On the Cartesian product of of an arbitrarily partitionable graph and a traceable graph

Abstract : A graph G of order n is called arbitrarily partitionable (AP, for short) if, for every sequence τ=(n1,\textellipsis,nk) of positive integers that sum up to n, there exists a partition (V1,\textellipsis,Vk) of the vertex set V(G) such that each set Vi induces a connected subgraph of order ni. A graph G is called AP+1 if, given a vertex u∈V(G) and an index q∈ {1,\textellipsis,k}, such a partition exists with u∈Vq. We consider the Cartesian product of AP graphs. We prove that if G is AP+1 and H is traceable, then the Cartesian product G□ H is AP+1. We also prove that G□H is AP, whenever G and H are AP and the order of one of them is not greater than four.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 1 (in progress) (1), pp.225--232
Liste complète des métadonnées


https://hal.inria.fr/hal-01179212
Contributeur : Hélène Lowinger <>
Soumis le : mercredi 22 juillet 2015 - 09:14:55
Dernière modification le : jeudi 7 septembre 2017 - 01:03:40
Document(s) archivé(s) le : vendredi 23 octobre 2015 - 10:23:59

Fichier

dmtcs-16-1-14.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01179212, version 1

Citation

Olivier Baudon, Julien Bensmail, Rafał Kalinowski, Antoni Marczyk, Jakub Przybyło, et al.. On the Cartesian product of of an arbitrarily partitionable graph and a traceable graph. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 1 (in progress) (1), pp.225--232. <hal-01179212>

Partager

Métriques

Consultations de
la notice

195

Téléchargements du document

166