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Abstract

The topic of this review is geometric registration in robotics. Registra-
tion algorithms associate sets of data into a common coordinate system.
They have been used extensively in object reconstruction, inspection,
medical application, and localization of mobile robotics. We focus on
mobile robotics applications in which point clouds are to be registered.
While the underlying principle of those algorithms is simple, many
variations have been proposed for many di�erent applications. In this
review, we give a historical perspective of the registration problem and
show that the plethora of solutions can be organized and di�erentiated
according to a few elements. Accordingly, we present a formalization
of geometric registration and cast algorithms proposed in the litera-
ture into this framework. Finally, we review a few applications of this
framework in mobile robotics that cover di�erent kinds of platforms,
environments, and tasks. These examples allow us to study the speci�c
requirements of each use case and the necessary con�guration choices
leading to the registration implementation. Ultimately, the objective of
this review is to provide guidelines for the choice of geometric registra-
tion con�guration.

Keywords Survey; Review; Iterative Closest Point algorithm; Point
set registration; Geometric registration; Mobile robotics; Laser odom-
etry; Search and Rescue; Inspection; Environmental monitoring; Au-
tonomous Driving.
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1
Twenty years of Iterative Closest Point (ICP):

The Legacy

The scope of this work is to presentregistration algorithms and their
use in mobile robotics. Registration algorithms associate sets of data
into a common coordinate system by minimizing the alignment error.
This allows to integrate data from di�erent sources into a bigger model.

Although they can be quite an abstract and technical concept,
registration solutions already had an impact on the artistic �eld and
popular culture. Photographers pro�ciently use image registration to
build photograph composites achieving di�erent looks-and-feels. The
Brenizer method is an exemplary technique that is applied to achieve
dramatic depth of �eld using panoramic image stitching (Figure 1.1 -
Top). Another example is High Dynamic Range (HDR ) photographs,
where multiple images at di�erent exposure levels need to be precisely
overlaid to retrieve details in shaded and highlighted areas (Figure 1.1
- Bottom). Nowadays, even the latest cellphones have the capacity to
build panoramic images from a series of pictures taken based on a vi-
sual guidelines that direct the user to move the camera view�nder at
the optimal position for the next picture. As for the speci�c case of
3D mapping application, cinematographers are depicting possible uses
of registration algorithms in several recent science �ction movies. For

2
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instance, in the remake ofTotal Recall (Colombia Pictures, 2012), an
armed intervention team employed an array of hundreds of tiny cam-
eras in a dangerous room leading to a 3D reconstruction of the area
used to monitor potential threats within couple of seconds. Another
closely related potential application was the used by a geologist of �y-
ing drones carrying laser range�nders to explore an alien facility in
Prometheus(Twentieth Century Fox, 2012).

Figure 1.1: Example of image registrations used in photography. Top: Brenizer
method using the open source software Hugin to stitch multiple images. Bottom :
HDR composite of the San Francisco harbor using the open source software Lumi-
nance HDR to overlay three images.
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More at the research level, current applications include: robotic
exploration in harsh environments, organ reconstruction to improve
medical diagnostics and object reconstruction for reverse engineering.
Although registration using 2D images can be part of the same group
of solutions, we focus on systems where depth information is already
available (e.g., from laser range�nders) and is mainly used for resolving
misalignment error. We refer to the latter type as geometric registra-
tion 1. However, some parallels with image registrations will be made
throughout this work when relevant.

A simpli�ed example of geometric registration is illustrated in Fig-
ure 1.2. A scene with a large tree, a lamppost and a bench was scanned
using a laser range�nder from two di�erent poses. As laser points are
indistinguishable, only their location information is available to resolve
the alignment error. In that example, the point cloud in light green and
with the horizontal ground is used as our �xed reference coordinates.
Figure 1.2-Left shows the starting position of the two scans. The over-
laid point cloud in dark blue has a misalignment error shifting it to
the left with a tilt angle. This initial misalignment is represented with
dark red lines in Figure 1.2-Middle. Although all individual points are
similar, their proximity to other points gives enough information to
automatically align the two point clouds (Figure 1.2-Right).

Figure 1.2: Examples of geometric registration between a reference point cloud
(light green points) and a reading point cloud (dark blue points). Left : Initial position
of the two point clouds. Middle: Alignment error (dark red lines). Right : Final
alignment of the two point clouds.

1 In general, image registration often has access tolabelled points, which is less
the case for geometric registration, either in 2D or 3D.
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1.1 Early Solutions

As an interesting historical note, in an early publication by Hurley and
Cattell [1962], registration is presented as anOrthogonal Procrustes
problem. The name Procrustes refering to a bandit from the Greek
mythology who made his victims �t on his bed by either stretching
their limbs or cutting them o�. Theseus eventually defeated Procrustes
using the same violent procedure (Figure 1.3). Nowadays, the reference
to the Orthogonal Procrustesproblem is not often used in the scienti�c
literature, but it illustrates well the idea.

Figure 1.3: Theseus adjusting Procrustes to the size of his bed. Photograph pro-
vided by Marie-Lan Nguyen / Wikimedia Commons.

While working more speci�cally on 3D-shape primitives, Faugeras
and Hebert [1986] de�ned closed-form distances to minimize point-to-
point and plane-to-plane alignment error. The proposed method solved
translation and rotation as a two-step procedure. Later, a solution pro-
posed by Walker et al. [1991] resolved together rotation and translation
error using dual quaternions. The registration problem concretizes it-
self further in a survey of geometric matching algorithms and geometric
representations for point sets, curves, surfaces, volumes, and their re-
spective space-time trajectories [Besl, 1988]. At this time, the main ex-
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perimental validation was using Computer-aided design (CAD ) models
with simple shapes. The �rst mention of the name ICP 2 was proposed
by Besl and McKay [1992]. They expressed the problem as follows:

�Given 3-D data in a sensor coordinate system, which de-
scribes a data shape that may correspond to a model shape,
and given a model shape in a model coordinate system in a
di�erent geometric shape representation, estimate the op-
timal rotation and translation that aligns, or registers, the
model shape and the data shape minimizing the distance
between the shapes and thereby allowing determination of
the equivalence of the shapes via a mean-square distance
metric.�

In their work, the proof of the solution convergence is demonstrated
under the assumption that the number of associated points, or their
weight, remains constant. Unless two identical shapes are registered
together, outliers that are not present in both shapes need to be iden-
ti�ed. This problems is observed by Champleboux et al. [1992] while
developing early registration solutions for medical applications. They
report failures when wrong initial transformations are used in com-
bination with scans having low overlap ratio. During the same years,
Chen and Medioni [1991] work with dense laser scans of statues and,
shortly later, scans of tooth mockups [Chen and Medioni, 1992]. They
propose a registration solution based on the minimization of point-to-
plane alignment errors, which is still quite often used nowadays.

Even though a large volume of theoretical works was published on
advanced geometric primitives (e.g., planes, curves, quadrics), Zhang
[1994] states that primitives derived from points are too sensitive to
noise and are not stable in moving systems with current (1994) sens-
ing capabilities. Thus, he concludes that points were more reliable.
Zhang [1994] pioneers the idea of usingICP -based solutions for out-
door robotic applications. He proposes a generic framework for sym-
metric match, but considers only one direction of registration as an

2 In the remainder of this review, ICP and geometric registration have the same
generic meaning.
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approximation to save computation costs. He highly emphasizes the
importance of removing spurious pairs and gives the �rst character-
ization of fast subsampling solutions. In addition, he highlighted the
fact that outlier rejection is required for robotic applications, and that
the proof of ICP convergence stated by Besl and McKay [1992] can-
not hold for most of the robotics applications. In the outlook section
of his work, he already mentions the use of uncertainty on the initial
alignment, based on Kalman �lters and Mahalanobis distance, and the
need to handle dynamic elements.

1.2 Division and Explosion of the Field

Within only two years, four main application types already emerged
from the possibilities to register 3D point clouds: object reconstructions
[Chen and Medioni, 1991], non-contact inspections [Besl and McKay,
1992], medical and surgery support [Champleboux et al., 1992] and au-
tonomous vehicle navigation [Zhang, 1993]. Publications in specialized
journals for computer vision, robotics and medical imaging slowly di-
vided the types of interesting problems to be solved. We can still read
in current literature that the credits for being the �rst article to provide
a solution di�er from authors in di�erent �elds.

The �eld of registration crystalized with its �rst survey on med-
ical image registration covering the years 1993 to 1998 [Maintz and
Viergever, 1998]. It took 12 years for a specialized survey of 3D regis-
tration in computer vision to appear [Bowyer et al., 2006]. This work
intends to be the �rst large scale review adapted for Robotics applica-
tion.

ICP is a popular algorithm due to its simplicity: its general idea is
easy to understand and to implement. However, the basic algorithm
only works well in ideal cases. This led to hundreds3 of variations
around the original algorithm that were published on numerous dif-
ferent experimental scenarios (see Figure 1.4). This highlights both the
usefulness ofICP and the di�culty to �nd a single versatile version.

3Close to 450 papers based on IEEE Xplore and around 1350 based on Scopus,
between 1992 and 2013.
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Figure 1.4: Evolution of the number of publications over the years. Results were
obtained for the keywords Iterative Closest Point appearing in the abstract or the
title of publications. The dark blue area is computed based on IEEE Xplore database
and the light green area from the Scopus database.

In Figure 1.4, one can observe an increasing number of publications
appearing around the year 2000. In robotics, this coincides with the ad-
vent of a 2D solution for pose estimations demonstrated with a SICK
range�nder [Lu and Milios, 1997] and of the basis of Simultaneous Lo-
calization and Mapping (SLAM ) algorithms [Thrun et al., 1998]. Prior
to the arrival of the SICK LMS-200 in robotics [P�ster et al., 2002],
most of the sensors used were custom-made. This situation renders ex-
periments di�cult to replicate by other researchers. In those years, 2D
lasers appeared as a viable solution for navigation over sonars, which
were traditionally used [Thrun et al., 1998]. The 3D real-time applica-
tions were then not accessible due to high computation costs leading
to an increased research focus toward 2D solutions for autonomous
navigation, while other �elds continued in 3D. At the same time in
computer vision, the seminal work of Rusinkiewicz and Levoy [2001]
on ICP algorithm comparisons led to signi�cant progress in the scan
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registration �eld. The experiments employed simulated 3D scans, high-
lighting di�erent spatial constraints and sensor noises. Results mainly
focused on the rapidity of convergence and the �nal precision of dif-
ferent solutions helping to select more appropriate solutions in further
applications.

