute errors start to exceed

1mm already at factor 2.5. Undersampling with factors 3, as before, results in a greatly

deteriorated DVF with errors exceeding 2mm.

4. Discussion

Although removing image content by spatial downsampling, the used image registration

algorithm was able to recover deformation fields to a high degree. In the synthetic

experiments the most finely resolved data ((2.5mm)3) served as ground truth; with this,

congruent DVF were able to be extracted up to a downsampling factor of 2 ((5mm)3 voxel

size), with a local error of less than 1mm and global RMS deviations staying beneath

1.5mm.
✿✿✿✿✿✿✿✿✿✿✿

Exemplary
✿✿✿✿✿✿✿✿✿

samples
✿✿

of
✿✿✿✿✿✿

local
✿✿✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿

resulted
✿✿✿

in
✿✿✿✿✿✿

errors
✿✿✿

of
✿✿✿✿

less
✿✿✿✿✿✿

than
✿✿✿✿✿✿✿

1mm.
✿
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Figure 5: Global RMS error statistics: The boxplots illustrate the evolution of the RMS

error within the elected voxels (β(x) > 0.02mm(dyn.)−1) for the various resampling

factors and volunteers. In each cluster the RMS error statistics from volunteer 1, 2 and 3

is plotted from left to right. For completeness, a boxplot for the original, non-resampled

case was added.

This observation contradicts the idea that only images of diagnostic quality are

eligible for image registration purposes. Just the opposite, deformable image registration

is much more data sufficient. Accordingly, imaging for the generation of displacement

data is less demanding on image resolution than e.g. diagnostic imaging.

The fact that estimation of non-rigid motion requires spatial regularization is

backing this hypothesis. Adding a spatial smoothness constraint (eq. 1, right

side) enables stable motion estimation for regions with small image gradients (Bruhn

et al. 2005). Additionally, to suppress the impact of outliers, literature suggests the

application of low-pass filters similar to those used in this work for image preconditioning

in order to obtain better motion estimations (Barron et al. 1994).

The simulated low-resolution MRI proposed here inherently implements both spatial

(velocity) regularization and image low-pass filtering.

In real-timeMRI, where image resolution can and must be traded off against imaging

time, the proposed method could be used to significantly accelerate the acquisition.

Using 2x spatial undersampling, the imaging time of about 3s for a (2.5mm)3-acquisition

could ideally be sped up fourfold while retaining the quality of extracted DVF.

It is important to note that offline resampling using the cubic reconstruction kernels

is solely an approximation of the effect of an actual low resolution MR acquisition, due

to accompanying changes in contrast and point spread function (PSF). However, in first

approximation, the used reconstruction kernels are methodologically sound.
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(a) liver/kidney transition (b) stomach/duodenum

Figure 6: Two manually selected points of interesting DVF evolution in volunteer 1 for

multiple downsampling factors

Combined with gated MRI, this technique enables fast 3D anatomy updates of

abdominal volumes during the exhalation plateau. Used in an acquisition without

respiratory trigger, i.e. free breathing, motion estimates would be less impacted by

intra-scan artifacts (blurring) due to the shorter acquisition time.

Due to respiratory gating in the exemplary data, only medium- to long-term drift

motion in the abdomen was monitored. Thus, observed deformations within the body

are limited and spatially smooth to a first approximation. The image registration is

constrained equally, having a spatial smoothness regularization.

Accordingly, similar results are expected with slowly changing pelvic sites. However,

results may be different when observing steep gradients in DVF over time, such as when

regarding abdominal breathing excursions. This would put stress on the differences

between the algorithmic and the physiologic constraints. Due to the lack of (real-time

3D) data being eligible to be considered as ground-truth, this scenario has not been

considered in this work. A potential data source could be retrospectively binned 4D

MRI data.

Possibly, the accepted error could be evaluated per site or per subject with

pre-treatment assessments: high-resolution data could be acquired and gradually
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downsampled until remarkable sites exceed an error threshold. These assessment could

take place under worst-case treatment conditions, e.g. during rectal or bladder filling in

pelvic cases, in order to test the error for an extreme scenario. The reward would be a

highly accelerated MRI acquisition, without relying on the further introduction of signal

models.

5. Conclusion

This investigation showed, that deformation estimation on coarsely resolved images

yields congruent results when compared to more highly resolved images. The examined

insensitivity of nonrigid image registration to spatial downsampling can be used as a

facility to speed up MRI acquisitions, specifically for real-time therapy guidance. Careful

optimization between acceptable registration error and necessary imaging speed will

however be necessary, since this trade-off cannot be made in an intuitive way.
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