B. Raphael, S. Volik, C. Collins, and P. Pevzner, Reconstructing tumor genome architectures, Bioinformatics, vol.19, issue.Suppl 2, 2003.
DOI : 10.1093/bioinformatics/btg1074

A. Fischer, I. Vázquez-garcía, C. Illingworth, and V. Mustonen, High-Definition Reconstruction of Clonal Composition in Cancer, Cell Reports, vol.7, issue.5, pp.1740-1752
DOI : 10.1016/j.celrep.2014.04.055

A. Mcpherson, A. Roth, G. Ha, S. Shah, C. Chauve et al., Joint Inference of Genome Structure and Content in Heterogeneous Tumor Samples, Research in Computational Molecular Biology Lecture Notes in Computer Science, vol.9029, pp.256-258, 2015.
DOI : 10.1007/978-3-319-16706-0_25

L. Hurst, C. Pál, and M. Lercher, The evolutionary dynamics of eukaryotic gene order, Nature Reviews Genetics, vol.5, issue.4, pp.299-310, 2004.
DOI : 10.1038/nature01107

K. Swenson, W. Arndt, J. Tang, and B. Moret, PHYLOGENETIC RECONSTRUCTION FROM COMPLETE GENE ORDERS OF WHOLE GENOMES, Proceedings of the 6th Asia-Pacific Bioinformatics Conference, pp.241-250, 2008.
DOI : 10.1142/9781848161092_0026

D. Sankoff, Mechanisms of genome evolution: models and inference. Bulletin of the International Statistical Institute, pp.461-475, 1989.

J. Ma, A. Ratan, B. Raney, B. Suh, L. Zhang et al., DUPCAR: Reconstructing Contiguous Ancestral Regions with Duplications, Journal of Computational Biology, vol.15, issue.8, pp.1007-1027, 2008.
DOI : 10.1089/cmb.2008.0069

C. Chauve and E. Tannier, A Methodological Framework for the Reconstruction of Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes, PLoS Computational Biology, vol.48, issue.11, p.1000234, 2008.
DOI : 10.1371/journal.pcbi.1000234.t003

URL : https://hal.archives-ouvertes.fr/inria-00269397

M. Alekseyev and P. Pevzner, Breakpoint graphs and ancestral genome reconstructions, Genome Research, vol.19, issue.5, pp.943-957, 2009.
DOI : 10.1101/gr.082784.108

J. Ma, A probabilistic framework for inferring ancestral genomic orders, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.179-184
DOI : 10.1109/BIBM.2010.5706559

C. Zheng and D. Sankoff, On the PATHGROUPS approach to rapid small phylogeny, BMC Bioinformatics, vol.12, issue.Suppl 1, p.4, 2011.
DOI : 10.1186/1471-2105-12-S1-S4

S. Bérard, C. Gallien, B. Boussau, G. Szöll?si, V. Daubin et al., Evolution of gene neighborhoods within reconciled phylogenies, Bioinformatics, vol.28, issue.18, pp.382-388
DOI : 10.1093/bioinformatics/bts374

F. Hu, Y. Lin, and J. Tang, MLGO: phylogeny reconstruction and ancestral inference from gene-order data, BMC Bioinformatics, vol.5, issue.1, pp.354-359, 2014.
DOI : 10.1186/s12859-014-0354-6

T. Reddy, A. Thomas, D. Stamatis, J. Bertsch, M. Isbandi et al., The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification, Nucleic Acids Research, vol.43, issue.D1, pp.1099-1106
DOI : 10.1093/nar/gku950

J. Simpson, K. Wong, S. Jackman, J. Schein, S. Jones et al., ABySS: A parallel assembler for short read sequence data, Genome Research, vol.19, issue.6, pp.1117-1123, 2009.
DOI : 10.1101/gr.089532.108

S. Koren, T. Treangen, and M. Pop, Bambus 2: scaffolding metagenomes, Bioinformatics, vol.27, issue.21, pp.2964-2971
DOI : 10.1093/bioinformatics/btr520

L. Salmela, V. Mäkinen, N. Välimäki, J. Ylinen, and E. Ukkonen, Fast scaffolding with small independent mixed integer programs, Bioinformatics, vol.27, issue.23, pp.3259-3265, 2011.
DOI : 10.1093/bioinformatics/btr562

S. Gao, W. Sung, and N. Nagarajan, Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences, Journal of Computational Biology, vol.18, issue.11, pp.1681-1691, 2011.
DOI : 10.1089/cmb.2011.0170

M. Boetzer, C. Henkel, H. Jansen, D. Butler, and W. Pirovano, Scaffolding pre-assembled contigs using SSPACE, Bioinformatics, vol.27, issue.4, pp.578-579, 2011.
DOI : 10.1093/bioinformatics/btq683