With the arrival of more standard sensors, researchers in robotics
pushed the 2D registration algorithms so they could deal with larger
environments with faster platforms [Bosse et al., 2004] and 3D slowly
came back [Nüchter et al., 2004]. Since no comparison framework ex-
ists, the selection of an appropriate variant for particular experimental
conditions is di�cult. This is a major challenge because registration is
at the front-end of the mapping pipeline, and the arbitrary nature of
its selection a�ects the results of all subsequent steps of more advanced
robotic tasks. Even the early work of Eggert et al. [1998] highlights the
di�culty to compare with other solutions given the lack of metric over
common data sets. In their survey, Maintz and Viergever [1998] point
the fact that proper accuracy studies are just starting; the problem be-
ing that the results provided are too speci�c. In addition, they highlight
the imprecise use of the terms accuracy, precision and robustness. They
suggest to set up public databases and validation protocols, but foresee
logistic, costs and e�orts as incoming problem to those solutions.

Recently, the demand for a stronger experimental methodology in
robotics was also stressed by Amigoni et al. [2009]. The authors sur-
vey di�erent SLAM publications to highlight proper evaluation met-
rics that are applied to SLAM algorithms. Three principles of an
experimental methodology in science (i.e, comparison, reproducibil-
ity/repeatability and justi�cation/explanation) are translated in re-
quirements for stronger SLAM results. As stated in their paper, a
sound methodology should allow researchers to gain an insight about
intrinsic (e.g., computational time, parameters used, parameter behav-
iors) and extrinsic (e.g., accuracy, precision) quantities. The authors
report that, even though comparisons between algorithms are present
in SLAM publications, very few researchers can reuse the same proto-
col and directly compare their results without having to re-implement
other solutions.
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With the introduction of the Microsoft Kinect in 2010, another wave
of publications is expected, similar to what was observed following the
widespread utilization of SICK range�nders. The Kinect is a handheld
camera sensor connected via USB to a computer that produces both
depth and color readings. Such RGB-D sensors augment accessibility
to object modeling and indoor mapping research [Henry et al., 2012].
This also opens the door to a mix of hybrid algorithms using features
and descriptors without the need of expertise in sensor calibration.
RGB-D cameras have di�erent characteristics than laser-based sensors,
such as a higher density of points at a higher frequency but covering
a more restricted Field of View (FoV ). A smaller FoV means less
time to compute the registration before the sensor trajectory reduce
the overlap to an unusable range. Having access to a higher frame
rate with an optimized ICP solution shows that hand-waved sensor
trajectory was trackable with real-time constraints [Pomerleau et al.,
2011]. The Velodyne HDL-64E, �rst commercialized for the DARPA
Urban Challenge in 2007, optimized its FoV to cover the expected
trajectory of a ground vehicle. To cope with the high speed of a car, the
sensor delivered a high data rate at 1.3 M points per second, bring the
real-time constraint to another level. Those two sensors were the latest
publication catalysts for the �eld of registration in mobile robotics,
�eld often modulated by the development of new hardwares.

1.3 Algorithm Overview

The aim of geometric registration is to be able to represent a shape,
called reading , in the same coordinate frame as another, called
reference . This is equivalent to �nding the transformation of reading
that best aligns it to reference .

A shape S is a set of points including both geometric and non-
geometric information. Geometric information is a�ected by a spatial
transformation; this part of the dimension of a point will be called a
feature. Features are typically coordinates of points, surface normals or
tangent vectors. Non-geometric information is not a�ected by spatial
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transformation; this part of the dimension of a point will be called a
descriptor. Descriptors can be color, temperature, identi�ers, etc.

Most algorithms actually apply some �lters on the shapes in order
to help the registration. There are mainly two uses of such �lters. The
�rst one is to remove some points that do not bring any valuable infor-
mation for the registration. As the complexity of the algorithm is linear
in the number of points, reducing this number can have a signi�cant
impact on the time of registration. The second use of �lters can be to
add information to the point. The typical example is the inference of
local structural properties of the shape, such as normal information or
curvature. This information, which is usually not present in the raw
sensor data, can allow for better registration through a more precise
association of the points, or the computation of the error to minimize.

More formally, let PA be the shape representingreading in a coor-
dinate frame A and QB the shape representingreference in its coordi-
nate frame B. The aim of registration is to estimate the transformation

TB
A by minimizing an error function error(P0; Q):

T̂B
A = arg min

T

�
error

�
T

�
PA

�
; QB

��
(1.1)

whereT (S) is the application of the geometric transformation T to the
shapeS.

One speci�city of geometric registration is that the error function is
computed on pairs of points that have been associated between the two
shapes. The classical association is done by �nding the closest point in
reference of each point in reading . Ideally the association should be
between points that, when the two shapes are aligned, are the closest
in position. This problem is called data association, point matching,
correspondence �ndingdepending on the literature. Association solving
can be done purely on the features but can also be improved by using
the descriptors.

Formally, let M = match( P; Q) = f (p; q) : p 2 P ; q 2 Qg be the
set of matches betweenP and Q. The error function is then of the
form:

error(P; Q) =
X

(p;q)2M

d(p; q):
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In order to make this error function more robust, outliers are some-
times identi�ed and removed from the list of matches. In addition,
weights W = outlier( M ) = f w(p; q) : 8(p; q) 2 Mg can be associated
to the matches so as to increase or decrease their in�uence in the error
function:

error(P; Q) =
X

(p;q)2M

w(p; q) d(p; q):

It is clear that minimizing this error function with an ideal associ-
ation yields the best estimate for TB

A (Equation 1.1). However, unless
the descriptors are discriminative enough (as with visual descriptors),
the association can generally not be perfectly solved. The idea ofICP
is that even with an imperfect association, minimizing the error yields
a better estimates that, in turn, allows for better association. Con-
cretely, the idea is to build a sequence of transformations Tii � 1 that
are successively applied toP. At a given iteration, a set of matches
M i is computed from the given relative position of the points. Then,
based of those matches, a new transformation Ti +1

i is computed by
minimizing the error:

Ti +1
i  arg min

T

�
error

�
T

�
P0i

�
; Q0

��
: (1.2)

Finally, the estimate of the transformation between the two original
shapes is the composition of all intermediary transformations:

T̂B
A =

�

i

Tii � 1

�
� T init (1.3)

where 
i

Tii � 1 = � � � � T32 � T21 is the iterative composition of the

transformations, and Tinit an initial transformation.
The generic procedure is summarized in Algorithm 1 and shown as

a chart in Figure 1.5.

1.4 Overview of the Review

ICP is a framework where multiple variations and algorithms can be
used to resolve geometric registration problems. In the light of this
large corpus of work related toICP and more generally to geometric
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Algorithm 1 Summary of ICP algorithm.

Require: PA . reading
Require: QB . reference
Require: Tinit . initial transformation

P0A  data�lter( PA ) . data �lters
Q0B  data�lter( QB ) . data �lters

Tii � 1  T init

repeat
P0i  Ti

i � 1 ( P0i � 1 ) . move reading
M i  match( P0i ; Q0) . associate points
Wi  outlier( M i ) . �lter outliers

Ti +1
i  arg min

T

�
error

�
T

�
P0i

�
; Q0

��

until convergence

Ensure: T̂B
A =

�

i

Tii � 1

�
� T init

Figure 1.5: Generic scheme proposed for registration algorithms.
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registration, we present a general framework to classify the existing so-
lutions. We believe that after 20 years ofnew registration algorithms, it
is time to evaluate what works best for which robotic systems. There-
fore, our contributions aim at strengthening the current methodology
and bring deeper analysis of current solutions. The timing is appro-
priate for such study given that computational power is now su�cient
to support registration on embedded systems in real-time [Pomerleau
et al., 2011]. Also, new advancements in electronics have improved the
accuracy and speed of sensors. Improvements in battery technology
have enabled longer autonomous operation time. Most importantly, re-
searchers face a plethora of solutions from which a de�nition of usable
solutions can be out of reach. This situation impedes the robotic �eld
to progress on algorithms that rely on registration (e.g., path planning,
autonomous exploration).

This review addresses this problem and is structured in two main
sections:

Section 2 presents a literature review of di�erent solutions with the
aim to expressICP solutions in a common framework and vali-
date our generic scheme proposed in Figure 1.5.

Section 3 describes case studies using �ve di�erent robotic platforms.
The requirements of each application are explained with some in-
sight on how to tune parameters for speci�c applications. Those
applications cover Search & Rescue activities, industrial inspec-
tion, shore monitoring and autonomous driving.

All sections close with a discussion in addition to a short summary.
The main observations of those sections are recapitulated in Section 4
along with �nal remarks.



2
Formalization of the ICP Solution Family

The spread of registration solutions renders tedious the task of �nd-
ing particular problems to address, knowing their limits and applying
them properly. Although surveys exist to support registration in med-
ical imagery [Maintz and Viergever, 1998, Markelj et al., 2012, Fluck
et al., 2011, Pluim et al., 2003] and object reconstructions/recognition
[Salvi et al., 2007, Bowyer et al., 2006], there is no scienti�c publication
covering the evolution of registration applied to robotics.

Di�erent application �elds have di�erent constraints, which in our
case motivate a review specialized for robotics. For example, medi-
cal imaging has the advantages of controlled environments, standard-
ized sensors, and precise sensor motions. On the other side, it has its
own challenges: deformable objects, low descriptor discrepancy, multi-
modal sensing, and high impact of failure on human life. As for object
reconstruction �eld, advantages can be: controlled to semi-controlled
environments, human in the loop for sensor motions, low real-time re-
quirements, and contained volume of objects; with challenges including
loop closure and realistic representation of the model. On the other
side, robotic applications often has an unbounded object of interest:
the scene. This scene can be considered as a rigid body with spuri-

15
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ous uncontrolled dynamic elements. Moreover, the focus is more on the
stability of the 3D reconstruction linked to the localization of a mobile
agent. In exploration, this mobility takes the form of a suite of sensors
moved in an unknown environment by an autonomous system. This
can imply a long sequence of measurements obtained through time in
a range of di�erent environments. Overlaps between measurements can
largely vary and density of the point cloud should not be assumed to
be uniform.

This chapter attempts to build a foundation for a survey specialized
for the robotic �eld. Although this survey mainly focus on 3D regis-
tration applied to robots, having a broader overview of existing data-
association solutions would be relevant at this early stage. We follow the
generic scheme presented in Figure 1.5 to classify current publications.
Di�erent sources for reading and reference point clouds are surveyed
in Section 2.1. Then, transformation functions mainly used in the Eu-
clidean space are covered in Section 2.2. Next, Section 2.3 presents
di�erent preprocessing functions generally used to better approximate
the environment or to enhance the discrepancy between salient points.
Furthermore, Section 2.4 lists di�erent way to associate areading with
a reference and some optimization techniques. Section 2.5 describes
ways to handle outliers generated during the matching process. In Sec-
tion 2.6, we �nally expose diverse way to minimize alignment error.

Given the number of publications covering this �eld, we present
examples of works for every modules instead of the complete list. Nev-
ertheless, the classi�cation used should be generic enough to allow fur-
ther publications to be added in the future. In the summary presented
in Section 2.7, we list the classi�cation terminology used in our regis-
tration overview and highlight some relations between them.

