Abel-Jacobi theorem
Seddik Gmira

To cite this version:
Seddik Gmira. Abel-Jacobi theorem. 2015. <hal-01180375>

HAL Id: hal-01180375
https://hal.archives-ouvertes.fr/hal-01180375
Submitted on 27 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1 Introduction

The Abel-Jacobi theorem is an important result of algebraic geometry. The theory of divisors and the Riemann bilinear relations are fundamental to the development of this result: if a point O is fixed in a Riemann compact surface X of genus g, the Abel-Jacobi map identifies the Picard group $Pic_0(X)$ the quotient of divisors of a group of degree zero on the subgroup of divisors associated to meromorphic functions. The Riemann surface of genus $g \geq 1$ can be embedded in the Jacobian variety $Jac(X)$ via the Abel-Jacobi. In fact we generally have a map:

$$X^{(s)} = X^g/\mathcal{C}_g \to Jac(X)$$

such that $X^{(s)}$ may be provided with an analytical structure. Indeed the two sets $X^{(s)} = X^g/\mathcal{C}_g$, $Jac(X)$ are algebraic varieties and the map

$$X^{(s)} \to Jac(X)$$

is surjective. For reasons of dimension we can verify that is finite fibers. In fact this is a birational map.

2 Riemann bilinear relations

Let X be a compact Riemannian surface. Recalling that,

$$H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g} \text{ and } H^1_{dR}(X, \mathbb{R}) \cong \mathbb{R}^{2g}$$

where g is the genus of S. The following map

$$H_1(X, \mathbb{Z}) \times H^1_{dR}(X, \mathbb{R}) \longrightarrow \mathbb{R}
\quad (\gamma, \omega) \quad \longrightarrow \quad \int_\gamma \omega$$

makes these two spaces in duality: for a basis $(\gamma_1, ..., \gamma_{2g})$ in $H_1(X, \mathbb{Z})$ there exist a dual basis

$$(\omega_1, ..., \omega_{2g}) \in H^1_{dR}(X, \mathbb{R})$$

such that for $i, j = 1, ..., 2g$

$$\int_{\gamma_i} \omega_j = \delta_{ij}$$
The intersection product

$$H_1(X,\mathbb{Z}) \times H_1(X,\mathbb{Z}) \rightarrow \mathbb{Z}$$

$$(\gamma_1, \gamma_2) \rightarrow \gamma_1 \# \gamma_2$$

defines an antisymmetric bilinear form on $H_1(X,\mathbb{Z})$, which has a corresponding symplectic bases

Proposition 1 For any symplectic basis $(a_1, ..., a_g, b_1, ..., b_g)$ of $H_1(X,\mathbb{Z})$ and for any closed 1-forms η and η' on the surface X we have

$$\int_X \eta \wedge \eta' = \sum_{k=1}^g \left(\int_{a_i} \eta \int_{b_i} \eta' - \int_{a_i} \eta' \int_{b_i} \eta \right)$$

Preuve. Let $(a_1, ..., a_g, b_1, ..., b_g)$ be a symplectic basis of $H_1(X,\mathbb{Z})$ associated with a cutting S into a $4g$-Gones quotes Δ: $A_1B_1A'_1B'_1, ..., A_gB_gA'_gB'_g$, where A_i and A'_i are identified by the map φ_i and B_i, B'_i are identified by the map ψ_i as in the following figure. Differential forms can be seen as differential forms on Δ. Since this last is simply connected, so there exist a function f such that $df = \eta$. So for each $x \in A$ and for each $y \in B$ we have:

(1) : \[\int_{b_i(x)} df = \int_{b_i} \eta = f \circ \varphi_i (x) - f (x) \]

(2) : \[\int_{a_i(x)} df = \int_{a_i} \eta = f (x) - f \circ \psi_i (x) \]
Stokes formula implies
\[
\int_S \eta \wedge \eta' = \int_\Delta \eta \wedge \eta' \\
= \int_D d(f\eta') \\
= \int_\Delta f\eta' \\
= \sum_{k=1}^g \int_{A_i+B_i-A_i'-B_i'} f\eta'
\]
and it follows from the formulas (1) and (2):
\[
\int_{A_i-A_i'} f\eta' = \int_{A_i} (f - f \circ \varphi_i(x)) \eta' = - \int_{b_i} \eta \int_{a_i} \eta' \\
\int_{B_i-B_i'} f\eta' = \int_{B_i} (f - f \circ \psi_i(x)) \eta' = \int_{a_i} \eta \int_{b_i} \eta'
\]
which proves equality \(\blacksquare\)

