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Abstract: Stochastic Petri nets are commonly used for modeling distributed systems in order
to study their performance and dependability. This paper proposes a realization of stochastic Petri
nets in SystemC for modeling large embedded control systems. Then statistical model checking
is used to analyze the dependability of the constructed model. Our verification framework allows
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Dependability Analysis of Control Systems using SystemC
and Statistical Model Checking

Résumé : Petri nets stochastiques sont couramment utilisés pour la modélisation de systèmes
distribués afin d’étudier leur performance et fiabilité. Cet article propose une réalisation de Petri
nets stochastiques en SystemC pour la modélisation de grands systèmes de contrôle embarqués.
Puis statistical model checking est utilisé pour analyser la fiabilité du modèle construit. Notre
cadre de vérification permet aux utilisateurs d’exprimer une large gamme de propriétés utiles à
vérifier qui est illustrée par une case-study.

Mots-clés : SystemC, Statistical Model Checking, Formal Verification, Dependability Analysis,
Petri Nets
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4 Ngo & Legay

1 Introduction

Computer-based control systems are increasingly used now in a wide range of industrial and
military domains such as manufacturing, transport, energy and defense. In many cases, they
are safety-critical systems (e.g., control systems for air-traffic, power plants, medical devices).
Hence, it is necessary to quantify the probability or rate of all safety-related faults: How likely
the system is available to meet a demand for service? What is the probability that the system
repairs itself after a failure (e.g., the system conforms to existent and prominent standards such
as the Safety Integrity Levels)? A general approach for performing such dependability analysis
consists in constructing and analyzing a state-based model of the system [20, 8]. One of the
main approaches, Probabilistic Model Checking (PMC), is an automatic technique for checking
whether or not probabilistic models satisfy certain specifications, which is widely used to verify
timed and probabilistic systems [11, 16]. One of the main challenges is the complexity of the
algorithms in terms of execution time and memory space. Indeed, such algorithms suffer from
the state space explosion problem, that is, the size of the state space tends to grow exponentially
faster than the size of the system. As a result, the analysis of large systems is infeasible.

An alternative way to evaluate these systems is Statistical Model Checking (SMC), a simulation-
based approach. Simulation-based approaches do not construct all the reachable states of the
system-under-verification (SUV), thus they require far less execution time and memory space
than numerical approaches. They have shown the advantages over other methods such as PMC
on several case studies [15, 10].

In this work, we construct a SMC-based verification framework to analyze dependability
of large industrial embedded control systems. Stochastic high-level Petri nets (SHLPNs) are
traditionally used for modeling distributed control systems in order to study their performance
and dependability. Therefore, we propose an approach to model the system dependability by
realizing SHLPNs in SystemC.

We then analyze the constructed model in SystemC with Plasma Lab [2], a statistical model
checker for stochastic processes, in which the properties to be verified are expressed in Bounded
Linear Temporal Logic (BLTL). The implementation contains two main components: a monitor
generator that instruments the SystemC model to generate the set of execution traces, and a
checker that verifies the satisfaction of the properties based on the given set of execution traces.
The monitor generation relies on the techniques proposed by Tabakov et al. [29] that provide a
rich set of primitives for exposing different parts of the model state during a SystemC simulation.

The remainder of this paper is organized as follows: the next section introduces the SystemC
modeling language and reviews the main features of SMC. We consider the execution traces of a
SystemC model and the implementation of our verification framework in Section 3 and Section
4. An approach to model the dependability of computer-based control systems is proposed in
Section 5. Section 6 illustrates the modeling approach and the verification procedure by a case
study. The paper terminates with some related work, a conclusion and an outlook to some
directions for future research.

2 Background

This section introduces the SystemC modeling language and reviews the main features of statis-
tical model checking for stochastic processes.

Inria



Dependability Analysis of Control Systems using SystemC and Statistical Model Checking 5

2.1 The SystemC Language

SystemC1 is a C++ library [9] providing primitives for modeling hardware and software systems
at the level of transactions. Every SystemC model can be compiled with a standard C++
compiler to produce an executable program called executable specification. This specification is
used to simulate the system behavior with the provided event-driven simulator.

2.1.1 Language Features

A SystemC model is hierarchical composition of modules (sc_module). Modules are building
blocks of SystemC design, they are like modules in Verilog [30], classes in C++. A module
consists of an interface for communicating with other modules and a set of processes running
concurrently to describe the functionality of the module. An interface contains ports (sc_port),
they are similar to the hardware pins. Modules are interconnected using either primitive channels
(i.e., the signals, sc_signal) or hierarchical channels via their ports. Channels are data containers
that generate events in the simulation kernel whenever the contained data changes.

Processes are not hierarchical, so no process can call another process directly. A process is
either a thread or a method. A thread process (sc_thread) can suspend its execution by calling
the library statement wait or any of its variants. When the execution is resumed, it will continue
from that point. Threads run only once during the execution of the program an are not expected
to terminate. On the other hand, a method process (sc_method) cannot suspend its execution
by calling wait and is expected to terminate. Thus, it only returns the control to the kernel when
reaching the end of its body.

An event is an instance of the SystemC event class (sc_event) whose occurrence triggers or
resumes the execution of a process. All processes which are suspended by waiting for an event
are resumed when this event occurs, we say that the event is notified. A module’s process can
be sensitive to a list of events. For example, a process may suspend itself and wait for a value
change of a specific signal. Then, only this event occurrence can resume the execution of the
process. In general, a process can wait for an event, a combination of events, or for an amount
time to be resumed.