2.1 Reading and Reference Sources

Sources where thereading and the reference come from are highly re-
lated to the application requiring data association. Historically, robotic
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applications mostly utilize 2D laser range�nders1 for indoor [Yoshitaka
et al., 2006] and outdoor [Bosse and Zlot, 2009b, 2008] localization.
With the need for 3D localization, systems based on rotating 2D laser
range�nders recently received an increasing attention for both indoor
[Armesto et al., 2010] and outdoor [Segal et al., 2009] environments.
In computer vision, laser are used to reconstruct historical items in 3D
[Pulli, 1999, Druon et al., 2006] or simply 3D models of small objects
[Liu, 2010, Jost and Hugli, 2002]. Laser range�nders are also used in
face recognition [Pan et al., 2010]. Geomatic applications use lasers for
3D aerial mapping [Kumari et al., 2009] and, more exotically, depth
data can also come from Atomic Force Microscopy (AFM ) [Jost and
Hügli, 2002].

The selection of a depth sensor depends on many di�erent criteria.
For example, when external power is not accessible, power consump-
tion becomes critical. Also, a high maximum range of the sensor may
become essential if an environment is large or di�cult to access. Pay-
load that can be carried by a mobile platform may be a limiting factor
of small systems.FoV can also impact the design of mobile inspection
tools since a too narrowFoV will require extra actuation to o�er a
better coverage of the environment. We propose, in Figure 2.1, a snap-
shot of the market in 2014 by representing 33 sensors with respect to
their maximal range versus their weight. This �gure is intended to help
in de�ning a �rst group of sensors that a platform could carry, while
quickly seeing the possible scanning range accessible to the platform.
On the y-axis of the graph, we can divide the graph into airborne survey
sensors with more than 1 km range, terrestrial survey sensors around
100 m to 1 km, and safety/robotics sensors under 100 m. Below a maxi-
mal range of 10 m, we can observe that a trend of having heavier sensors
with reduced range. This type of sensors o�ers a better accuracy at the
expense of range. Hand-held 3D scanners with sub-millimeter precision
target mainly reverse engineering or culture heritage preservation.

There are also new technologies emerging in this growing �eld. It is
worth noting the TigerCub 3D Flash LiDAR , proposed by Advanced

1Geomatic and aerospace �eld mostly refer to Light Detection And Ranging
(LiDAR ) instead of laser range�nder.
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Figure 2.1: Classi�cation of range sensors based on maximum range (m) and weight
(kg). Manufacturers: Mesa Imaging (SR4000), Asus (Xtion Pro), Microsoft (Kinect),
Ocular Robotics (RE08), Hokuyo (URG-04LX, UTM-30LX), Sick (LMS-151, LMS-
200, NAV350, LD-MRS-400001), Velodyne (HDL-64E, HDL-32E), Faro (Focus
3DX 330), Leica (ScanStation P20, ASL70-HP), Riegl (VZ-4000, VZ-6000), Topcon
(GLS-2000), Trimble (TX8), Optec (ILRIS-LR), Zoller+Froehlich (Imager 5006h,
Imager 5010C), Konica Minolta (RANGE7), Panasonic (D-IMager EKL3104),
Nikon (MMCx80), Artec (Eva), NextEngine (3D Scanner HD), Creaform (EXAs-
can), Renishaw (SLM-500), Fotonic (E-70 48W, C-70), Neptec (Opal 360 XP, Opal
120 XP). Note log scale.
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Scienti�c Concepts, which can produce a depth image with a single
laser beam. The system can read from a distance of up to 70 m with
a 45� lens. Another company, Lytro, proposes a small and low cost
camera producing depth images with a single lens. The system relied
on a concept calledlight �eld to capture simultaneously multiple focus
points and reconstruct images with di�erent depth of �elds out of the
recorded data.

Data association is also used in a variety of applications based
on images acquired by black and white or color cameras [Zitová and
Flusser, 2003]. In medical applications, other specialized images, like
red-free or �uorescein angiogram, are used to help diagnostics over sev-
eral years of observations [Stewart et al., 2003, Tsai et al., 2010]. Two
cameras can be registered together to produce a depth image, which
can then be used to track human body motions [Kim, 2010] or create
map of the environment [Diebel et al., 2004].

Zitová and Flusser [2003] propose a general classi�cation of data
acquisition as follow: di�erent viewpoints (multi-view analysis), dif-
ferent times (multi-temporal analysis), di�erent sensors (multimodal
analysis), and also scene-to-model registration. Robotic and object re-
construction applications are more related to the registration of di�er-
ent viewpoints, while medical imagery tend to do more time analysis to
evaluate, for example, the status of a growing tumor. Calibration prob-
lem falls into the category of di�erent sensor registration and search
for a known object in the environment relate to scene-to-model regis-
tration.

Example In the simplest case with a laser range sensor, shapesP are
point clouds and can be written in a matrix form with each column a
point vector:

P = P =
h

p1 p2 � � � pN

i

where pi is a point and N the number of points in the point cloud.
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2.2 Transformation Functions

Transformation functions allow for the expression of an entity de�ned
in a reference frameA in another reference frameB. A �rst type of
transformation functions without parameter can directly map spaces to
another by following some common convention (e.g., mapping function
from Cartesian to spherical, Cartesian to cylindrical, homogeneous to
Cartesian, etc.). A second type of transformation functions uses a set
of parameters to morph an entity to express it in another frame.

2.2.1 Parametrized Transformation

Basic parametrized transformation functions are: translation, uniform
scaling, rotation, nonuniform scaling, shear and projection. Typically,
a combination of those basic functions is used. A short nomenclature
can be introduced as follow:

Rigid transformation is a combination of translation and rotation.
It is also known as a Euclidean transformation.

Similarity transform is a combination of rigid transformation and
uniform scaling.

A�ne transform is a combination of rigid transformation , nonuni-
form scaling and shear.

Orthogonal projection is a group of transformation based on vector
and planar projection.

The projective transformation is not listed above because it is linked
to a larger �eld, the projective geometric, which has rami�cations be-
yond basic parametrized transformation functions described above.

Most of the registration algorithms used in robotics are based on
rigid transformation parametrization. Nonlinear transformations are
often expressed as a set ofrigid transformation with some limited
spatial in�uence. This type of registration can be referred as�exible
registration and were considered �rst in medical imaging for organ re-
constructions [Maurer et al., 1996, Feldmar and Ayache, 1996]. It is
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interesting to note that those �exible registrations resemble the graph
relaxation used for error back propagation inSLAM algorithm [Grisetti
et al., 2007].

Example In case of a rigid transformation, if points are represented
using homogeneous coordinates, a transformationT can be represented
as a matrix T such that:

T (P) = T P =
h

T p1 T p2 � � � T pN

i
:

T is then of the form:

T =

"
R t
0> 1

#

where R is a rotation matrix and t a translation vector.
The generic formula computing the �nal transform Equation 1.3

becomes a simple matrix product:

T̂B
A =

�

i

Tii � 1

�
� T init

, T̂B
A =

 
Y

i

Tii � 1

!

Tinit :

2.2.2 Initial Transformation Sources

The initial transformation is a sensitive part of registration al-
gorithms when the data association is realized mainly based on geo-
metric features. Large error in the initial guess may trigger multiple
local minima generating the wrong �nal transformation. Many strate-
gies are used to overcome this limitation. Here, we de�ned three types
of initial transformation sources:

External � The transformation parameters come from an external
source. While some papers present general algorithms assuming
that a reasonable transformation will be given [Armesto et al.,
2010, Druon et al., 2006, Schutz et al., 1998, Jost and Hügli,
2002], others include humans in the loop [Godin et al., 1994, Pulli,
1999]. More integrated solutions rely on external sensor (wheel
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encoders, Inertial Measurement Unit (IMU ), Global Positioning
System (GPS), etc.) or a fusion of them as �rst guess [Diebel
et al., 2004, Yoshitaka et al., 2006]. Multiple initial guesses from
the same external motion model and based on particle �lters are
also used in robotics [Grisetti et al., 2005] and in human body
motion tracking [Kim, 2010].

Parameter cascade � This type of system rely on the same registra-
tions algorithm, while varying parameters through the process
to achieve, for example, faster or more accurate results. After
some exit criteria, the registration parameters are changed and
the output transformation is fed to the subsequent system. One
example of cascade system is the coarse-to-�ne strategy, where
the reading or the reference are downsampled using di�erent
levels of compression. The same registration technique is used to
minimize the error sequentially from the most compressed layer to
the least compressed [Zhang, 1994, Jost and Hugli, 2002, Magnus-
son et al., 2009, Bosse and Zlot, 2009b]. An alternative approach
is the �ne-to-coarse strategy, where the registration starts from a
small bounding box. The expansion of the bounding box follows
the uncertainty of the minimization until the bounding box cov-
ers the overlapping section of thereading with the reference
[Stewart et al., 2003, Tsai et al., 2010].

Registration cascade � The initial transformation comes from a
di�erent registration algorithm. The �rst registration is usu-
ally heavily based on descriptor matching because it is inde-
pendent from the initial transformation (always identity).
Then, other types of registration, either using descriptors or fea-
tures, are used to minimize the alignment error. The motivation
for the selection of those registration techniques is to reduce local
minima possibilities with coarse alignment methods and continue
with more precise but computationally more expensive methods.
From the papers reviewed, the system can have two [Bosse and
Zlot, 2008, Censi, 2008, Godin et al., 1994, Stewart et al., 2003,
Tsai et al., 2010] or three layers [Pan et al., 2010, Bosse and Zlot,
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2009b], but nothing seems to limit the number of layers imple-
mented on a given system.

Example In a robotic system, it is typical to have an estimation of
the state of the robot given odometry of inertial sensors, for example
using variants of Kalman �ltering [Hitz et al., 2014]. The result of this
estimation can then be taken as the initial transformation. But the
result of the registration can also be integrated in a �ltering approach,
for instance as an observation of an extended Kalman �lter [Kubelka
et al., 2014].

2.3 Data Filters

The di�erent types of data filters try to augment the distinctive-
ness of the inputs usually by reducing the number of features and by
augmenting the dimension of either the features or the descriptors.
For example, a black and white image has a uniform distribution of
features (a grid) and one dimension descriptor (the intensity) associ-
ated to each feature. After somedata filters are applied, only few
points in the image will be kept as features2 and the descriptors will
be increased with information from neighboring pixels, for example to
64 dimensions when using Scale Invariant Feature Transform (SIFT )
descriptors [Lowe, 2004]. In the case of a point cloud, it might be nec-
essary to extract surface normal vectors (feature enhancement), while
uniformizing the density of points (features reduction). This can also
be viewed aslossy data compression.