Remarque 2 If the surface \(X\) is provided with a riemann structure, and if \(\eta, \eta'\) are holomorphic 1-forms, then \(\int_X \eta \wedge \eta' = 0\)

Proposition 3 Let \(X\) be a compact Riemannian of which is fixed 2\(g\) simple closed curves \((a_1, ..., a_g, b_1, ..., b_g)\), forming a symplectic basis of the space \(H_1(X, \mathbb{Z})\) and let \(\omega_1\) be a holomorphic 1-form on \(X\) and \(\omega_2\) non-singular 1-meromorphic form along all the curves \(a_i b_i\). Given a point \(z_0 \in X - \{a_i b_i\}\) such that, \(u(z) = \int_{z_0}^{z} \omega_1\), then

\[
2i\pi \sum \text{Res}(u, \omega_2) = \sum_{i=1}^g \left(\int_{a_i} \omega_1 \int_{b_i} \omega_2 - \int_{a_i} \omega_2 \int_{b_i} \omega_1 \right)
\]

Preuve. The proposal follows from the Residue formula and equations (1) and (2): \(2i\pi \sum \text{Res}(u, \omega_2) = \int_{\partial \Delta} u \cdot \omega_2 \ \blacksquare\)

Whether now \((a_1, ..., a_g, b_1, ..., b_g)\) is a 2\(g\) simple closed curves on a compact Riemann surface \(X\) which form basis of the space \(H_1(X, \mathbb{Z})\) and \((\omega_1, ..., \omega_g)\) is a fixed basis of the space of 1-holomorphic forms on \(X\).
Definition 4 Let’s call the period matrices \(A, B \in \mathcal{M}_g(\mathbb{C}) \) defined by
\[
A_{ij} = \int_{a_i} \omega_j \\
B_{ij} = \int_{b_i} \omega_j
\]

Thorme 5 (Riemann bilinear relations)
1. The matrix \(A \) is invertible
2. The matrix \(\Omega = A^{-1}B \) is symmetrical and its imaginary part
\[
\text{Im} \Omega = (\text{Im} \Omega_{ij})_{i,j \leq g}
\]
is positive definite

Proof. Whether \(\lambda = (\lambda_1, \ldots, \lambda_g) \in \mathbb{C}^g \) such that \(\sum_{i=1}^g \lambda_i A_{ij} : j = 1, \ldots, g. \)
Consider the holomorphic 1-form
\[
\omega = \sum_{i=1}^g \lambda_i \omega_i
\]
By definition of the matrix \(A \), we have:
\[
\int_{a_i} \omega = 0 = \sum_{i=1}^g \lambda_i A_{ij}
\]
so is
\[
\int_{a_i} \overline{\omega} = 0
\]
Then it follows from the Proposition1,
\[
\int_{a_i} \omega \wedge \overline{\omega} = 0 : \omega = 0
\]
so \(\lambda_i = 0, \ i = 1, \ldots, g. \) For the other one, we easily verify that \(\Omega \) is independent of the basis \((\omega_1, \ldots, \omega_g) \). Since the matrix \(A \) is invertible, so a base change we can consider \(A = I: A_{ij} = \delta_{ij}. \) Hence \(\Omega_{ij} = B_{ij}, \) and it still follows from the Proposition1:
\[
0 = \int_X \omega_i \wedge \omega_j = \sum_{k=1}^g \left(\int_{a_k} \omega_i \int_{b_k} \omega_j - \int_{a_k} \omega_j \int_{b_k} \omega_i \right)
= \int_{b_i} \omega_j - \int_{b_j} \omega_i
\]
Finally, if \(v = (v_1, \ldots, v_g) \in \mathbb{R}^g - \{0\} \), then we have:

\[
\iota_v \text{Im } \Omega \cdot v = \frac{i}{2} \int_X \eta \wedge \eta > 0, \text{ when } \eta = \sum_{k=1}^g v_k \omega_k
\]

\[\blacksquare\]

3 Lattice of periods

Let \(X \) be a compact Riemannian surface with two \(2g \) fixed simply closed curves which form a basis of the space \(H_1(X, \mathbb{Z}) \), \((\omega_1, \ldots, \omega_g)\) a basis of the space \(\Omega^1(X) \) of holomorphic 1-forms is fixed. The image of the following map

\[
p : H_1(X, \mathbb{Z}) \to \Omega^1(X)^* \\
\gamma \mapsto p(\gamma)
\]

is a lattice \(\Lambda \) in \(\Omega^1(X)^* \), where \(p(\gamma)(\omega) = \int_\gamma \omega \).