2.1.2 SystemC Simulation

In SystemC, integer values are used as discrete time model. The smallest quantum of time
that can be represented is called time resolution meaning that any time value smaller than the
time resolution will be rounded off. The available time resolutions are femtosecond, picosecond,
nanosecond, microsecond, millisecond, and second. SystemC provides functions to set time
resolution and declare a time object, for example, the following statements set the time resolution
to 10 picosecond and create a time object t1 representing 20 picoseconds.
1 sc_set_time_resolution (10, SC_PS);
2 sc_time t1(20, SC_PS); // SC_PS : picosecond

The SystemC simulator is an event-driven simulation [1, 22]. It establishes a hierarchical
network of finite number of parallel communicating processes which under the supervision of the
distinguished simulation kernel process. Only one process is dispatched by the scheduler to run
at a time point, and the scheduler is non-preemptive, that is, the running process returns control
to the kernel only when it finishes executing or explicitly suspends itself by calling wait. Like
hardware modeling languages, the SystemC scheduler supports the notion of delta-cycles [19].
A delta-cycle lasts for an infinitesimal amount of time and is used to impose a partial order

1IEEE Standard 1666-2005
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6 Ngo & Legay

of simultaneous actions which interprets zero-delay semantics. Thus, the simulation time is not
advanced when the scheduler processes a delta-cycle. During a delta-cycle, the scheduler executes
actions in two phases: the evaluate and the update phases.

The simulation semantics of the SystemC scheduler is presented as follows: (1) Initial-
ize. During the initialization, each process is executed once unless it is turned off by calling
dont_initialize(), or until a synchronization point (i.e., a wait) is reached. The order in which
these processes are executed is unspecified; (2) Evaluate. The kernel starts a delta-cycle and run
all processes that are ready to run one at a time. In this same phase a process can be made
ready to run by an event notification; (3) Update. Execute any pending calls to update() re-
sulting from calls to request_update() in the evaluate phase. Note that a primitive channel uses
request_update() to have the kernel call its update() function after the execution of processes;
(4) Delta-cycle notification. The kernel enters the delta notification phase where notified events
trigger their dependent processes. Note that immediate notifications may make new processes
runable during step (2). If so the kernel loops back to step (2) and starts another evaluation
phase and a new delta-cycle. It does not advance simulation time; (5) Simulation-cycle notifica-
tion. If there are no more runnable processes, the kernel advances simulation time to the earliest
pending timed notification. All processes sensitive to this event are triggered and the kernel
loops back to step (2) and starts a new delta-cycle. This process is finished when all processes
have terminated or the specified simulation time is passed. The simulation semantics can be
represented by the pseudo code in Listing 1.

1 PC // All primitive channels
2 P // All processes
3 R = ∅ // Set of runnable processes
4 D = ∅ // Set of pending delta notifications
5 U = ∅ // Set of update requests
6 T = ∅ // Set of pending timed notifications
7 // Start elaboration: collect all update requests in U
8 for all chan ∈ U do
9 run chan.update ()

10 end for
11 for all p ∈ P do
12 if p is initialized and p is not clocked thread then
13 R = R ∪ p // Make p runnable
14 end if
15 end for
16 for all p ∈ P do
17 if p is triggered by an event in D then
18 R = R ∪ p
19 end if
20 end for // End of initialization phase
21
22 repeat
23 while R 6= ∅ do // New delta -cycle begins
24 for all r ∈ R do // Evaluation phase
25 R = R \ r
26 run r until it calls wait or returns
27 end for
28 for all chan ∈ U do // Update phase
29 run chan.update ()
30 end for
31 for all p ∈ P dp // Delta notification phase
32 if p is triggered by an event in D then
33 R = R ∪ p // Make p runnable
34 end if
35 end for // End of delta -cycle
36 end while
37
38 if T 6= ∅ then
39 Advance the simulation clock to the earliest timed delay t
40 T = T \ t
41 for all p ∈ P do // Timed notification phase
42 if t triggers p then
43 R = R ∪ p // Make p runnable

Inria



Dependability Analysis of Control Systems using SystemC and Statistical Model Checking 7

44 end if
45 end for
46 end if
47 until end of simulation

Listing 1: Simulation semantics of SystemC

2.2 Statistical Model Checking
Let M be a model of a stochastic process and ϕ be a property expressed as a BLTL formula.
BLTL is a temporal logic with bounded temporal operators, ensuring that the satisfaction of a
formula by a trace can be decided in a finite number of steps. The statistical probabilistic model
checking problem consists in answering the following questions.

• Qualitative. Is the probability thatM satisfies ϕ greater or equal to a threshold θ with a
specific level of statistical confidence?

• Quantitative. What is the probability thatM satisfies ϕ with a specific level of statistical
confidence?

They are denoted byM |= Pr(ϕ) andM |= Pr≥θ(ϕ), respectively.
The key idea of SMC [18] is to get, through simulation, a large amount of independent

execution traces and count the number of traces that satisfy ϕ. The ratio of this number over
the total number of execution traces provides the probability that the property holds. Then
statistical results associate a level of confidence to this probability, depending on the number of
execution traces. Many statistical methods including sequential hypothesis testing, Monte Carlo
method, or 2-sided Chernoff bound are implemented in a set of existing tools [32, 2], that have
shown their advantages over other methods such as PMC on several case studies.