A. Gritsenko, J. Nijkamp, M. Reinders, and D. De-ridder, GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies, Bioinformatics, vol.28, issue.11, pp.1429-1437
DOI : 10.1093/bioinformatics/bts175

J. Simpson and R. Durbin, Efficient de novo assembly of large genomes using compressed data structures, Genome Research, vol.22, issue.3, pp.549-556
DOI : 10.1101/gr.126953.111

R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, GigaScience, vol.1, issue.1, p.18
DOI : 10.1186/2047-217X-1-18

M. Hunt, C. Newbold, M. Berriman, and T. Otto, A comprehensive evaluation of assembly scaffolding tools, Genome Biology, vol.15, issue.3, p.42
DOI : 10.1186/gb-2004-5-2-r12

P. Husemann and J. Stoye, Phylogenetic comparative assembly, Algorithms for Molecular Biology, vol.5, issue.1, pp.3-14, 2010.
DOI : 10.1186/1748-7188-5-3

A. Rajaraman, E. Tannier, and C. Chauve, FPSAC: fast phylogenetic scaffolding of ancient contigs, Bioinformatics, vol.29, issue.23, pp.2987-2994
DOI : 10.1093/bioinformatics/btt527

URL : https://hal.archives-ouvertes.fr/hal-00859185

J. Kim, D. Larkin, Q. Cai, A. Zhang, Y. Ge et al., Reference-assisted chromosome assembly, Proceedings of the National Academy of Sciences, vol.110, issue.5, pp.1101785-1790
DOI : 10.1073/pnas.1220349110

M. Kolmogorov, B. Raney, P. B. Pham, and S. , Ragout--a reference-assisted assembly tool for bacterial genomes, Bioinformatics, vol.30, issue.12, pp.302-309
DOI : 10.1093/bioinformatics/btu280

Y. Lin, S. Nurk, and P. Pevzner, What is the difference between the breakpoint graph and the de Bruijn graph?, BMC Genomics, vol.15, issue.Suppl 6, p.156
DOI : 10.1101/gr.757503

S. Aganezov, N. Sitdykovaa, and M. Alekseyev, Scaffold assembly based on genome rearrangement analysis, Computational Biology and Chemistry, vol.57, pp.46-53, 2015.
DOI : 10.1016/j.compbiolchem.2015.02.005

F. Cunningham, M. Amode, D. Barrell, K. Beal, K. Billis et al., Ensembl 2015, Nucleic Acids Research, vol.43, issue.D1, pp.662-669, 2015.
DOI : 10.1093/nar/gku1010

URL : http://doi.org/10.1093/nar/gku1010

C. Chauve, Y. Ponty, and J. Zanetti, Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach, BMC Bioinformatics, issue.09, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216782

P. Biller, L. Guéguen, and E. Tannier, Moments of genome evolution by Double Cut-and-Join, BMC Bioinformatics, vol.16, issue.Suppl 14, 2015.
DOI : 10.1186/1471-2105-16-S14-S7

URL : https://hal.archives-ouvertes.fr/hal-01179597

A. Kasprzyk and . Biomart, BioMart: driving a paradigm change in biological data management, Database, vol.2011, issue.0, p.49, 2011.
DOI : 10.1093/database/bar049

B. Boussau, G. Szöll?si, L. Duret, M. Gouy, and V. Daubin, Genome-scale coestimation of species and gene trees, Genome Research, vol.23, issue.2, pp.323-330, 2013.
DOI : 10.1101/gr.141978.112

URL : https://hal.archives-ouvertes.fr/hal-00750148

E. Nouhati, M. Semeria, M. Lafond, J. Seguin, B. Boussau et al., Efficient gene tree correction guided by species and synteny evolution Assessing the robustness of parsimonious predictions for gene neighborhoods from reconciled phylogenies, Lecture Notes in Computer Science, vol.9096, pp.260-271, 2015.

N. Luhmann, C. Chauve, J. Stoye, and R. Wittler, Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework, Proceedings of Brazilian Symposium on Bioinformatics Lecture Notes in Computer Science 2014, pp.135-143
DOI : 10.1007/978-3-319-12418-6_17

J. Ma?uch, M. Patterson, R. Wittler, C. Chauve, and E. Tannier, Linearization of ancestral multichromosomal genomes, BMC Bioinformatics, vol.2012, issue.13, p.11

J. Denton, J. Lugo-martinez, A. Tucker, D. Schrider, W. Warren et al., Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies, PLoS Computational Biology, vol.25, issue.12, p.1003998
DOI : 10.1371/journal.pcbi.1003998.s001