2.3.1 Feature Enhancement

When only geometric information is available, there are still ways to
extract some level of distinctness by using di�erential geometry. We
shortly introduce key concepts related to the use of geometric informa-
tion. In this work, the notion of a shape S is used as a representation
of a generic object in the Euclidean space with a certain set of prop-
erties. For example, those properties can be photometric, thermic, and

2 In computer vision, remaining features are often called key points.
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semantic. Simple shapes, such as points, lines, quadrics, can be easily
parametrized but most of the shapes encountered in the a real environ-
ment are too complex to be completely synthesized with parameters.
To allow a certain representation of the world, a complex shapeS can
be approximated by a set of other shapes only if they can be expressed
in the same frame of referenceF.

Sensors measuring depth produce such approximations by discretiz-
ing the environment in a set of points. From smooth areas de�ned by
those points, we present �ve types of primitives that can be extracted
based on Di�erential Geometry: point, line, plane, curve and quadric.
The �rst derivative group rely on normal vectors n (i.e. orthogonal to
a line or plane) and tangent vectorst (i.e. parallel to a line or plane)
to express the area. Since they are de�ned with respect to a pointp,
normal and tangent vectors can be represented with a minimal set of
2 angles in polar coordinates. Normal and tangent vectors can be seen
as a dual representation. The choice of using either one or the other is
de�ned by the minimum information required to express a primitive.
In the case of a line in 3D, the normal vectors needs to de�ne a plane
perpendicular to that line. Therefore, only using the tangent vector is
more convenient. The same reasoning holds for using a normal vector
for the surface. The notion of direction also needs to be de�ned de-
pending of the primitive. It is reasonable to use unsigned direction in
the case of tangents and signed direction in the case of normals where
positive sign de�ned the outer surface of the shape. The motivation
behind this choice is that we want to keep track of which side of a
surface we are measuring while moving. In the 2D case, it is equivalent
to represent a line by a tangent or a normal in term of the number
of parameters. However, it is usually assumed that the perceived 2D
plane cuts perpendicular surfaces, so it makes more sense to use nor-
mal vector to also track the outer side of the line. Figure 2.2 illustrates
this choice of representation for the 2D case. Viewpointsvn (i.e., where
the sensor was when a pointp was measured on a surfaceS) are used
to determine the direction of the normal vectors n , whereas no extra
information is needed for a tangent vectort laying on a line that can
be observed from both sides.
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Figure 2.2: Di�erence between using normal vectors and tangent vectors to rep-
resent a 2D shapeS. Left : The 2D line is known to be measured from a volume,
which can only view from one side as illustrated with the black arrows v1 and v2 .
The direction of the surface make sense to be encoded in its representation leading
to the choice of normal vectors n (dashed blue arrow). Right : The same line can be
observe from both direction leading to the selection of an undirected tangent vector
t (dashed blue line).

As for the second derivative group, a curve is parametrized by a
curvature � (a scalar) representing an osculating circle parallel to the
tangent of a line. In the case of a quadric (i.e. a curved surface), it is
parametrized by principal direction vectors t min , t max and the princi-
pal curvature scalars � min ; � max . Those principal directions rely on a
point p and on the normal vector n , so they could be expressed only
with one angle. In other words, the principal directions are tangent
vectors to the surface complementing the normal vector. In the case
of curves, the curvature is always positive as opposed to quadrics for
which a positive � means that the surface bend in the same direction
of the normal vector and vice-versa. For simplicity in further compu-
tation, most of the publications use normalized 3D vectors to express
normals and tangents leading to a larger set of parameters, as shown
in Table 2.1.

Those parameters (point, tangent, normal, principal direction, cur-
vature, and principal curvatures) bring us to a group of parametrized
primitives (point, line, plane, curve and quadric), which can be helpful
to approximate other complex 3D shapes. Those geometric primitives
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Table 2.1: Comparison of di�erent parametrizations used to represent geometric
primitives.

Minimum parametrization

Name Parameters Constraints Reference

Point p = f x; y; zg p 2 < 3 F
Tangent t = f �; � g � 2 [� �; � ) F

� 2 [� �
2 ; �

2 ]
Normal n = f �; � g � 2 [� �; � ) F

� 2 [� �
2 ; �

2 ]
Principal Directions   2 [� �; � ) f n ; Fg
Curvature � � 2 < + F
Principal Curvatures � = f � min ; � max g � 2 < 2 f n ; Fg

Typical parametrization

Point p = f x; y; zg p 2 < 3 F
Tangent t = f tx ; t y ; t z g jt j = 1 F
Normal n = f nx ; ny ; nz g jn j = 1 F
Principal Directions  = f tmin ; tmax g n ? tmin ? tmax F
Curvature � � 2 < + F
Principal Curvatures � = f � min ; � max g � 2 < 2 f n ; Fg

are listed in Table 2.2 with their characteristics. A graphical represen-
tation of those primitive is also showed in Figure 2.3 in the case of a
shape considered as a 1D manifold and in Figure 2.4 in the case of a
2D manifold. In their current con�guration, lines, planes, curves and
quadrics are unbounded, which means that they can reach in�nity on
their unconstrained direction. One can constrain a primitive by using
a primitive with a lower dimensionality [Besl, 1988]. Thus, a plane can
be bounded by a set of lines, a line can be bounded by a set of points,
etc.

At a higher level of organization, a group of geometric primitives can
be processed without any proximity assumption (unstructured) or with
some smoothness constrains (structured). Examples of representation
for a 1D manifold is a spline, while for a 2D manifold a mesh or Non-
uniform rational B-spline ( NURBS ) can be used. When it comes to a
noisy group of points, tensor voting [Medioni et al., 2000] can be used
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Table 2.2: Characteristics of primitives used for shape approximations. The number
in parenthesis of the column Nb Param. corresponds to the minimum number of
parameters that can be used to express the same primitive.

Primitives Parameters Derivative Manifold Bound Nb Param.

Point p 0 0 - 3(3)
Line L = f p; t g 1 1 point 6(5)
Plane � = f p; n g 1 2 line, curve 6(5)
Curve C = f p; t ; n ; � g 2 1 point 10(7)
Quadric Q = f p; n ;  ; � g 2 2 line, curve 14(8)

Figure 2.3: Representations (in dark blue) of a complex shape S (in light gray)
approximated as a 1D manifold. Left : no derivative (point). Middle: �rst derivative
(line). Right : second derivative (curve).

Figure 2.4: Representations (in dark blue) of a complex shape S (in light gray)
approximated as a 2D manifold. Left : no derivative (point). Middle: �rst derivative
(plane). Right : second derivative (quadric).
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to interpolate shape on a dense 3D grid. The voting results can then be
later process to extract 1D and 2D manifolds out of the dense volume.

Higher derivatives could also approximate a shape at one point
with more precision. Unfortunately, high derivatives are very sensitive
to noise when applied outside of a theoretical context. In this review,
we limit ourselves to the second derivative given that a non-negligible
noise level is expected from the sensor measurements and from the
motion of the sensor. As shown in [Pomerleau et al., 2012a], even the
�rst derivative needs a large supporting surface to overcome the sensor
noise of typical laser range�nders. For example, extracting the surface
normal from a �at area of 10-cm radius already leads to an expected
error of 1.6� (0.03 rad) for the range�nder Sick LMS-151. This is one of
the characteristics of robotic applications when it comes to selecting a
surface parametrization. The ratio of noise to signal is often higher in
robotics than in object modeling, thus rendering many complex mod-
eling algorithms ine�ective. This could explain why most registration
algorithms applied to robotics tend to select a shape representation
very close to the raw measurements (i.e., points) instead of relying on
faulty surface reconstruction.

Sensitivity to transformation functions

The shape representations are a�ected di�erently by transformation
functions. At a more generic level, transformation functions a�ect geo-
metric quantities. Examples of quantities are: coordinate, orientation,
length, angle, and length ratio. Those geometric quantities with ex-
amples of associated primitives are listed in Table 2.3. As examples of
lengths, we used� , which is the inverse of a radius, and the eigenvalues
� , which de�ne a scale over a vector. Having geometric parameters in-
variant to as many transformations as possible helps the matching func-
tion during registration because the association will be less sensitive to
large initial alignment error. Table 2.4 relates the di�erent geometric
quantities to the basic transformation functions a�ecting them.

Most of the time, point cloud features come without external de-
scriptors (i.e. as opposed to an image containing photometric informa-
tion), so the proximity of other features is used to extend the shape
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Table 2.3: Examples of geometric quantities susceptible to be a�ected by a trans-
formation function.

Quantity Single Entity Relationship in a Set

Coordinate p -
Orientation n ; t min ; t max -
Length �; � jj pa � pbjj
Angle - acosn a � n b

Length Ratio - � a =� b

Table 2.4: In�uence of a transformation function on quantities de�ning a geometric
primitive. Cells marked with a �X� means that the transformation a�ect the values
of the entity.

Coordinate Length Orientation Angle Length
Function Ratio

Translation X - - - -
Uniforme Scaling X X - - -
Rotation X - X - -
Nonuniform Scaling X X X X -
Shear X X X X X
Orthogonal Projection X X X X X
Perspective Projection X X X X X

approximation to support further derivatives. Surface orientations (or
line orientations in 2D) are mainly used in literature [Pulli, 1999, Censi,
2008, Bosse and Zlot, 2009b, Jost and Hugli, 2002, Schutz et al., 1998,
Jost and Hügli, 2002, Segal et al., 2009]. Line orientations are also
used in image registration where the environment presents very few
salient points when considering only intensity variation [Stewart et al.,
2003]. Work based on surface normal vector distributions of surround-
ing points are also used by Magnusson et al. [2009] and Fair�eld and
Wettergreen [2009].

2.3.2 Descriptor Enhancement

A comparison of descriptors extracted from 2D point clouds can be
found in [Bosse and Zlot, 2009a]. It is proposed that moment grid is
better than 2D shape context, Gestalt, Hough transform peaks, ori-
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entation and projection histograms, and normal orientation histogram
grid. Extension to the 2D shape context can be found in [Tsai et al.,
2010]. Another study for 3D point clouds also concludes that moment
grid is better than 3D shape context, spin image, shell image and local
covariance [Bosse and Zlot, 2009b].

Usually, ICP is done using only geometric features, but some works
also present results using the intensity remission from an Hokuyo
[Yoshitaka et al., 2006] and from specialized system using three dif-
ferent wavelengths [Godin et al., 1994]. Laser range �nders are also
combined with cameras to add color information to measured points
[Schutz et al., 1998, Druon et al., 2006]. When other sensors are used
to provide descriptors, calibration is required. Interestingly, calibra-
tion also relies on registration solutions. Terrestrial survey scanners
often have a calibrated camera associating color to 3D points, similar
to RGB-D cameras. With the larger availability of photometric infor-
mation, descriptors developed by the computer vision community can
be used. In [Tuytelaars and Mikolajczyk, 2008], characteristics of de-
scriptive features are listed asrotation , scale, and a�ne invariance .
Evaluation criteria are listed as repeatability, distinctiveness, locality,
quantity, accuracy, and e�ciency . In image registration, the list of most
common tools for extracting descriptors are: Harris, Hessian, SUSAN,
Harris-Laplace, Hessian-Laplace, DoG (SIFT ), SURF, Harris-A�ne,
Hessian-A�ne, Salient Regions, Edge-based, MSER, Intensity-based
and Superpixel [Tuytelaars and Mikolajczyk, 2008]. It is interesting to
note that descriptors based on photometric information rely on pas-
sive illumination to ensure invariance. This assumption of illumination
sources remaining static, which is mostly true for indoor lights, needs to
be treated carefully for outdoor illumination, where the sun moves and
clouds can shade light. Laser's intensity measurements are even more
sensitive to transformation functions because the illumination source
follows the sensor position.