Although SMC can only provide approximate results with a user-specified level of statistical
confidence (as opposed to the exact results provided by standard probabilistic model checking
method), it is compensated for by its better scalability and resource consumption. Since the
models to be analyzed are often approximately known, an approximate result in the analysis of
desired properties within specific bounds is quite acceptable. SMC has recently been applied in a
wide range of research areas including software engineering (e.g., verification of critical embedded
systems) [10], system biology, or medical area [15].

3 SMC for SystemC Models
This section illustrates the use of SMC for verifying a SystemC program exhibiting timed and
probabilistic characteristics by showing that the operational semantics of the program is viewed as
a stochastic process. The implementation of our SMC-based verification framework is considered
as well.

3.1 SystemC Model State
Temporal logic formulas are interpreted over execution traces and traditionally a trace has been
defined as a sequence of states in the execution of the model. Therefore before we can define
an execution trace we need a precise definition of the state of a SystemC simulation. We are
inspired by the definition of system state in [29], which consists of the state of the simulation
kernel and the state of the SystemC model. We consider the external libraries as black boxes,
meaning that their states are not exposed.

RR n° 8762



8 Ngo & Legay

The state of the kernel contains the information about the current phase of the simulation
and the SystemC events notified during the execution of the model. We denote the finite set of
variables whose value domain represent the information about the current phase of the kernel by
Vker, and the finite set of variables whose value domain represent the event notification by Veve.

The state of the SystemC model is the full state of the C++ code of all processes in the model,
which includes the values of the variables, the location of the program counter, the call stack, and
the status of the processes. We use Vvar, Vloc, Vsta, and Vproc to denote the finite sets of variables
whose value domains represent the values of the variables, the location of the program counter,
the call stack and the status of the processes, respectively. Let V = {v0, ..., vn−1} =

⋃
k Vk with

k ∈ {ker, eve, var, loc, sta, proc}, be a finite set of variables that takes values in a domain DX .
A value in DX represents a state of a SystemC simulation.

We consider here some examples of variables in V that represent the state of the simulation
kernel and the SystemC model. A system state can consists of the information about all locations
before the execution of all statements that contain the devision operator “/” followed by zero or
more spaces and the variable “a” in a SystemC model (e.g., the statement y = (x + 1) / a).
Let Producer and Consumer be two modules of a SystemC model. Assume that Producer has a
function send() and Consumer has a function receive(). Two variables send_start and send_done
can be defined as Boolean variables in V that hold the value true immediately before and after
a call of the function send(), respectively to express the status of the call stack. Similarly, the
variable rcv holds the value true immediately after a call of the function receive(). Assume again
that Producer has an event named write_event, to observe whenever this event is notified, we
can use a variable we_notified that holds the value true immediately when the event is notified.
We will consider how these variables can be defined in our implementation of the verification
framework in the next section.

We have discussed so far the state of a SystemC model execution. It remains to discuss how
the semantics of the temporal operators is interpreted over the states in the execution of the
model. That means how the states are sampled. The following definition gives the concept of
temporal resolution, in which the states are evaluated only in instances in which the temporal
resolution holds. It allows the user to set granularity of time.

Temporal resolution A temporal resolution Tr is a finite set of Boolean expressions defined
over V which specifies when the set of variables V is evaluated.

Temporal resolution can be used to define a more fine-grained model of time than a coarse-
grained one provided by a cycle-based simulation. We call the expressions in Tr temporal events.
Whenever a temporal event is satisfied or the temporal event occurs, V is sampled. For example,
assume that we want the set of variables to be sampled whenever at the end of simulation-cycle
notification or immediately after the event write_event is notified during a run of the model.
Hence, we can define a temporal resolution as the following set Tr = {edc, we_notified}, where
edc and we_notified are Boolean expressions that have the value true whenever the kernel phase
is at the end of the simulation-cycle notification and the event write_event notified, respectively.

We denote the set of occurrences of temporal events from Tr along an execution of a SystemC
model by T sr , called a temporal resolution set. The value of a variable v ∈ V at an event
occurrence ec ∈ T sr is defined by a mapping ξvval : T sr → Dv. Hence, the state of the SystemC
model at ec is defined by a tuple (ξv0val, ..., ξ

vn−1

val ).
A mapping ξt : T sr → T is called a time event that identifies the simulation time at each oc-

currence of an event from the temporal resolution. Hence, the set of time points which correspond
to a temporal resolution set T sr = {ec0 , ..., ecN−1

}, N ∈ N is given as follows.

Time tag Given a temporal resolution set T sr , the time tag T corresponding to T sr is a finite
or infinite set of non-negative reals {t0, t1, ..., tN−1}, where ti+1 − ti = δti ∈ R≥0, ti = ξt(eci).

Inria
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3.2 Model and Execution Trace
A SystemC model can be viewed as a hierarchical network of parallel communicating processes.
Hence the execution of a SystemC model is an alternation of the control between the model’s
processes, the external libraries and the kernel process. The execution of the processes is super-
vised by the kernel process to concurrently update new values for the signals and variables w.r.t
the cycle-based simulation. For example, given a set of runnable processes in a simulation-cycle,
the kernel chooses one of them to execute first in a non-deterministic manner as described in the
prior section.

