A. Afaq, D. Koh, A. Padhani, N. Van-as, and S. Sohaib, Clinical utility of diffusion-weighted magnetic resonance imaging in prostate cancer, BJU International, vol.257, issue.11, pp.1716-1722, 2011.
DOI : 10.1111/j.1464-410X.2011.10256.x

R. Ahmed, M. Oborski, M. Hwang, F. Lieberman, and J. Mountz, Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods, Cancer Manag Res, vol.6, pp.149-170, 2014.

E. Angell-petersen, S. Spetalen, S. Madsen, C. Sun, Q. Peng et al., Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model, Journal of Neurosurgery, vol.104, issue.1, pp.109-117, 2006.
DOI : 10.3171/jns.2006.104.1.109

T. Beck, F. Kreth, W. Beyer, J. Mehrkens, A. Obermeier et al., Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX, Lasers in Surgery and Medicine, vol.65, issue.5, pp.386-393, 2007.
DOI : 10.1002/lsm.20507

S. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. Wilson, Metronomic Photodynamic Therapy as a New Paradigm for Photodynamic Therapy: Rationale and Preclinical Evaluation of Technical Feasibility for Treating Malignant Brain Tumors??, Photochemistry and Photobiology, vol.29, issue.1, pp.22-30, 2004.
DOI : 10.1111/j.1751-1097.2004.tb00044.x

H. Burckel, E. Josset, J. Denis, J. Gueulette, J. Slabbert et al., Combination of the mTOR inhibitor RAD001 with temozolomide and radiation effectively inhibits the growth of glioblastoma cells in culture, Oncology Reports, 2014.
DOI : 10.3892/or.2014.3590

M. Candolfi, J. Curtin, W. Nichols, A. Muhammad, G. King et al., Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression, Journal of Neuro-Oncology, vol.18, issue.2, pp.133-148, 2007.
DOI : 10.1007/s11060-007-9400-9

A. Castano, Mechanisms in photodynamic therapy: Part three???Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagnosis and Photodynamic Therapy, vol.2, issue.2, pp.91-106, 2005.
DOI : 10.1016/S1572-1000(05)00060-8

Q. Chen, M. Chopp, M. Dereski, B. Wilson, M. Patterson et al., The Effect of Light Fluence Rate in Photodynamic Therapy of Normal Rat Brain, Radiation Research, vol.132, issue.1, pp.120-123, 1992.
DOI : 10.2307/3578343

Q. Chen, Z. Huang, H. Chen, H. Shapiro, J. Beckers et al., Improvement of Tumor Response by Manipulation of Tumor Oxygenation During Photodynamic Therapy??, Photochemistry and Photobiology, vol.5, issue.2, pp.197-203, 2002.
DOI : 10.1562/0031-8655(2002)076<0197:IOTRBM>2.0.CO;2

A. Curnow and S. Bown, The role of reperfusion injury in photodynamic therapy with 5-aminolaevulinic acid ??? a study on normal rat colon, British Journal of Cancer, vol.77, issue.6, pp.989-992, 2002.
DOI : 10.1038/sj.bjc.6600178

A. Curnow, J. Haller, S. Bown, A. Curnow, A. Macrobert et al., Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon Comparison of continuous and fractionated light regimes Comparing and combining light dose fractionation and iron chelation to enhance experimental photodynamic therapy with aminolevulinic acid SG: Light dose fractionation to enhance photodynamic therapy using 5-aminolevulinic acid in the normal rat colon, J Photochem Photobiol B Lasers Surg Med Photochem Photobiol, vol.58, issue.69, pp.149-155325, 1999.

D. Bruijn, H. Van-der-ploeg-van-den-heuvel, A. Sterenborg, H. Robinson, D. Of et al., Fractionated illumination after topical application of 5-aminolevulinic acid on normal skin of hairless mice: the influence of the dark interval on the protection of animals used for scientific purposes R: Oxygen consumption and diffusion effects in photodynamic therapy, J Photochem Photobiol B THE EUROPEAN PARLIAMENT Foster TH, Murant RS Radiat Res, vol.8563, issue.126, pp.184-190296, 1991.