2.3.3 Feature Reduction

In applications using point clouds, features are sparse but not uniformly
distributed. Nevertheless, the fact that sensors can provide a huge num-
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ber of readings on a short period of time creates a bottleneck in term
of computation power for the association as explained later. Several
techniques are used to reduce the number of features: random sampling
[Jost and Hugli, 2002, Pan et al., 2010], uniform grid [Magnusson et al.,
2009, Bosse and Zlot, 2009b], grid projection [Pan et al., 2010], octree
[Fair�eld and Wettergreen, 2009, Wurm et al., 2010], and bounding box
[Stewart et al., 2003, Tsai et al., 2010]. All these techniques reduce the
number of features without considering their distinctiveness.

Having that criteria in mind, Bosse and Zlot [2009a] present re-
sults showing that keeping a representative point per curvature cluster
is better than segment centroids and mean-shift for 2D point clouds.
Also, Gelfand et al. [2003] propose a sampling method selecting points
leading to a better geometric stability of the minimization. Relying on
non-geometric information, Druon et al. [2006] use seven clusters based
on hue values and select only one cluster carrying the most information
for registration. The same type of solution was previously presented be-
fore by Godin et al. [1994], who clustered point based on laser intensity
values.

It is also possible to �nd more application-speci�c methods in the
literature. For example, the tip of the nose, inner corners of the eyes,
and nose corners are directly extracted for face detection [Pan et al.,
2010]. In medical imagery, blood vessel crossings are also used to reduce
features. Moreover, the main orientation of the blood vessel crossings
and its number of branching is used to construct descriptors [Stew-
art et al., 2003]. The complete point cloud can also be reduced to its
�rst and second statistical moments [Liu, 2010] or with orientation and
projection histograms [Bosse and Zlot, 2008].

2.3.4 Sensor Noise

Sensor noise is also taken into account at this stage of the process.
Models representing noises are intended to evaluate the uncertainty of
a measured point based on the limitations of the sensor used. They may
try to identify if a point is a measurement artifact or how accurately the
position is measured. To cope with stereo reconstruction noise, Diebel
et al. [2004] remove points with distance and surface angle to neighbors
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larger than two times the median of all distances and surface angles
within the point cloud. When using laser's remission intensity, which is
not invariant to distance and angle, Yoshitaka et al. [2006] propose to
keep points only close to the laser to reduce the impact of distance on
the intensity value. For color images, points with low saturation value
tend to be gray and are removed before applying clustering technique
based on hue [Druon et al., 2006]. Points on boundaries of the sen-
sor reading can also be removed to avoid misleading interpretation of
neighbor points [Armesto et al., 2010]. When an error model is avail-
able, it is also possible to add noise information based on measurement
distance, incidence angle, re�ectivity, etc. Examples of noise models on
distance reading are investigated for Sick LMS-151, Hokuyo URG and
UTM in [Pomerleau et al., 2012a].

Example 1 The simplest of the �lters is a random subsampling in
order to decimate the point cloud:

P0 = data�lter( P) = f p 2 P : � (p) < � g

where � 2 [0; 1) is a uniform-distributed random value and � 2 [0; 1] a
�xed threshold, corresponding to the fraction of points to keep.

Example 2 A second example is the computation of normal vectors
in a point cloud:

P0 = data�lter( P) =

("
p
n

#

: 8p 2 P ; n = normal(p)

)

where normal(p) is the normal vector inferred around point p.

2.4 Association Solver

As explained in Section 1.3, points fromreading and reference have
to be associated into pairs that will be the basis of the computation
of the error to be minimized. The association solver (called alsomatch
function ) then yields a set of pairs of points:

M = match( P; Q) = f (p; q) : p 2 P ; q 2 Qg
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2.4.1 Types of association

The association of thereading with the reference can be divided into
three types: 1) feature matching, 2) descriptor matching and 3) mixed.
Feature matching is mainly done using Euclidean distance between a
point in the reference and a point in the reading [Pulli, 1999, Druon
et al., 2006, Censi, 2008, Segal et al., 2009, Pan et al., 2010, Kim, 2010],
a point and a plane [Champleboux et al., 1992] and quadrics [Feldmar
and Ayache, 1994]. Custom distances based on point positions and an-
gles is also used [Armesto et al., 2010]. Descriptors are matched based
on their Euclidean distances [Lowe, 2004, Bosse and Zlot, 2009b]. The
concept of measuring distance between two entities can take multiple
forms (ex., correlation matching, earth mover distance,L 1, L inf , etc.)
In the current literature reviewed, other distances used in matching
functions were Mahalanobis [Stewart et al., 2003] and� 2-test statistic
[Tsai et al., 2010]. Using only features or descriptors in the association
have their advantages and inconveniences. In laser range�nder based
matching, feature positions are quite accurate compared to descrip-
tor uniqueness but the initial transformation needs to be within
a maximum range to avoid local minima. When using descriptors, the
matching becomes independent of the initial position, but may fail for
repetitive elements (e.g., checkerboard, building facades with repetitive
windows).

A logical extension is to mix both types of matching. One way is to
express descriptors in the feature space using a conversion factor. This
was used with surface orientations [Jost and Hügli, 2002, Bosse and
Zlot, 2009b], surface orientations and color [Schutz et al., 1998], color
[Johnson and Kang, 1997] and laser intensity [Godin et al., 1994, Yoshi-
taka et al., 2006]. The other way around is also possible (i.e., expressing
feature positions in descriptor space). In [Mortensen et al., 2005], a de-
scriptor, called Global Context, is created using surrounding feature
positions. The distance is computed as the sum of the Euclidean dis-
tance of aSIFT descriptor with the � 2 distance of the Global Context
descriptor. A ratio between feature and descriptor distances is required
to join the di�erent spaces together, but it is often implicitly de�ned
as unity [Tsai et al., 2010].



34 Formalization of the ICP Solution Family

Other parameters to consider during the matching stage are the
match direction and the number of matches used. The match direction
refers to either match from the reference to the reading or from
the reading to the reference . Most of the time, one of those two
possibilities is used without further consideration but some techniques
use both directions [Pulli, 1999, Godin et al., 1994]. As for the number
of matches, most of the applications consider only the closest point but
some others process a certain percentage of the lowest distance [Stewart
et al., 2003] or the complete matching matrix. The complete matching
matrix is often used in loop closing detection [Bosse and Zlot, 2009a]
but it can be used for local matching, as with the SoftAssign method
[Gold et al., 1998, Liu, 2010].

2.4.2 Implementation optimization

The association solver deals with the Nearest Neighbor (NN ) problem,
which typically has a complexity of O(nm) where n and m are respec-
tively the number of elements in the reading and in the reference .
This stage is generally the most time-consuming and a lot of papers
present variations of NN search to reduce its complexity. A dynamic
space partitioning can by applied using kD-trees to reduce the search
complexity to O(n logm) after a O(m logm) building phase. Approx-
imate kD-trees decreases the computational time by employing a dis-
tance threshold to limit the search at the risk of returning sub-optimal
neighbors [Arya and Mount, 1993]. This increases the overall speed of
the search, while the redundancy between points prevents large accu-
racy degradation [Nüchter et al., 2005]. In an iterative context, Nüchter
et al. [2007] propose to use cached kD-tree for faster search.NN from
the previous iteration are feed to the current search as starting points
to accelerate the computation. Additionally, Zlot and Bosse [2009] com-
pare kD-tree, locality-sensitive hashing and spill-trees and concluded
that the kD-tree is better in terms of accuracy, query time, build time,
and memory usage. They also observed that approximations can reduce
the query time by two orders of magnitude while maintaining su�cient
accuracy.
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KD-trees provide very little acceleration for high dimension vectors
like the ones used for image based descriptors. Static space partition-
ing, usually based on grid or hashing, o�er less adaptation but can
compensate with their computation speed. Approximate search based
on Best-Bin-First can be used instead for optimization [Lowe, 2004].
Other techniques use a dual proximity hypothesis (e.g., laser points or-
dered by a temporal sequence [Censi, 2008], n-search [Jost and Hugli,
2002]), projection on one grid [Pan et al., 2010] or on multiple grid
(called multi Z-bu�er) [Benjemaa and Schmitt, 1997] to also reduce
the search time. Although very useful, kD-tree also limits the distance
metric used to be Euclidean. This forces some approximations when
using Euclidean distances between components of unit surface normal
vectors instead of the angle between them [Feldmar and Ayache, 1996,
Eggert et al., 1998, Gelfand et al., 2003]. Figure 2.5 illustrates the er-
ror between the angle distance of surface normal vectors against the
approximation using Euclidean distance. One can notice that, as long
as the distance is low, the approximation can hold but, with large error
the approximation is much less accurate. Moreover, the construction of
the tree requires some time, and often only thereference is used as
seeding points. Limiting the number of kD-tree constructions by the
use of keyframes or metascans can help to decrease the registration
time for a sequence of scans, while limiting the drift of the �nal path
[Wulf et al., 2008].

Cascade systems, presented in Section 2.2.2, is also another research
direction to accelerate the search. Jost and Hugli [2003] computeICP
several times while varying the resolution from coarse to �ne. At a
coarse resolution (i.e., with a limited number of points) ICP converges
faster but with less accuracy than at a �ne resolution. However, by
initializing a �ner-resolution ICP with the result of the coarser one,
the convergence of the �ne-resolutionICP is much faster than with a
single-shot ICP , as the initial alignment is mostly correct. These au-
thors also used a pre-computed list ofNN to approximate the matching
step. With both of these techniques, they showed a signi�cant increase
of the speed ofICP while maintaining adequate robustness. For the
same absolute performance as standardICP , Li et al. [2010] use fewer
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Figure 2.5: Impact of using Euclidean distance (solid blue line) instead of angle
(dashed yellow line) between surface normal vectors. The shaded gray area represents
the error.

iterations at high resolution, which decreases the total time by a factor
of 1.5 in 2D and 2.5 in 3D. The multi-resolution approach can also
increase the search speed for the closest point by using a hierarchical-
model point selection with a stereo camera [Kim, 2010]. By subsampling
the space and with the help of the sensor structure, this solution can
achieve a speed gain of factor 3 with respect to standardICP when
using a kD-tree search. In this case, the use of the structure of the
depth image increases the matching speed. In the same direction, the
speci�city of a 2D laser scanner acquisition structure can help optimize
the search [Censi, 2008]. However, these optimizations are oriented to-
ward speci�c sensors, which makes them hard to generalize, and are
not suitable for a multi-sensor setup.