Let V be the set of variables whose values represent the state of a SystemC model simulation.
Our way to mix stochastic and non-deterministic characteristics consisting of assuming that, at
any moment of time, the values variables in P ⊆ V are determined by a given probability
distribution (i.e., from the probability distributions used in the model). The values of variables
in V \ P are chosen in the non-deterministic manner of the simulation scheduler. At any given
moment of time, it is allowed that the choice of the variables in V \ P might influence the
distribution on the next values of variables in P .

Given a temporal resolution Tr and its corresponding temporal resolution set along an ex-
ecution of the model T sr = {ec0 , ..., ecN−1

}, N ∈ N, the evaluation of V at the event occur-
rence eci is defined by the tuple (ξv0val, ..., ξ

vn−1

val ), or a state of the model, denoted by V (eci) =
(V (eci)(v0), V (eci)(v1), ..., V (eci)(vn−1)), where V (eci)(vk) = ξvkval(eci) with k = 0, ..., n−1 is the
value of the variable vk at eci . We denote the set of all possible evaluations by VT s

r
⊆ DV , called

the state space of the random variables in V . State changes are observed only at the moments
of event occurrences. Hence, the operational semantics of a SystemC model is represented by
a stochastic process {(V (eci), ξt(eci)), eci ∈ T sr }i∈N, taking values in VT s

r
× R≥0 and indexed by

the parameter eci , which are event occurrences in the temporal resolution set T sr . An execution
trace is a realization of the stochastic process is given as follows.

Execution trace An execution trace of a SystemC model corresponding to a temporal res-
olution set T sr = {ec0 , ..., ecN−1

}, N ∈ N is a sequence of states and event occurrence times,
denoted by ω = (s0, t0)(s1, t1)...(sN−1, tN−1), such that for each i ∈ 0, ..., N − 1, si = V (eci) and
ti = ξt(eci).

N is the length of the execution, also denoted by |ω|. We denote the prefix of ω by ωk =
(s0, t0), (s1, t1)...(sk, tk), and the suffix by ωk = (sk, tk)(sk+1, tk+1)...(sN−1, tN−1).

Let V ′ ⊆ V , the projection of ω on V ′, denoted by ω ↓V ′ , is an execution trace such that
|ω ↓V ′ | = |ω| and ∀v ∈ V ′, ∀ec ∈ T sr , V ′(ec)(v) = V (ec)(v).

3.3 Expressing Properties
We recall the syntax and semantics of BLTL [28], an extension of Linear Temporal Logic (LTL)
with time bounds on temporal operators. A BLTL formula ϕ is defined over a set of atomic
propositions AP as in LTL. A BLTL formula is defined by the grammar ϕ ::= true|false|p ∈
AP |ϕ1 ∧ϕ2|¬ϕ|ϕ1 U≤T ϕ2, where the time bound T is an amount of time or a number of states
in the execution trace. The temporal modalities F (the “eventually”, sometimes in the future)
and G (the “always”, from now on forever) can be derived from the “until” U as follows.

F≤T ϕ = true U≤T ϕ and G≤T ϕ = ¬F≤T ¬ϕ

The semantics of BLTL is defined w.r.t execution traces of the modelM. Let ω be an execution
trace ofM, we denote by ω |= ϕ that fact that ω satisfies the BLTL formula ϕ.

• ωk |= true and ωk 6|= false

RR n° 8762



10 Ngo & Legay

• ωk |= p, p ∈ AP iff p ∈ L(sk), where L(sk) is the set of atomic propositions which are true
in state sk

• ωk |= ϕ1 ∧ ϕ2 iff ωk |= ϕ1 and ωk |= ϕ2

• ωk |= ¬ϕ iff ωk 6|= ϕ

• ωk |= ϕ1 U≤T ϕ2 iff there exists an integer i such that ωk+i |= ϕ2, Σ0<j≤i(tk+j− tk+j−1) ≤
T , and for each 0 ≤ j < i, ωk+j |= ϕ1

In our framework, the set of atomic proposition AP consists of the predicates defined over the set
of variables V . Using these predicates, users can define temporal properties related to the state
of the kernel and the state of the SystemC model. Recall that Producer and Consumer are two
SystemC modules that have two functions send() and receive(), respectively. We consider the
following variables send_start, send_done and rcv ∈ V . They expose the state of the SystemC
model as described in the section above. Assume that we want to express the property “over a
period of T1 time units, send() remains blocked until receive() has returned within T2 time units”.
This property can be specified with the “until” operator that is given as follows.

G≤T1(send_start→ (¬send_done U≤T2 rcv))

4 Implementation
We have implemented a SMC-based verification framework [26] which is used to analyze the
case study in Section 6. Our implementation contains two main components: a monitor and
aspect-advice generator (MAG) and a statistical model checker (SystemC Plugin). The flow of
our framework is depicted in Fig. 1.

Figure 1: The framework’s flow

4.1 Monitor and Aspect-Advice Generator
In principle, the full state can be observed during the simulation of the model. In practice,
however, users define a set of variables of interest, called observed variables, and only these
variables appear in the states of an execution trace. Given a SystemC model, an observed
variable is a variable of primitive type (e.g, usual scalar or enumerated type in C/C++). The
value of this variable represents a part of the full state of the model. We use Vobs ⊆ V to
denote the set of observed variables. Then, the observed execution traces of the model are
the projections of the execution traces on Vobs, meaning that for every execution trace ω, the

Inria



Dependability Analysis of Control Systems using SystemC and Statistical Model Checking 11

corresponding observed execution trace is ω ↓Vobs
. In the following, when we mention about

execution traces, we mean observed execution traces.
The implementation of MAG allows users to define a set of observed variables that is used

with a temporal resolution to generate a monitor based on the techniques in [29] in order to make
an instrumented SystemC model. The instrumented model will produce a set of execution traces
of the model. The generated monitor evaluates the set of observed variables at every time point
in which an event of the temporal resolution occurs during the SystemC model simulation. The
generator also generates an aspect-advice file that is used by AspectC++ [6] to automatically
instrument the SystemC model.