Definition 6 We call \(\Lambda \) the lattice of periods. The dual basis \((\omega_1, \ldots, \omega_g)\) identifies the space \(\Omega^1(X)^* \) to \(\mathbb{C}^g \). As a lattice in the space \(\mathbb{C}^g \), \(\Lambda = AZ + BZ \)

Remark 7 Note that the set \(\Lambda \) is a lattice since it comes from the Riemann bilinear relations and the real range of \((A, B)\) is equal \(2g\). The Riemann bilinear relations even show that \(\Lambda \) is a particular lattice.

Definition 8 A divisor on a Riemannian surface is the data of a finite set the points \((P_i, n_i)\), weighted by nonzero integers. The set of divisors is naturally equipped with a commutative group structure. It is a \(\mathbb{Z} \)-module generated by \(X \). A divisor is called effective if its degree \(\sum_i n_i = 0 \), and the divisor \(D \) is principal if \(D = \text{div}(f) \) is given by the poles and zeros of a meromorphic function \(f \).

Notation 9 \(D = \sum_{i} n_i P_i, \) \(\text{deg } D = \sum_{i} n_i \)

4 Abel-Jacobi map

Wether \(O \) and \(P \) are two points of a Riemann compact surface \(X \). Two paths \(\gamma \) and \(\gamma' \) link \(O \) to \(P \) in \(X \) differ only by a factor of \(H_1(X, \mathbb{Z}) \). In another word: \(p(\gamma) = p(\gamma') \mod \Lambda \). For any path \(\gamma \) the following map

\[
\nu_O : X \to \mathbb{C}^g / \Lambda \\
P \to (\int_\gamma \omega_1, \ldots, \int_\gamma \omega_g)
\]
is well defined, but depending on the point O. Moreover, for each point $P \in X$ we can associate the divisor $P - O$ of degree zero. A divisor $\text{div}(f)$ associated to a meromorphic function f is also of degree zero.

Definition 10 The set of divisors of degree zero is naturally an Abelian group. We call group of Picard $\text{Pic}_O(X)$ the quotient of divisor group of degree zero by the sub-group of divisors associated to meromorphic functions.

Proposition 11 The map u_O extends naturally into a group morphism:

$$
\begin{align*}
 u : \text{Pic}_O(X) &\longrightarrow \mathbb{C}^g/\Lambda \\
 \sum_{P} n_P P &\longrightarrow \sum_{P} n_P u_O(P)
\end{align*}
$$

which does not depend on the point O.

Proof. Let's show first the map u is well defined. Wether

$$
\text{div}(f) = \sum_{P} n_P
$$

where f is a meromorphic function and we set

$$
\omega = \frac{df}{2i\pi f}
$$

We note $F_k(z) = \int_{O}^{z} \omega_k$ for $k = 1, \ldots, g$. So Proposition 3 implies

$$
\sum \text{Res} \left(F_k \frac{df}{f} \right) = \sum_{j=1}^{g} \left(\int_{a_j}^{b_j} \omega \int_{b_j}^{a_j} \omega_k - \int_{b_j}^{a_j} \omega_k \int_{a_j}^{b_j} \omega \right)
$$

The right side is a linear combination in integers of periods $\int_{a_j}^{b_j} \omega_k$, as integer, because the periods of the 1-form ω are integers (Residue formula). The left side is equal to

$$
\sum_{P} n_P F_k(P)
$$

Finally the k^{th} coordinate of the image $u_O(P)$ equals $F_k(P)$. Whether we change the point O in another one $O' \in X$ in another one, then

$$
\left(u_O - u_{O'} \right) \left(\sum_{P} n_P P \right) = - \sum_{P} n_P \left(\int_{O}^{O'} \omega_1, \ldots, \int_{O}^{O'} \omega_g \right)
$$

But the sum of the right hand is zero, because the degree $\sum_{P} n_P = 0$ ☐
Definition 12 The map \(u \) defined as above is called the Abel-Jacobi map.

Theorem 13 (Abel) The Abel-Jacobi map is injective.