Example When only one match is kept from the reading P to the
reference Q based on the Euclidean distance, the association is de-
�ned as:

M = match( P; Q) =

(

(pn ; qm ) : 8pn 2 P ; qm = arg min
j

�
d(pn ; qj )

�
)

with d(p; q) = kp � qk2.
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2.5 Outlier Filters

While data filters are used to reduce the impact of sensor noise,
outlier filters are used to reduce the impact of erroneous matches
mainly caused by partial observations, dynamic elements and poor envi-
ronment information extraction. Match quality can be evaluated based
on feature pairs, descriptor pairs or even both together, independent
of the match distance used (i.e., based on features or on descriptors).

2.5.1 Rejection

When using descriptors, it is possible to apply anoutlier filter .
Regarding SIFT descriptors, the original method proposed to reject
all matches where the distance ratio with the second best match is
higher than 80 % [Lowe, 2004]. In [Stewart et al., 2003], all matches
under 95 % con�dence based on� 2 uncertainty bound are rejected.

In the case where outliers are �ltered based on features, rejection
techniques mostly use a threshold based on Euclidean distance, the
main di�erence is how thresholds are chosen. A naïve approach is to use
a maximal distance between points [Segal et al., 2009]. This technique
is sometimes hidden by using a �xed radius directly in the matching
function. Likewise, surface orientation di�erences between paired points
can be limited to a �xed value [Pulli, 1999, Zhang, 1994] or an adaptive
one based on the median [Diebel et al., 2004]. Adaptive methods can
be based on the mean distance between points and their Standard
Deviation (std ) [Druon et al., 2006, Zhang, 1994],std only [Masuda
et al., 1996], the quartile position (a.k.a trimmed) [Chetverikov et al.,
2002, Censi, 2008, Armesto et al., 2010] and the median [Diebel et al.,
2004] of the distances of all paired points. In an iterative system for data
association, Pulli [1999] proposed to manually reduce the threshold at
each iteration based on the convergence of the system. An automatic
extension to this approach is presented in [Pomerleau et al., 2010]. A
di�erent type of outlier filter evaluates whether there are multiple
matches from thereading to the reference and keeps only the match
with the smallest distance [Zinsser et al., 2003].
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2.5.2 Weighting

All the methods above utilize hard assignment to identify outliers. This
means that, beyond a certain threshold, the feature pair (i.e., tuple)
is discarded prior to being considered by the minimization procedure.
Assignments can also be madesoft by using a weighting function pro-
moting inliers during the minimization. Those weighting functions can
consist of the ratio of mean distance over each paired distances [Pan
et al., 2010] or function such as Gaussian [Godin et al., 1994] or Cauchy
(a.k.a. Lorentzian) [Bosse and Zlot, 2009b]. Mix betweensoft and hard
assignment are also used like one minus the ratio of the tuple distance
divided by a maximum distance (with a saturation to zero when the
tuple distance is over the maximum distance) [Diebel et al., 2004] or
directly using the bisquare (a.k.a Tukey or Beaton-Tukey) function
[Masuda, 2001, Stewart et al., 2003]. All those techniques use only the
feature information to weight outliers. One example of mixing features
and descriptors proximity can be founded in the work of Godin et al.
[1994], where the total weight is computed by multiplying the feature
distance by a re�ectance similarity function.

2.5.3 Robust statistics

Dealing with outliers during a minimization process falls into the �eld
of robust statistics. A suite of tools is proposed to robustly estimate
the position (i.e., robust variant of the mean) and the scale (i.e., ro-
bust variant of the std ). For the scale estimation, some possibilities
were found: Huber estimate, Median Absolute Deviation (MAD ), in-
terquartile range, Tukey estimator, trimmed estimator and Winsorised
estimator.

The utilization of weights for a minimization process is based on
a class of functions called M-estimators. Here is a list of M-estimators
found in the robust regression literature: Least-squares (a.k.aL 2) (not
robust but is commonly used), Least-absolute (a.k.aL 1), L 1 � L 2,
Least-power (a.k.a L p), Fair, Huber, Geman-McClure, Logistic, Me-
dian, Talworth, Welsch, Cauchy (a.k.a Lorentzian). A category of M-
estimator, called redescending M-estimators, have a saturation point
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to reject gross outliers. This category is equivalent to a mix of soft
and hard weights. Those functions are called: Hampel, bisquare and
Andrews. Note that only the Cauchy [Bosse and Zlot, 2009b] and the
bisquare [Masuda, 2001, Stewart et al., 2003] functions were found in
data-association papers.

Example Outlier �lters can be de�ned as assigning a weight to each
pair: W = outlier( M ) = f w(p; q) : 8(p; q) 2 Mg . Outlier rejection
based on a �xed threshold � on the distance between the points can
then be written:

w(p; q) =

(
0 if d(p � q) > � ,
1 otherwise.

In the case of a hard outlier �lter such as this one, one can equiva-
lently de�ne a new set of matchesM 0 with only the pairs with a weight
of 1.

2.6 Error Minimization

The aim of error minimization is to solve Equation 1.2:

Ti +1
i  arg min

T

�
error

�
T

�
P0i

�
; Q0

��
:

This step relies on the de�nition of an error metric calculated from
the association of features and needs to be resolved using an error
model. The error model can be sometimes the same as the distance
metric used at the matching stage but the main di�erence is that error
is only de�ned in the feature space and not in the descriptor space.
This is because only features are in�uenced by transformation parame-
ters, as listed in Table 2.4. So, if the association is based on descriptor
distances, another error must be de�ned to correct the misalignment.
Parameters selected for the minimization should follow an expected de-
formation model. Zitová and Flusser [2003] present two generic types to
classify error metrics: global (rigid, a�ne transform, perspective projec-
tion model) and local (radial basis functions, elastic registration, �uid
registration, di�usion-based, level sets, optical-�ow-based registration).
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2.6.1 Shape Morphing

Most of the data association algorithms based on point clouds use
global-rigid error. This error metric is parametrized by 3 translations
and 3 rotations parameters for a total of 6 Degrees of Freedom (DoF ),
when dealing with 3D point clouds (3 DoF in 2 dimensions). Point-
to-point error uses the most basic primitive and was �rst introduced
in a registration context by Besl and McKay [1992] and used subse-
quently in multiple solutions [Godin et al., 1994, Pulli, 1999, Druon
et al., 2006, Pan et al., 2010, Kim, 2010]. During the matching step, it
might happen that di�erent kind of geometric primitives (e.g., point,
line, curve, plane, quadric) are matched together. Multiple error met-
rics were developed for those situations and we want to bring them
under the same concept that we introduce asShape Morphing. Essen-
tially, when a primitive with higher dimensionality is matched with a
lower one, it is morphed via projective geometry to adapt to its coun-
terpart. Figure 2.6 presents the list of possible combination for a 2D
space and illustrates the concept for di�erent errors. Using the sub�g-
ure labeled point-to-line as an example, a point in solid red matches a
line in dashed blue. To generate an alignment error, a virtual point (i.e.,
the empty blue circle) is generated by projection. The same principle
applies to point-to-curve and line-to-curve. Although not depicted in
Figure 2.6, their 3D counterparts (i.e., points, planes, quadrics) follow
the same projection principle.

The most represented example is the point-to-plane introduced by
Chen and Medioni [1992] and then reused in multiple works [Chample-
boux et al., 1992, Gagnon et al., 1994, Bergevin et al., 1996, Gelfand
et al., 2003]. Its 2D version, point-to-line, is also used in robotics [Bosse
and Zlot, 2009a] and a closed-form solution was presented by Censi
[2008]. Using higher complexity to represent 3D primitives, Segal et al.
[2009] propose the use of plane-to-plane, while early work of Feldmar
and Ayache [1996] uses quadric-to-quadric.

It is also possible to �nd extensions to those error metrics: point-
to-point with extrapolation and damping [Zinsser et al., 2003], a mix of
point-to-line with odometry error [Diebel et al., 2004], a mix of point-to-
point, point-to-line or point-to-plane with angle [Armesto et al., 2010]
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Figure 2.6: Possible morphing in 2D. The real underlaying shape is represented in
light gray with its approximation in dark blue. The misaligned surface is represented
by a point in light red. The resulting errors are represented with black arrows.

and mix of point-to-point with Boltzmann-Gibbs-Shannon entropy and
Burg entropies [Liu, 2010]. Entropy based methods used in medical
registration were reviewed by Pluim et al. [2003] as being: Shannon,
Rodriguez and Loew, Jumarie, Rényi entropies. All those techniques
rely on mean squared error.

Recently, Silva et al. [2005] introduce a novel error called Surface In-
terpenetration Measure (SIM ), which presents more robustness against
di�erent noise types. This measure was then applied later by Pan et al.
[2010] for face recognition. Image registrations mainly use a�ne trans-
formations including skew and scale deformations like in [Lowe, 2004].
A more complex hierarchy of error models, presented by Stewart et al.
[2003], increases the transformation parameter complexity from simi-
larity to a�ne, reduced quadratic and �nally quadratic. Those error
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models allow them to achieve higher precision on the �nal alignment,
while avoiding heavy computation at the beginning of the minimiza-
tion.

2.6.2 Optimization

Once the error model is de�ned, the problem is to select a strategy or
scheme to �nd the transformation with the minimum error. Di�erent
optimization strategy are reviewed and discussed by Rusinkiewicz and
Levoy [2001]. The authors mention the possible use of Singular Value
Decomposition (SVD) [Arun et al., 1987], quaternions [Horn, 1987], or-
thonormal matrices [Horn et al., 1988], and dual quaternions [Walker
et al., 1991] for the point-to-point objective function. It is noted that
the results provided by those solutions are quite similar when the as-
sociation between points is unknown [Eggert et al., 1997]. This is why
those optimization solutions are only brie�y listed in this review. In
the case of the point-to-plane error, linearization based on small an-
gle approximation is mainly used following its original implementation
[Chen and Medioni, 1991]. Other objective functions for point cloud
alignment rely on histogram correlation [Bosse and Zlot, 2008], tensor
voting [Reyes et al., 2007], or Hough transform [Lowe, 2004, Censi,
2006].

Example 1 In the case of the point-to-point error, the error is the
Euclidean distance:

error(P; Q) =
X

(p;q)2M 0

kp � qk2

=
KX

k=1

kpk � qkk2

where K is the number of points in M 0.
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The error minimization is then:

Ti +1
i = arg min

T

 KX

k=1

kT pk � qkk2

!

= arg min
T

 KX

k=1

kRp k + t � qkk2

!

