Optimisation of the variational method for vibrational Hamiltonian eigenvalues computation
Romain Garnier, Vincent Le Bris, Didier Bégué, Olivier Coulaud, Isabelle Baraille, Marc Odunlami

To cite this version:
Romain Garnier, Vincent Le Bris, Didier Bégué, Olivier Coulaud, Isabelle Baraille, et al.. Optimisation of the variational method for vibrational Hamiltonian eigenvalues computation. 59th Souriau Colloquium: Colloque International de Théories Variationnelles, Jun 2015, Seignosse, France. 2015.<hal-01179654v2>

HAL Id: hal-01179654
https://hal.archives-ouvertes.fr/hal-01179654v2
Submitted on 14 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimisation of the variational method for vibrational Hamiltonian eigenvalues computation

Romain Garnier ∗ Vincent Le Bris † Didier Bégué † Olivier Coulaud ∗ Isabelle Baraille † Marc Odunlami †

April 23, 2015

abstract

We propose here an efficient method to define a representative approximation subspace to compute the first eigenvalues of the vibrational Hamiltonian which are those of interest in the experimental results. In the Born Oppenheimer approximation, calling by $x = (x_1, \ldots, x_N)$ the dimensionless normal coordinates \[^{[4]}\], ω_i the angular frequency associated with the coordinate x_i and \hbar the reduced Planck constant, the vibrational Hamiltonian H writes as a sum of the nuclear kinetic and potential energies:

$$H(x) = H_0 + V = \sum_{i=1}^{N} \frac{\hbar \omega_i}{2} \left(-\frac{\partial^2}{\partial x_i^2} + x_i^2 \right) + \sum_{S \geq \|s\|_1 \geq 3} K_s \prod_{i=1}^{N} x_i^{s_i}, \ s = (s_1, \ldots, s_N).$$

(1)

In (1) each monomial have a total degree $\|s\|_1 \leq S_V$. The polynomial approximation of the potential energy is constituted by V and the second order monomials included in H_0.

The eigenfunctions of H_0 are pseudo-periodic signals vibrating at multiple level of fundamentals Harmonic frequencies. They write as

$$\phi_n^0(x) = \prod_{i=1}^{N} \psi_{n_i}(x_i), \ \text{for all} \ n = (n_1, \ldots, n_N), \ \psi_{n_i}(x_i) \ \text{Hermite function of degree} \ n_i. \quad (2)$$

And the harmonic corresponding eigenvalues of H_0 are

$$E_n^0 = \sum_{i=1}^{N} (n_i + \frac{1}{2}) \omega_i \hbar. \quad (3)$$

Variational method in quantum mechanic is used to design a method that uses an adapted set of trial wave functions defining a subspace where the eigen-pairs of H are computed.

∗INRIA Bordeaux
†IPREM Pau
The eigenfunctions of H_0 constitute a well-suited approximation space. Indeed, when looking at the form of the operator H we see that H_0 already contains Kinetic energy and the quadratic terms of the potential energy faithfully representing its behaviour in a localized area around equilibrium. In other words, H_0 is the zero order approximation of H.

In order to deal with the curse of dimensionality that rapidly happens because of the product space structure of the approximation space, we propose a basis selection technique based on perturbational theory [3].

This technique is in the context of vibrational configuration interaction with perturbation selected interactions [2, 1].

Calling by $\|V\|_2$ the spectral norm of the operator V, the first eigenvalues of H are considered perturbation of the first harmonic eigenvalues because

$$\|V\|_2 = \epsilon \star \|H_0\|_2, \quad \epsilon < 1.$$

Actually, the value of ϵ depends on the distance with the ground state and then constitute relevant information for the selection of the minimal required sub basis for the computation of the eigen-pairs of H.

References