4.2 SystemC Plasma Lab Plugin
Our statistical model checker is implemented as a plugin of Plasma Lab [2] which establishes
an interface between Plasma Lab and the instrumented model being executed by the simulator.
In the current version, the communication is done via the standard input and output. The
plugin requests new states until the satisfaction of the formula to be verified can be decided,
which terminates because the temporal operators are bounded. Similarly, depending on the
hypothesis testing algorithms (e.g., sequential hypothesis testing, Monte Carlo simulation, or
2-sided Chernoff bound), the plugin will request new traces from the instrumented model.

4.3 Running Verification
Running the verification framework consists of two steps as follows. First, users define a set of
observed variables and a temporal resolution in a configuration file, as well as other necessary
information. From that information, the generator generates the monitors and aspect-advices
that are used by AspectC++ to produce the instrumented SystemC model. In addition, the gen-
erator can automatically generate a Plasma Lab project file according to the desired properties.
The instrumented model and the generated monitors are compiled together and linked with the
SystemC simulation kernel into an executable model in order to make a set of execution traces of
the system. In the second step, the plugin of Plasma Lab is used to verify the desired properties.
The satisfaction checking of the properties is brought out based on the set of execution traces by
executing the instrumented SystemC model and can be done by several hypothesis testing algo-
rithms provided by Plasma Lab. The full implementation of our verification framework including
the monitor and aspect-advice generator and the checker can be downloaded on the website of
Plasma Lab2.

5 Modeling Dependability in SystemC
SHLPNs are high-level Petri nets (HLPNs) [24, 14, 21], in which each transition execution has
a duration described by an exponential distribution. They are commonly used for modeling
distributed systems in order to study their performance and dependability [8, 21, 20]. In this
section, we propose an approach for realizing SHLPNs in SystemC such that the semantics is
preserved.

5.1 Stochastic High-Level Petri Nets
High-level Petri nets provide a compact representation of complex systems. There are many
different types of HLPNs that have been proposed in literature such as predicate transition

2MAG manual: https://project.inria.fr/plasma-lab/documentation/tutorial/mag_manual/
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12 Ngo & Legay

nets [7], coloured Petri nets [12] and relation nets [27]. However, in [13, 27] it is proved that
one can translate the HLPN of a system in one type into any other type. Due to the intuition
and the modeling elegance we consider the predicate transition nets in which the tokens are
coloured or typed tokens [14]. Each place is annotated with a data type. Each place is associated
with a place capacity K which bounds for the number of tokens that the place can contain.
The arcs are labeled by tuples of token variables. The zero-tuple indicates an ordinary place,
meaning a no-argument token. The transitions are annotated with guard formulas defined over
variables labelling the adjacent arcs and a set of variable assignments. A transition is enabled,
that is may execute or fire, whenever 1) all input places carry enough tokens, 2) there is an
assignment of tokens to token variables that satisfies the guard formula of the transition, and
3) each output place capacity is sufficient to store the tokens produced by the transition. By
firing, a transition removes and adds tokens from/to places according to the expressions labeling
the arcs. SHLPNs are high-level Petri nets in which each execution of a transition lasts for a
given amount of time, called firing time. Firing times are specified by an exponential distribution
associated to each transition. Due to the memoryless property of the exponential distribution,
this class of SHLPNs is isomorphic to continuous-time Markov chains (CTMCs) as shown in [21].
We consider the example in Fig. 2. This net is a part of the SHLPN of our case study models the

Figure 2: Stochastic high-level Petri net example

reliability of the input processor. The example consists of 51 I/O places with data type int (p1
to p50 represent the number of functional sensors in each group and p51 representing the current
status of the processor) and output place p52 with data type bool carries a token with the value
true whenever the processor reboots successfully. Their capacities are 1. Each of transitions
t1, t2 and t3 is annotated with a firing time following the exponential distribution with the rate
λi, i = 1, ..., 3. These rates may be marking-dependent. With the marking depicted in Fig. 2,
s1 to s50, and i are assigned values 3 and 2 respectively, both transitions t1 and t2 are enabled
to fire that means they conflict, where s = Σ50

k=1σk, σk = 1 if sk ≥ 2, otherwise σk = 0. Assume
that t1 fires, p1 to p50 carry the same previous token values, p51 caries the value 0 and p52 is
empty.