:

In that case, this minimization problem can be solved analytically
by computing the centroids (average) of the point clouds, and the sin-
gular value decomposition of the covariance [Arun et al., 1987]. More
precisely, let � p = 1

K
P K

k=1 pk and � q = 1
K

P K
k=1 qk be the centroids of

both point clouds. The covariance is then:

H =
KX

k=1

(pk � � p)(qk � � q)> :

Let U � V > be the singular value decomposition ofH . It can be shown
that the optimal transformation can be computed with:

(
R̂ = V U >

t̂ = � q � R̂� p:

Example 2 Another error often used is point-to-plane error, which is
only the distance between a point and the plane de�ned by another
point and the normal associated to it:

error(P; Q) =
KX

k=1

k(pk � qk ) � n kk2

where n k is the normal vector around the 3D point qk in reference .
The usual method relies on the linearization of the rotation matrix:

R = R(�; �;  ) �

2

6
4

1 �  �
 1 � �

� � � 1

3

7
5 = [ r ]� + I :
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The full transformation is parametrized by 6 degrees of freedom:

T = � =

"
r
t

#

=

2

6
6
6
6
6
6
6
6
4

�
�

tx

ty

tz

3

7
7
7
7
7
7
7
7
5

:

Under these assumptions, the optimal can be obtained by solving
the following linear system (see Appendix A for more details):

GG > � = Gh (2.1)

where

G =

"

� � �
pk � n k

n k
� � �

#

is a 6 � K matrix and

h =

2

6
6
6
4

...
(qk � pk ) � n k

...

3

7
7
7
5

is a column vector of K elements. The linear system of Equation 2.1
can be resolved for� using the Cholesky decomposition.

2.7 Summary

In this section, we presented a review of current registration solutions
expressed in a common framework. Publications on this topic have a
large variety of contributions, from the adaptation of a generic solution
to a speci�c application, up to a detailed theoretical solution of a sin-
gle registration module. The concepts related to registration problem
touch also a variety of mathematical tools (e.g., di�erential geometry,
statistics, probabilities, (robust) regression, etc.). We also noted that
same concepts have a di�erent nomenclature depending on the �eld:
computer vision, robotics or medical imagery. Although the concepts
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are very similar, there is also a gap to be bridged between the ter-
minology used for geometric registration and image registration. This
situation seems to have been better handled in medical imagery than
in robotics and computer vision. It could be explained by the fact that,
from the beginning, registrations were applied for 2D/2D, 3D/3D and
3D/2D to cover the di�erent standardized sensors that were being used
to provide diagnostics. We provide a summary of key concepts in Ta-
ble 2.5 to facility an overview of the classi�cations used.

The actual design of a geometric registration solution can be repre-
sented as an assembly of modules. However, judging from the number
of publications, it can be di�cult to choose them for a given problem.
It is important to �rst clarify the characteristics of the application
and its implication regarding the registration framework (i.e., recall
Figure 1.5). A given application de�nes reading and reference point
cloud sources as well as how theinitial transformation can be pro-
vided. Data filters are typically de�ned to enhance the point clouds
with additional information used for matching or outlier rejection, such
as surface normals. They are also used to reduce the number of points
to decrease the computational load and to bound the local density of
the points leading to algorithms more robust to di�erent sensor con-
�gurations. The matching function might need to be tuned if the
initial transformation cannot be guaranteed to be bounded. Finally,
the choice ofoutlier filters has an impact on the robustness of the
error minimization and might accommodate changing overlap between
reading and reference.

Simple solutions can often work well in practice provided the un-
derlying assumptions are well understood. In the next section, using
concrete examples, we will demonstrate what those assumptions can
be and how to motivate the selection of a particular solution.
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Table 2.5: Possible classi�cations for registration algorithms.

reading and reference

Sensor types Photometric, time-of-�ight, phase-shift, triangula-
tion

Applications Scene/object reconstruction, identi�cation, track-
ing

Data acquisition Di�erent viewpoints, di�erent times, di�erent sen-
sors, scene to model

Initial Transformations :

Sources External sensors, users, other registration algo-
rithms

Types Single hypothesis, multiple hypotheses
Systems Iterative, cascade

Data Filters :

Goals Enhance discrepancy, reduce time, reduce noise
Descriptor invariance Rotation, translation, scale, a�ne
Feature Relationship Unstructured, structured
Support Laser intensity, color, geometry

Association Solvers :

Types Feature, descriptor, mixed
Direction Reading to reference, reference to reading, both
Distance metric Euclidean, Mahalanobis, � 2 test statistic, custom
Optimization Hashing/indexing, static space partitioning, dy-

namic space partitioning, feature reduction

Outlier Filters :

Outlier sources Partial observations, dynamic elements, sensor
noises

Support Features, descriptors, mixed
Assignment Hard, soft, mixed

Error Minimizations

Error Geometric, morphing, entropy
Deformation Global, local
Minimization schemes Closed form, small angle approximation, voting



3
Registration Use Cases

Mobile robotic platforms with 3D sensing capabilities can be used to
build a 3D map of their environment. The 3D representation of an
environment can be used to support other algorithms or complement
other sensors. In this section, we present applications of geometric reg-
istration on various prototype platforms. The intention is to illustrate
the choice of speci�c modules to compose anICP solution tuned to the
task.

Following the registration analysis detailed in Section 2, we describe
mobile robotic applications by focussing on the environment, platform
velocity, available localization information and type of sensors. For all
applications, the same computation scheme was applied. A sequence
of 3D scans was streamed to a registration module, which �rstly ap-
pliced a set of �lters directly on the input 3D scan in local coordinate
frame (i.e., the origin being the center of the sensor). Secondly, a stan-
dard ICP solution is used to registered the latest input scan with a
global map . Finally, the newly registered scan is concatenated with
the global map and �lters are applied to the resulting map before mak-
ing it available to the next scan registration. This type of processing
pipeline was �rst proposed by Wulf et al. [2008] under the name of

47
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metascans, which brings the random walk error as a function of dis-
tance newly explored instead of time. All of those processing steps
were made using the library libpointmatcher presented in [Pomer-
leau et al., 2013]. Only text-based �les with parameters were changed
to achieve the presented reconstruction results. No loop-closing detec-
tion nor error back-propagation algorithms were used to post-process
the resulting maps. This three-step procedure could be considered as
laser odometry (as compared to visual odometry) instead of a glob-
ally consistent solution. The goal is to present to the reader qualitative
mapping results, evaluate for which applications a local registration is
su�cient and to abstract a general list of registration challenges that
results from the experiences gather in those applications. We had the
opportunity to cover multiple types of platforms moving on the ground,
air and water, with di�erent sizes and velocities.

The �rst application presented in Section 3.1 addresses a critical
task for real-time registration: Search & Rescue. Field deployments on
�remen training site were published at the 2012 International Confer-
ence on Field and Service Robotics[Kruij� et al., 2012], while the re-
sults speci�c to registration were published in [Pomerleau et al., 2013].
A second application relevant to registration is the automation of in-
spection as described in Section 3.2. The mapping capability of the
platform used to demonstrate this task was �rst published at 1st Inter-
national Conference on Applied Robotics for the Power Industry[Tâche
et al., 2010], and the extended results were issued in theJournal of Field
Robotics [Tâche et al., 2011]. The third application employed a novel
autonomous vessel, which was described inIEEE Robotics and Automa-
tion Magazine [Hitz et al., 2012], to demonstrate shoreline monitoring
(Section 3.3). Finally, autonomous-driving car is shortly addressed in
Section 3.4. We end in Section 3.5 with some lessons learned from the
experimentation in those di�erent conditions.

3.1 Search and Rescue

Within the framework of the European project NIFTi (FP7-ICT-
247870), novel solutions were assembled together and tested in order
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to support �remen and �rst responders in Search & Rescue missions.
A �rst use of 3D maps is to help plan the of strategic deployment
of responders in environment were humans can only intervene for a
limited time. Those situations include nuclear incident, chemical spill,
unstable supporting structures, and excessive heat conditions. When
tele-operated, 3D maps can be used to provide the user with situation
awareness and support critical decisions about risky platform motions.
This type of application often has a limited communication range,
leading to an increased need for autonomous behavior such as navi-
gation [Colas et al., 2013]. More autonomy also means more onboard
computation in case of communication breakdown. In such situations,
onboard localization is essential to return the platform to a location
were wireless communication can be reestablished.

Apart from increasing pressure on real-time solutions, Search &
Rescue environments cover a large spectrum of possibilities. For exam-
ple, deployments can happen in a well-structured nuclear plant, in a
partially-collapsed building or outdoors in a case of a train chemical
spill. In an advanced robot-human collaborative intervention, dynamic
elements created by the other agents (e.g., �remen, other robots, etc.)
acting on the �eld need to be considered in the registration solution.
Moreover, dynamic elements at a global level (e.g., building collapsing
during the exploration) can happen. In the case of relatively contained
situations, where humans have di�culty accessing a restricted inter-
vention area, very little dynamic elements are expected (e.g., the Fuk-
ishima Daiichi nuclear disaster in 2011). In the cases presented in this
section, applications were demonstrated with few dynamic elements
and without the need to identify them.

The platform deployed in the �eld is called NiftiBot (Figure 3.1).
Its mobility is provided by two tracked bogies linked by a di�erential
to facilitate the crossing of uneven terrain. Moreover, two �ippers per
track allow an active control of the platform orientation and o�er an
extended range for gap traversals. The mechanical con�guration of the
robot enables it to climb slopes up to 45� , including stairs. The robot
�ts in a bounding box of 0.17 m3 volume and weights approximately
20 kg. The primary sensor used for registration was a 2D rotating SICK
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LMS-151 laser, with its rotation axis pointing toward the front of the
robot. The aggregation of 2D scans used the motion information of the
platform to reconstruct 3D scan at 0.35 Hz. A typical 3D scan con-
tained 55,000 points. Two other sensors can be found on the platform,
namely a GPS-aided IMU (X-sens MTI-G ) and an omnidirectional
camera (PointGrey Ladybug2). The velocity of the platform can be
considered slow (0.3 m/s), especially during teleoperation where deli-
cate motion are required. The pre-alignment information used as input
for the registration was based on a Kalman �lter fusing the IMU and
the odometry information. The large error on motion estimates came
from the vibration of the tracks, the large contact surface of the tracks
on the ground, and the fact that the platform often collides with ob-
stacles. Therefore, smooth and continuous motion models can easily
break, thus simple prediction models (e.g., constant velocity) are not
applicable.