Proof. Whether \(D = \sum n_P P \) is a divisor of degree zero such that \(u(D) = 0 \), we will find a meromorphic function \(f \) such that \(D = \text{div}(f) \). Indeed we will construct a 1-form

\[
\omega = \frac{df}{2i\pi f}
\]

Let \(\omega \) be a 1-meromorphic form on the surface \(S \) with simple poles in the points \(P \) of divisor \(D \) with residues \(n_P \). Hence once again by Proposition 1:

\[
u(D) = \sum_P n_P u_0(P) = \sum \text{Res}(u_0\omega)
= \sum_{j=1}^g \left(\int_{a_j} \omega \int_{b_j} \omega_k - \int_{a_j} \omega_k \int_{b_j} \omega \right)_{k=1,...,g}
\]

We will modify \(\omega \) so that all its periods will become integers.

Lemma 14 Whether \(x_1, .., x_g, y_1, .., y_g \) are complex numbers, then there exists a holomorphic 1-form \(\eta \) such that

\[\int_{a_i} \eta = x_i \quad \text{and} \quad \int_{b_i} \eta = y_i\]

if and only if

\[
\sum_{k=1}^g \left(y_k \int_{a_k} \omega_i - x_k \int_{b_k} \omega_i \right) = 0 \quad i = 1, ..., g
\]

Proof. As the matrix \(A \) is invertible, then the vectors

\[
\left(\int_{a_1} \omega, ..., \int_{a_g} \omega \right) \quad i = 1, ..., g
\]

are linearly independent. Now the following linear map is surjective

\[
\Phi : \mathbb{C}^{2g} \rightarrow \mathbb{C}^g \quad (x_1, ..., x_g, y_1, ..., y_g) \mapsto \left(\sum_{k=1}^g \left(y_k \int_{a_k} \omega_k - x_k \int_{b_k} \omega_i \right) \right)_{i=1,...,g}
\]
So \(\text{dim ker } \Phi = g \). But if \(\eta \) is a holomorphic 1-form, \(\eta \wedge \omega_i = 0 : i = 1, ..., g \), and then Proposition 1 implies

\[
\left(\int_{a_1} \eta, ..., \int_{a_g} \eta, \int_{b_1} \eta, ..., \int_{b_g} \eta \right) \in \ker \Phi
\]

The lemma follows from that the dimension of the space of the holomorphic 1-forms is equal to the geneus \(g \). Since \(u(D) = 0 \) in the quotient \(\mathbb{C}^g / \Lambda \), then there exists integers \((A_1, A_g, B_1, ..., B_g) \) such that

\[
\sum_{k=1}^{g} \left(\left(\int_{a_k} \omega - B_k \right) \int_{a_k} \omega_i - \left(\int_{a_k} \omega - A_k \right) \int_{a_k} \omega_i \right) \quad i = 1, ..., g
\]

So by the lemma above, there exists a holomorphic 1-form \(\eta \) such that all the periods of the 1-form \(\eta - \omega \) are integers. Hence we can consider that \(\omega \) has integer periods. A primitive of the form between \(O \) and \(z \) gives the meromorphic function

\[
f(z) = \exp \left(2i\pi \int_{O}^{z} \omega \right)
\]

which is well defined, satisfying \(\text{div}(f) = D \).

Thorme 15 (Jacobi) The Abel-Jacobi map is injective

Preuve. The map \(u \) is a group morphism. So it suffices to show that the image of the map \(u \) contains a neighborhood of the point \(O \). This will follow from the inverse function theorem: ■

Lemme 16 There exists \(g \) distincts points \(P_1, ..., P_g \in X \) such that any holomorphic 1-form which vanishes in each \(P_k \) is identically zero

Preuve. For any point \(P \in X \) the sub-space

\[
H_P = \{ \omega \in \Omega^1 (X)^* : \omega(P) = 0 \}
\]

is of codimension \(\leq 1 \) in \(\Omega^1 (X) \). But the intersection

\[
\bigcap_{P \in S} H_P
\]

is trivial and \(\dim \Omega^1 (X) = g \). Then there exists points \(P_1, ..., P_g \in S \) such that

\[
H_{P_1} \cap ... \cap H_{P_2} \cap H_{P_g} = 0
\]
Let $P_1, \ldots, P_g \in X$ be fixed points as in the lemma with simply connected disjoint local coordinates (U_i, z_i) around these points and $z_i(P_i) = 0$ $i \leq g$. In fact each 1-form ω_i is written as:

$$\omega_i = \varphi_{ij} dz_j \text{ on } U_j$$

The matrix $(\varphi_{ij})_{1 \leq i,j \leq g}$ is invertible by lemma above.