5.2 Connection between HLPNs and Rule-Based Systems

A rule-based system (or production based system) [3] consists of a working memory containing
known facts, a production memory containing rules, and an inference engine which matches the
rules with the working memory to infer new facts by applying the selected rule among all the
applicable rules and the existing facts. The rules syntactically are of the form “if conditions then
actions”. The conditions are patterns that are checked for the rule activation, called the rule
antecedent. If the conditions match with the facts, the actions, called the rule consequent, are
performed. Fig. 3 depicts the main structure of a forward chaining inference algorithm. The
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1 void Infer(working_memory ,
production_memory) {

2 rules = Select(working_memory ,
production_memory);

3 while(rules 6= ∅) {
4 rule = SolveConflicts(rules);
5 ApplyRule(rule);
6 rules = Select(working_memory ,

production_memory);
7 } //END while
8 }

1 rule_set Select(working_memory ,
production_memory) {

2 rules = ∅;
3 for rule ∈ production_memory {
4 if Match(rule ,working_memory)
5 rules = rules ∪ rule;
6 } //END for
7 return rules;
8 }

Figure 3: A forward chaining inference algorithm
main function, Infer, executes the rule system until no more rule can be executed. The function
Select identifies a set of rules that matches the facts in the working memory, according to the
Match function, which maps the variables appearing into the conditions to some constants from
the facts of the working memory. The function SolveConflicts selects one of the selected rule
to be fired. Finally, the function ApplyRule executes the rule actions and updates the working
memory.

For every HLPN one can construct a rule-based system, as shown in [31, 4]. The transforma-
tion consists of the production memory and working memory constructions. For each transition
of the net, a rule is added in which the conditions and actions are defined by the guard formula,
the set of variable assignments, the input and output places of the transition. For each input
place, the facts that bound the tokens to the variables labeling the arc connecting the place
to the transitions are added and the condition expressing that the place carries enough copies
of proper tokens, as well as the action of removing tokens from the place are defined for the
corresponding rule. For each output place, the action of adding tokens to the place is associated,
by specifying the place name and the variables on the arc connecting the transition to the place
and the condition expressing that the place’s capacity is not exceeded by adding the produced
tokens is defined. The actions of adding and removing tokens update the facts in the working
memory. The initial working memory is constructed based on the initial marking of the net. In
other words, a fact represents a multiset of constants. This set is compatible with the type and
capacity of its associated place. The following proposition from [31, 4] shows that the HLPN
and its corresponding transformed rule-based system are semantically equivalent.

Proposition 5.1 For every high-level Petri net, a rule-based system exists that is semantic
equivalent.

The proof of Proposition 5.1 and the similarities between HLPNs and rule-based systems have
been studied in [31, 4, 25] by showing that the rules applied by the inference algorithm represent
the reachability set from the initial marking of the initial Petri net. It follows that the inference
algorithms can be use to implement the operational semantics of the stochastic high-level Petri
nets. In addition, it is shown in [31, 4] that the implementation of HLPNs semantics based
on rule-based systems with an improved version of the inference algorithm was described by
Forgy [5], is most efficient when the net have large number of places and large number of tokens
distributed among the places, as well as when the large number bounded variables labeling the
arcs. In the next section, we propose an approach to realize SHLPNs by implementing the
inference algorithms in SystemC.

5.3 Realization of SHLPNs
We illustrate our realization of the inference algorithm in Fig. 3 with the example in Fig. 2.
It is implemented by a SystemC module as shown in Fig. 4, in which the Infer function is a

RR n° 8762



14 Ngo & Legay

thread process in SystemC. The initialization initialize the working memory by setting all places,
the capacity and the initial marking in the constructor method (lines 37 to 40). And a place
is implemented as an instance of a template class (i.e., place<int>) that contains the facts.
The template class has the methods for getting a token value (get), storing a token (mark),
removing a token (demark), getting the capacity (get_capacity), and the current number of
tokens (get_num) in a place.

Consider a SHLPN with the current marking Mj , transitions become enabled as usual, i.e.,
if all input places have sufficiently tokens and the guard formulas are satisfied. However, there
is a time, which has to elapse, before an enabled transition fires. We denote the set of all
enabled transitions t1, ..., tn inMj by E(Mj). Since all firing times are independent exponentially
distributed, the minimum firing time is also exponentially distributed with the rate λ = Σni=1λi
and the probability that a given enabled transition, say tk, samples the minimum firing time
Pr(tk|Mj) = λk/Σi:ti∈E(Mj)λi.

1 SC_MODULE(Shlpn) {
2 SC_HAS_PROCESS(Shlpn);
3 public:
4 Shlpn(sc_module_name name , gsl_rng *rnd);
5 // operation of the net
6 void Infer();
7 private:
8 place <int > p[51];
9 place <bool > p52;

10 int i, s[50];
11 bool r;
12 // firing rates
13 double r1, r2 , r3 , sum_r , ft;
14 //GSL random generator
15 gsl_rng *rnd;
16 // enabled transitions
17 bool e[3];
18 // return enabled transitions
19 int Select ();
20 int SolveConflicts ();
21 ApplyRule(int rule);
22 };
23 void Shlpn:: Infer() {
24 for (int k = 0; k < 3; k++)
25 e[k] = false;
26 sum_r = ft = 0;
27 int rules = Select ();
28 while(rules > 0) {
29 int rule = SolveConflicts ();
30 ApplyRule(rule);
31 for (int k = 0; k < 3; k++)
32 e[k] = false;
33 sum_r = ft = 0;
34 rules = Select ();
35 } //END while
36 }

