Reparameterization invariant metric on the space of curves

Abstract : This paper focuses on the study of open curves in a manifold M , and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparameterization invariant metric on the space of immersions M' = Imm([0,1], M) by pullback of a metric on the tangent bundle TM' derived from the Sasaki metric. We observe that such a natural choice of Riemannian metric on TM' induces a first-order Sobolev metric on M' with an extra term involving the origins, and leads to a distance which takes into account the distance between the origins and the distance between the SRV representations of the curves. The geodesic equations for this metric are given, as well as an idea of how to compute the exponential map for observed trajectories in applications. This provides a generalized theoretical SRV framework for curves lying in a general manifold M .
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger
Contributeur : Alice Le Brigant <>
Soumis le : mardi 27 octobre 2015 - 10:27:40
Dernière modification le : mercredi 21 novembre 2018 - 17:52:06
Document(s) archivé(s) le : vendredi 28 avril 2017 - 07:36:06


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01179508, version 2
  • ARXIV : 1507.06503



Alice Le Brigant, Marc Arnaudon, Frédéric Barbaresco. Reparameterization invariant metric on the space of curves. 2015. 〈hal-01179508v2〉



Consultations de la notice


Téléchargements de fichiers