Consider now the following map

$$F : U_1 \times \ldots \times U_g \rightarrow C^g$$

$$z = (z_1, \ldots, z_g) \rightarrow (F_1(z), \ldots, F_g(z))$$

such that

$$F_i(z) = \sum_{j=1}^g \int_{P_j}^{z_j} \omega_i : i = 1, \ldots, g$$

The integral

$$\int_{P_j}^{z_j} \omega_i$$

is well defined since each U_i is simply connected. Hence the map F is differentiable in complexe coordonates z_1, \ldots, z_g and the expression of the jacobian matrix is

$$\left(\frac{\partial F_i}{\partial x_j} \right)_{1 \leq i,j \leq g} (P) = (\varphi_{ij}(P))_{1 \leq i,j \leq g}$$

This matrix is invertible in the point $P = (P_1, \ldots, P_g)$. So by the local inverse theorem we have a neighborhood of $F(P) = 0$:

$$W = F(U_1 \times \ldots \times U_g) \subset C^g$$

Finally if $\xi \in W$ then there exists points $Q_1, \ldots, Q_g \in C^g$ such that

$$\left(\sum_{j=1}^g \int_{P_j}^{Q_j} \omega_1, \ldots, \sum_{j=1}^g \int_{P_j}^{Q_j} \omega_g \right) = \xi$$

In another wordrs

$$u \left(\sum_{j=1}^g (Q_j - P_j) \right) = \xi$$

Summarizing the theorem of Abel-Jacobi:
Thorme 17 (Abel-Jacobi) The Abel-Jacobi map \(u : Pic(X) \rightarrow Jac(X) = \mathbb{C}^g / \Lambda \) is bijective.

Furthermore whether a point \(O \in X \) is fixed, we have the following map

\[
u_O : X \rightarrow Jac(X)
\]

\[
P \rightarrow u(P - O)
\]

When \(g = 1 \) this map is an isomorphism. In general it is still:

Proposition 18 If the genus \(g \geq 1 \), the map \(u_O : X \rightarrow Jac(X) \) is an embedding.

Preuve. Since \(S \) is compact, it suffices to show that \(u_O \) is an injective immersion map. Let’s prove firstable \(u_O \) is injective. Suppose by contradiction that \(u_O(P) = u_O(P') \). So the map \(u \) concels on the divisor of degree zero, \(P - P' \). This last is the divisor of a meromorphic function \(f \). This one has a single pole and a single zero; so it is a map:

\[
X \rightarrow \mathbb{CP}^1
\]

of degree one. Thus is absurd since \(g \geq 1 \). Let’s prove that \(u_O \) is an immersion map. As in the proof the Abel-Jacobi theorem:

\[
d_p u_O(\xi) = (\omega_1(P)(\xi), \ldots, \omega_g(P)(\xi))
\]

The proposition follows again from the local inverse theorem and the next lemma.

Lemme 19 The holomorphic 1-forms \((\omega_1, \ldots, \omega_g) \) have no common zero.

Preuve. Once again by contradiction: if a point \(P \) is a common zero. According to Riemann-Roch theorem: the dimension of the space of holomorphic functions having more then one simple pole in \(P \) equals:

\[
\deg u_O - g + 1 + \dim \{ \omega \in \Omega^1(X) : \omega(P) = 0 \} = 1 - g + 1 + \dim \{ \omega \in \Omega^1(X) : \omega(P) = 0 \} = 2
\]

Then there exists a function \(f \in X \), which has a unique simple pole in \(P \). So it is a map \(f : X \rightarrow \mathbb{CP}^1 \) of one degree, when even an absurdity since \(g \geq 1 \).
Remarque 20 Once a point \(O \in X \) is fixed we have more generally a map

\[
X^{(g)} = X^g / \mathfrak{S}_g \longrightarrow \text{Jac}(X)
\]

\[
(P_1, \ldots, P_g) \longrightarrow u \left(\sum_{j=1}^{g} (P_j - O) \right)
\]

and \(X^{(g)} \) can be provided with an analytical structure. We showed that the map \(X^{(g)} \rightarrow \text{Jac}(X) \) is surjective. For reasons of dimensions we can verify that is finite fibers. We can show:

- \(X^{(g)} \) and \(\text{Jac}(X) \) are algebraic variety
- The map \(X^{(g)} \rightarrow \text{Jac}(X) \) is birational
This figure "abel_jacobi_figure.png" is available in "png" format from:

http://arxiv.org/ps/1507.05345v1