37 Shlpn :: Shlpn(sc_module_name name , gsl_rng
*rnd) {

38 // initialization
39 SC_THREAD(Infer):
40 }
41 int Shlpn :: SolveConflicts () {
42 int rule;
43 double pr1 , pr2 , pr3;
44 // probability t1 fires
45 pr1 = e[0] ? r1/sum_r : 0;
46 // probabilities of t2 , t3
47 pr2 = e[1] ? r2/sum_r : 0;
48 pr3 = e[2] ? r3/sum_r : 0;
49 //fired transition
50 rule = gsl_discrete ({pr1 ,pr2 ,pr3},rnd);
51 }
52 void Shlpn:: ApplyRule(int rule) {
53 switch (rule) {
54 case 0: //fire t1
55 // elapse firing time
56 ft = gsl_exp(sum_r ,rnd);
57 wait(ft,time_unit);
58 for (int k = 0; k < 51; k++)
59 p[k]. demark ();
60 i = 0;
61 for (int k = 0; k < 50; k++)
62 p[k].mark (3);
63 p[50]. mark(i);
64 break;
65 case 1: //fire t2
66 case 2: //fire t3
67 default:
68 break;
69 }// END switch
70 }

Figure 4: SystemC code for example in Figure 2
Therefore, the implementations of the functions SolveConflicts and ApplyRule is done as

follows. Given a set of all enabled rules from the function Select in Appendix A, SolveConflicts
(lines 41 to 51) determines a rule to be applied from the set of selected rules using a discrete
distribution over Pr(tk|Mj) (lines 45 to 50). The firing time before the firing of selected rule in
ApplyRule (lines 52 to 70), is sampled from the exponential distribution with the rate λ (lines 56
to 57). We employ the implementation of the discrete and exponential distributions from GNU
Scientific Library (GSL). The firing time elapsing is simulated by a wait() statement with an
amount of time equals to the firing time (i.e., measured by the time unit in the simulator).

The implementation of the function Select and the place template class are given in Listing
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2 and Listing 3.

1 int Shlpn:: Select () {
2 int s, rules = 0;
3 bool check_p = true;
4 //check t1 is enabled
5 //check all input places have sufficiently tokens
6 for(int k = 0; k < 50; k++) {
7 if (p[k]->get_num () > 0)
8 s[k] = p[k]->get();
9 else {

10 check_p = false;
11 break;
12 }
13 } //END for
14 if (p[50]-> get_num () > 0)
15 i = p[50]->get();
16 else check_p = false;
17 //check the guard formula
18 if (check_p) {
19 for (int k = 0; k < 50; k++)
20 if (s[k] >= 2)
21 s = s + 1;
22 if (s >= 37 && i > 0) {
23 //set t1 is enabled transition
24 e[0] = true;
25 sum_r = sum_r + r1;
26 rules = rules + 1;
27 } //END if
28 } //END if
29 //check t2 is enabled
30 //check t3 is enabled
31 return rules;
32 }

Listing 2: SystemC code for the Select function

1 template <class type > class place {
2 public:
3 type get(int); //get token at index
4 bool mark(type); // store token
5 void demark(int); // delete token at index
6 int get_capacity (); // place capacity
7 int get_num (); // number of tokens
8 };
9

10 template <class type > type place <type >:: get(int index) {
11 //code
12 }
13
14 template <class type > bool place <type >:: mark(type t) {
15 //code
16 }

Listing 3: SystemC code for a place

6 Case Study and Results

In this section, our SystemC-realization is used to model the dependability of a large embedded
control system. We also demonstrate the use of our verification framework to analyze the resulting
model. The number of components in our system makes numerical approaches such as PMC
unfeasible.
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16 Ngo & Legay

6.1 An Embedded Control System

The case study is closely based on the one presented in [23, 17] but contains much more compo-
nents. The system, depicted in Fig. 5, consists of an input processor (I) connected to 50 groups
of 3 sensors (from S1 to S50), an output processor (O), connected to 30 groups of 2 actuators
(from A1 to A30), and a main processor (M), that communicates with I and O through a bus.
At every cycle, the main processor polls results from the input processor that reads and pro-
cesses data from the sensors. Based on these results, it elaborates commands to be passed to
the output processor which controls the actuators. For instance, the input sensors can measure
the fluid level, temperature, or pressure, while the commands sent to actuators could be used for
controlling valves.

Figure 5: A control system

The reliability of the system is affected by the failures of the sensors, actuators, and processors.
The probability of bus failure is negligible, hence we do not consider it. The sensors and actuators
are used in 37− of− 50 and 27− of− 30 modular redundancies, respectively. Hence, if at least
37 sensor groups are functional (a sensor group is functional if at least 2 of the 3 sensors are
functional), the system obtains enough information to function properly. Otherwise, the main
processor is reported to shut the system down. In the same way, the system requires at least 27
functional actuator groups to function properly (a actuator group is functional if at least 1 of
the 2 actuators is functional). Transient and permanent faults can occur in processors I or O
and prevent the main processor(M) to read data from I or send commands to O. In that case,
M skips the current cycle. If the number of continuously skipped cycles exceeds the limit K, the
processor M shuts the system down. When a transient fault occurs in a processor, rebooting the
processor repairs the fault. Lastly, if the main processor fails, the system is automatically shut
down. The mean times to failure for the sensors, actuators, I/O processors, main processor, and
the mean times for the delays are given in Table 1, in which 1 time unit is 30 seconds. A cycle
lasts 2 time units, that is 1 minute.

As described above, the system is modeled as a SHLPN. In the net, the places for each sensor
group and each actuator group have 4 and 3 different markings, respectively. The places for I/O
processors have 3 different marking, and the place for main processor have 2 different marking.
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Therefore, the underlying CTMCs for the net has ∼ 2155 states comparing to the model in [17]
with ∼ 210 states.