N. Han, A. Shahveranov, Y. Cheng, K. Qin, S. Yu et al., Effects of connective tissue growth factor (CTGF) gene silencing on the radiosensitivity of glioblastoma, Int J Clin Exp Med, vol.7, pp.2557-2563, 2014.

B. Henderson and T. Dougherty, HOW DOES PHOTODYNAMIC THERAPY WORK?, Photochemistry and Photobiology, vol.42, issue.1, pp.145-157, 1992.
DOI : 10.1002/jcp.1040670207

B. Henderson, S. Gollnick, J. Snyder, T. Busch, P. Kousis et al., Choice of Oxygen-Conserving Treatment Regimen Determines the Inflammatory Response and Outcome of Photodynamic Therapy of Tumors, Cancer Research, vol.64, issue.6, pp.2120-2126, 2004.
DOI : 10.1158/0008-5472.CAN-03-3513

J. Henning, R. Fournier, and J. Hampton, A Transient Mathematical Model of Oxygen Depletion during Photodynamic Therapy, Radiation Research, vol.142, issue.2, pp.221-226, 1995.
DOI : 10.2307/3579032

M. Jarzabek, V. Amberger-murphy, J. Callanan, C. Gao, A. Zagozdzon et al., Interrogation of gossypol therapy in glioblastoma implementing cell line and patient-derived tumour models, British Journal of Cancer, vol.26, issue.12, 2014.
DOI : 10.1093/neuonc/nor066

A. Johansson, G. Palte, O. Schnell, J. Tonn, J. Herms et al., 5-Aminolevulinic Acid-induced Protoporphyrin IX Levels in Tissue of Human Malignant Brain Tumors, Photochemistry and Photobiology, vol.71, issue.4, pp.1373-1378, 2010.
DOI : 10.1111/j.1751-1097.2010.00799.x

N. Khan, S. Mupparaju, H. Hou, B. Williams, and H. Swartz, Repeated assessment of orthotopic glioma pO2 by multi-site EPR oximetry: A technique with the potential to guide therapeutic optimization by repeated measurements of oxygen, Journal of Neuroscience Methods, vol.204, issue.1, pp.111-117, 2011.
DOI : 10.1016/j.jneumeth.2011.10.026

L. Marrero, D. Wyczechowska, A. Musto, A. Wilk, H. Vashistha et al., Therapeutic Efficacy of Aldoxorubicin in an Intracranial Xenograft Mouse Model of Human Glioblastoma, Neoplasia, vol.16, issue.10, pp.874-882, 2014.
DOI : 10.1016/j.neo.2014.08.015

E. Marty, S. Mordon, D. Bechet, and M. Barberi-heyob, 01)01), p.2, 2006.

M. Mathews, E. Angell-petersen, R. Sanchez, C. Sun, V. Vo et al., The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids, Lasers in Surgery and Medicine, vol.69, issue.4, pp.578-584, 2009.
DOI : 10.1002/lsm.20808

M. Mathews, D. Chighvinadze, H. Gach, F. Uzal, S. Madsen et al., Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain, 29. National charter on the ethics of animal experimentation, French ministry of higher education and research, pp.892-900, 2008.
DOI : 10.1002/lsm.21135

B. Olzowy, C. Hundt, S. Stocker, K. Bise, H. Reulen et al., Photoirradiation therapy of experimental malignant glioma with 5-aminolevulinic acid, Journal of Neurosurgery, vol.97, issue.4, pp.970-976, 2002.
DOI : 10.3171/jns.2002.97.4.0970

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, ed 6th, Amsterdam, 2007.

Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug et al., 5-Aminolevulinic acid-based photodynamic therapy, Cancer, vol.61, issue.12, pp.2282-2308, 1997.
DOI : 10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O

K. Petrecca, M. Guiot, V. Panet-raymond, and L. Souhami, Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma, Journal of Neuro-Oncology, vol.88, issue.1, pp.19-23, 2013.
DOI : 10.1007/s11060-012-0983-4

W. Stummer, T. Beck, W. Beyer, J. Mehrkens, A. Obermeier et al., Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report, Journal of Neuro-Oncology, vol.65, issue.1, pp.103-109, 2008.
DOI : 10.1007/s11060-007-9497-x

W. Stummer, U. Pichlmeier, T. Meinel, O. Wiestler, F. Zanella et al., Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, The Lancet Oncology, vol.7, issue.5, pp.392-401, 2006.
DOI : 10.1016/S1470-2045(06)70665-9

W. Stummer, S. Stocker, A. Novotny, A. Heimann, O. Sauer et al., In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid, Journal of Photochemistry and Photobiology B: Biology, vol.45, issue.2-3, pp.160-169, 1998.
DOI : 10.1016/S1011-1344(98)00176-6

R. Stupp, W. Mason, M. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

M. Tetard, M. Vermandel, S. Mordon, J. Lejeune, and N. Reyns, Experimental use of photodynamic therapy in high grade gliomas: A review focused on 5-aminolevulinic acid, Photodiagnosis and Photodynamic Therapy, vol.11, issue.3, pp.319-330, 2014.
DOI : 10.1016/j.pdpdt.2014.04.004

URL : https://hal.archives-ouvertes.fr/hal-01181357

M. Tetard, M. Vermandel, S. Mordon, J. Lejeune, and N. Reyns, Experimental use of photodynamic therapy in high grade gliomas: A review focused on 5-aminolevulinic acid, Photodiagnosis and Photodynamic Therapy, vol.11, issue.3, 2014.
DOI : 10.1016/j.pdpdt.2014.04.004

URL : https://hal.archives-ouvertes.fr/hal-01181357

S. Tudge, A. Kaye, and J. Hill, Modulation of light delivery in photodynamic therapy of brain tumours, Journal of Clinical Neuroscience, vol.6, issue.3, pp.227-232, 1999.
DOI : 10.1016/S0967-5868(99)90508-8

S. Utsuki, H. Oka, S. Sato, S. Shimizu, S. Suzuki et al., Histological examination of false positive tissue resection using 5-aminolevulinic acidinduced fluorescence guidance210-213; discussion 213-214 Impact of the extent of resection on overall survival in newly-diagnosed glioblastoma afer chemo-irradiation with temozolamide: further analysis of EORTC study 26981, 43. Van der Veen N, van Leengoed HL, Star WM: In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations, pp.867-872, 1994.

H. Wang and B. Fei, Diffusion-weighted MRI for monitoring tumor response to photodynamic therapy, Journal of Magnetic Resonance Imaging, vol.224, issue.2, pp.409-417, 2010.
DOI : 10.1002/jmri.22247

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076282

J. Webber, D. Kessel, and D. Fromm, Side Effects and Photosensitization of Human Tissues after Aminolevulinic Acid, Journal of Surgical Research, vol.68, issue.1, pp.31-37, 1997.
DOI : 10.1006/jsre.1997.5004

Z. Xiao, S. Halls, D. Dickey, J. Tulip, and R. Moore, Fractionated versus Standard Continuous Light Delivery in Interstitial Photodynamic Therapy of Dunning Prostate Carcinomas, Clinical Cancer Research, vol.13, issue.24, pp.7496-7505, 2007.
DOI : 10.1158/1078-0432.CCR-07-1561

P. Zelenkov, R. Baumgartner, K. Bise, M. Heide, R. Meier et al., Acute morphological sequelae of photodynamic therapy with 5-aminolevulinic acid in the C6 spheroid model, Journal of Neuro-Oncology, vol.68, issue.1, pp.49-60, 2007.
DOI : 10.1007/s11060-006-9252-8

J. Zhang, Q. Zhou, G. Gao, Y. Wang, Z. Fang et al., The effects of ponatinib, a multi-targeted tyrosine kinase inhibitor, against human U87 malignant glioblastoma cells, Onco Targets Ther, vol.7, pp.2013-2019, 2014.

X. Zhang, F. Jiang, Z. Zhang, S. Kalkanis, X. Hong et al., Low-dose photodynamic therapy increases endothelial cell proliferation and VEGF expression in nude mice brain, Lasers in Medical Science, vol.92, issue.12, pp.74-79, 2005.
DOI : 10.1007/s10103-005-0348-8