6.2 Analysis Results

The set of observed variables, the temporal resolution and their meaning are given in Table 1. We
define four types of failures: failure1 is the failure of the sensors, failure2 is the failure of the
actuators, failure3 is the failure of the I/O processors and failure4 is the failure of the main
processor. For example, failure1 is defined as (number_sensors < 37) ∧ (proci_status =
2). It specifies that the number of working sensor groups has decreased below 37 and the
input processor is functional, so that it can report the failure to the main processor. We define
failure2, failure3, and failure4 in a similar way. In our analysis which is based on the one
in [17] with K = 4, we used the Monte Carlo algorithm with 3000 simulations.

Variable name Meaning Component Mean time

number_sensors Working sensor groups Sensor 1 month
number_actuators Working actuator groups Actuator 2 months
proci_status Input processor’s state Transient 1 day
proco_status Output processor’s state Processor 1 year
procm_status Main processor’s state Timercycle 1 minute
timeout_counts Number of skipped cycles Reboot 30 seconds
reward_up Time in “up” state
reward_danger Time in “danger” state
reward_shutdown Time in “shutdown” state

Temporal resolution Meaning

tick_notified Observed variables are evaluated every one time unit

Table 1: Observed variables and temporal resolution

First, we study the probability that each of the four types of failure eventually occurs during
the first T units of time using the formula F≤T (failurei). Fig. 6 plots these probabilities for T
varying from 5 to 30 days of operation. We observe that the probabilities that the sensors and
I/O processors eventually fail are higher than the others.

Figure 6: The probability that each of the 4 failure types in the first T time of operation

For the second part of our analysis, we try to determine which kind of component is more likely
to cause the failure of the system. In that frame, it is necessary to determine the probability that
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a failure related to a given component occurs before any other failures. The atomic proposition
shutdown, defined by

∨4
i=1 failurei indicates that the system has shut down because one of the

failures has occurred. The formula ¬shutdown U≤T failurei is true if the failure i occurs within
T time units and no other failures have occurred before the failure i occurs, that is if failure i
is the cause of the shutdown. Fig. 7 shows the probability that each kind of failure occurs first
over a period of 30 days of operation. It is obvious that the sensors are likelier to cause a system
shutdown. At T = 20 days, it seems that we reached a stationary distribution indicating for
each kind of component the probability that it is responsible for the failure of the system.

Figure 7: The probability that each of the 4 failure types is the cause of system shutdown in the
first T time of operation

For the third part of our analysis, we divide the states of system into three classes: “up”, where
every component is functional, “danger”, where a failure has occurred but the system has not yet
shut down (e.g., the I/O processors have just had a transient failure but they have rebooted in
time), and “shutdown”, where the system has shut down [17]. We aim to compute the expected
time spent in each class of states by the system over a period of T time units. To this end, we
add in the model, for each class of state c, a variable reward_c that measures the time spent
in the class c. The formula X≤T reward_c returns the mean value of reward_c after T time
units of execution over the 3000 traces considered. The results are plotted in Fig. 8.

Finally, we approximate the number of input, output processor reboots which occur and the
number sensor groups, actuator groups that are functional over time by computing the expected
values of random variables that count the number of reboots, functional sensor and actuator
groups. The results are plotted in Fig. 9 and Fig. 10. It is obvious that the number of reboots
of both processors doubles the number of reboots of each processor since they have the same
models.

7 Related Work and Conclusion

Some work has been carried out for dependability analysis with PMC, for example, the depend-
ability analysis of control system with PRISM [17]. PRISM supports construction and analysis
of Markov chains. For example, the exact probabilities in our case study can be computed by
PRISM for the small system with one sensor group and one actuator group. However, the main
drawback of this approach is that when it deals with real-world large size systems which make
the PMC technique is unfeasible. That means the state explosion likely occurs, even with some
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Figure 8: The expected amount of time spent in each of the states: “up”, “danger” and “shutdown”

Figure 9: Expected number of reboots that occur in the first T time of operation

abstraction, i.e., symbolic model checking with Ordered Binary Decision Diagrams (OBDDs), is
applied.

Tabakov et al. [29] proposed a framework for monitoring temporal SystemC properties. This
framework allows users express the verifying properties by fully exposing the semantics of the
simulator as well as the user-code. They extend LTL by providing some extra primitives for
stating the atomic propositions and let users define a much finer temporal resolution. Their
implementation consists of a modified simulation kernel, and a tool to automatically generate the
monitors and aspect advices for applying Aspect Oriented Programming (AOP) [6] to instrument
SystemC programs automatically.

This paper presents the first attempt to analyze the dependability of computer-based control
systems using statistical model checking, in which the dependability of the systems is modeled by
a SystemC-realization of stochastic high-level Petri nets. In comparison to the probabilistic model
checking, our approach allows users to handle large industrial systems as well as to expose a rich
set of user-code primitives by automatically instrumenting the SystemC code with AspectC++.

Currently, we consider an external library as a “black box”, meaning that we do not consider
the states of external libraries. Thus, arguments passed to a function in an external library
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Figure 10: Expected number of functional sensor and actuator groups in the first T time of
operation

cannot be monitored. For future work, we would like to allow users to monitor the states of the
external libraries with the future version of AspectC++. We also plan to apply statistical model
checking to verify temporal properties of SystemC-AMS (Analog/Mixed-Signal) and make the
improved version of the current naive inference algorithm implementation based on the RETE
algorithm in [5].
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