Figure 3.1: Photograph of NiftiBot, the main platform used for Search & Rescue
demonstrations in an unstructured environment. The 3D sensor, Sick LMS-151,
is positioned in front of the robot, in-between the two white tracks. The extra
motorized rotation axis is pointing in the forward direction of the robot.
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The con�guration of the rotating laser produces a high density of
points in front of the robot, which is desirable to predict collision, but
not bene�cial to the registration minimization. Thus, we forced the
maximal density to 100 points per m3 after having randomly subsam-
pled the point cloud in order to �nish the registration and the map
maintenance within 2 seconds. We expected the error on pre-alignment
of the 3D scans to be less than 0.5 m based on the velocity of the plat-
form and the number of time ICP would be computed per second. We
used this value to limit the matching distance. We also removed paired
points with an angle di�erence larger than 50� to avoid, for example,
points from di�erent side of a wall to match together. This happen of-
ten when the robot is moving through di�erent rooms. As for the global
map, we maintained a density of 100 points per m3 every time a new
input scan was merged in it. A maximum of 600,000 points were kept
in memory to avoid degradation of the computation time performance
when exploring a larger environment than expected. The complete list
of modules used with their main parameters can be found in Table 3.1.

3.1.1 Indoor Preliminary Tests

To test the range of the platform motions and to demonstrate the need
for 3D reconstructions, we ran an experiment in our laboratory leading
to the reconstruction of a full staircase (Figure 3.2). The robot started
its path in an o�ce located on the E-�oor, and was driven down a
staircase two �oors below (C-�oor, in the basement). The robot was
controlled using a joystick by an operator following it throughout the
path. The robot was then driven six �oors up to the I-�oor using the
same staircase. In this application, the robot acquired scans from a
stop-and-go strategy with a scan taken roughly every 2 m.

The complete map was processed onboard the robot. Because the
information of the past environment was fused in the global map while
the robot went down the stairs, the drift in the localization was consid-
erably reduced on the way up. This experiment comprised two critical
moments: (1) when the robot moved out of the o�ce and (2) when the
robot entered the basement (C-�oor). In both situations the overlap
between the new scan and the global map was minimal. This informa-
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Table 3.1: Con�guration of the ICP chain for the Search & Rescue mapping ap-
plications. The de�nition of the column Step follows Section 2. The names used in
the column Module refer to speci�c implementation documented in the open source
library libpointmatcher .

Step Module Description

DF read SimpleSensorNoise Add uncertainty for the SICK LMS sensor
as observed in [Pomerleau et al., 2012a].

SamplingSurfaceNormal Keep 80 % of the points, while extracting
surface normals based on 20NN .

ObservationDirection Add vector pointing toward the origin of
the sensor.

OrientNormals Orient surface normals toward the observa-
tion direction.

MaxDensity Subsample to keep point with density of
100 pts/m 3 .

DF ref SurfaceNormal Compute normal and density with 20 NN
and an approximation factor � = 3 :16.

MaxDensity Subsample to keep point with density of
100 pts/m 3 .

MaxPointCount Subsample 70 % if there is more than
600,000 points.

MF KDTree Use an approximate kD-tree with a max-
imum matching distance of 0.5 m and an
approximation factor of � = 3 :16.

OF TrimmedDist Keep 80 % closest paired points.
SurfaceNormal Remove paired points with normals angle

larger than 50� .

EM PointToPlane Objective function using point-to-plane
error.

TC Differential Stop after a minimum error below 0.01 m
and 0.001 rad.

Counter Stop after the iteration count reached 40.
Bound Stop if transformation increases beyond

5.0 m and 0.8 rad.
Legend :
DF read = Data Filters for readings, DF ref = Data Filters for references, MF = Matching
Function, OF = Outlier Filters, EM = Error Minimizer, TC = Transformation Checker.
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Figure 3.2: Mapping of a 7-�oor staircase using a Search & Rescue robot. Right :
Side view of the resulting map with the �oors colored based on elevation. Left :
Top view of the E-�oor with the ceiling removed and the points colored based on
elevation, red being higher, blue lower.

tion was known by the operator, so more scans were taken at those
moments to avoid large deviations in the global map.

3.1.2 Rail Yard

On two occasions, the NIFTi platform was tested outdoors in a rail
yard, with the permission of the Depo kolejových vozidel Praha(Prague
Depot of Rail Vehicles, Czech Republic). In the �rst experiment, the
robot was also driven in the yard by operators who were following the
platform. The 3D reconstruction is shown in Figure 3.3. The robot
started its journey at one corner of a railcar, going along the railcar
�ank to the other corner and then, turned back to the starting position
passing through the vegetation located on the other side of the railcar.
Even if the path contained a loop, the precision of the registration was
accurate enough to properly match the �rst scan with the ones recorded
at the end.

In the second experiment, the robot was driven to explore inside
an old railcar where a person was standing still in the shadow to test
in parallel the capability of the thermal camera. The robot then went
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Figure 3.3: Deployment of the NiftiBot in a rail yard with a single railcar and
dense vegetation.Top: Side view of the reconstructed environment with the railcar
in the middle and the vegetation behind. Bottom : Top view of the reconstructed
environment. For both images, colors of the point clouds were chosen to ease the
comprehension of the 3D-scene.

out of the railcar, crossed dense vegetation, followed the side of a more
modern railcar and stopped in front of it, where a second operator was
captured in the global map.

For both experiments, the robot acquired scans with a stop-and-
go strategy. The scans were gathered at uneven distances (up to 8 m
apart) by operators without prior knowledge about critical situations.
All the 3D scans were processed o�ine four times faster than the speed
at which they were recorded. Those experiments are a good example of
semi-structured environments, where trees and dense vegetation share
the scene with planar surfaces from trains.



3.1. Search and Rescue 55

Figure 3.4: Bird's-eye view of the second experiment where the robot explored
inside an old wooden railcar, crossed some dense vegetation and �nished its path
around a more modern railcar.

3.1.3 Collapsed Church

In May 2012 a sequence of earthquakes hit the Emilia-Romagna region,
Northern Italy, with a magnitude of 5.8. Three month later, NIFTi
partners deployed the platform with the support of the Vigili del Fuoco
(National Fire-watchers' Corps of Italy) and the Beni Culturali (Min-
istry of Culture of Italy) in Mirandola for a damage assessment mission.
One of the visited sites was theChiesa di San Francesco d'Assisi, in
which 3D scans were recorded. The robot started outside the church,
crossed a door and realized a straight line, navigating on the cluttered
�oor of the western gallery of the church (Figure 3.5). One can observe
on the reconstruction the pillars and arches supporting the remaining
roof of the church. The level of damage of the church was quite im-
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portant, thus limiting the exploration possibilities of the platform, as
depicted in Figure 3.6.

Figure 3.5: Reconstruction of the Chiesa di San Francesco d'Assisi with the color
following elevation. Top: Side view of the reconstruction. Bottom : Top view of the
church.

The platform was remotely operated from a control station situ-
ated outside the church and was able to continuously scan the environ-
ment while moving in the environment. Again, all the 3D scans were
processed o�ine four times faster than the speed at which they were
recorded. It is another example of semi-structured environment but, in
this case, the unstructured part comes from rubble following the partial
collapse of the church.
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Figure 3.6: Comparison of the point cloud reconstruction with a photograph taken
during exploration. Left : Photograph of the western gallery with the collapse roof
on the right. Right : Front view of the reconstruction.

3.1.4 Collaborative Mapping

Within the framework of the European project sFly (FP7-ICT-231855),
three micro-helicopters (AscTec Fire�y) were deployed over a Search
& Rescue training site in Zurich, Switzerland. The platform used is
shown in Figure 3.7 �ying over a collapsed concrete building. The three
Fire�ies were sent so that each one covered a pre-determined part of
the environment and streamed back images to a control station. The
collected images were used by the ETH Computer Vision and Geometry
Group to reconstruct a 3D representation of the environment explored
(Figure 3.8 - Bottom left ).

Another map was generated using a ground platform (i.e., Nifti-
Bot). The robot was tele-operated on a road around the main col-
lapsed building presented in Figure 3.8, for a path totaling 110 m long.
The operator had a good prior knowledge of the environment before
driving the robot around from a control station. The large road cou-
pled with the awareness of the environment contributed to increase the
velocity of the robot while exploring the area. The resulting map of
the ground robot and the map of the Fire�ies were then fused using
a standaloneICP implementation taken from our registration library
libpointmatcher . Both map were having roughly 300,000 points and
were registered using the con�guration of Table 3.2. The �nal map is
depicted at the bottom right of Figure 3.8.
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Figure 3.7: Photograph of one of the three AscTec Fire�ies used to map the envi-
ronment in collaboration with the NiftiBot.

Table 3.2: Con�guration of the ICP chain for the collaborative mapping appli-
cations. The de�nition of the column Step follows Section 2. The names used in
the column Module refer to speci�c implementation documented in the open source
library libpointmatcher .

Step Module Description

DF read RandomSampling Keep randomly 15 % of the points.

DF ref SamplingSurfaceNormal Keep 15 % of the points, while extracting
surface normals based on 50NN .

MF KDTree Use a kD-tree with a maximum matching
distance of 1.0 m and match a point from
the reading to 5 others in the reference.

OF TrimmedDist Keep 80 % closest points.

EM PointToPlane Objective function using point-to-plane
error.

TC Differential Stop after a minimum error below 0.01 m
and 0.001 rad.

Counter Stop after the iteration count reached 100
Legend :
DF read = Data Filters for readings, DF ref = Data Filters for references, MF = Matching
Function, OF = Outlier Filters, EM = Error Minimizer, TC = Transformation Checker.
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Figure 3.8: Resulting maps of the Zurich �re�ghter training site. Top right : Pho-
tograph of the training site with a partially collapsed tower in the middle. Top left :
Top view of the reconstruction realized with the data from the ground robot with
the same tower in the middle of the map. Bottom left : Top view of the reconstruc-
tion realized with the data from the three Fire�ies. Bottom right : Top view of the
combined map. Note that the color correspond the elevation: light gray is low, dark
blue is high.

At that time, the Kalman �lter used to fused the odometry with
the IMU was not well tuned and bias in the estimation induced drift on
yaw estimates. Roughly, a constant drift of 5� /s was estimated visually.
The scans were gathered while the ground platform was moving, which
generated a larger localization error than prior experiments. A total
of four runs were recorded with the ground platform: (1) continuous
scanning, turning clockwise around the main building; (2) continuous
scanning, counterclockwise; (3) stop-and-go scanning, clockwise; and
(4) stop-and-go scanning, counterclockwise. Two experiments out of
four closed the loop with a negligible error at the closing point. Sur-
prisingly, the successful runs were the ones turning counterclockwise,
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contradicting our �rst intuition that stop-and-go scanning would be
more accurate. This experiment highlighted the importance of correct-
ing IMU drift with an external registration algorithm and also showed
that the robot could scan while moving. We selected the resulting rep-
resentation of the second run to fuse both sources of information (i.e.,
laser and camera) in a common 3D reconstruction.

3.1.5 Artor - Autonomous Rough Terrain Outdoor Robot

Another platform was developed in parallel to the NiftiBot by the Au-
tonomous Systems Lab (ASL ). Modi�cations were done over a Land-
Shark from Black-I Robotics, in collaboration with RUAG and Arma-
suisse. The aim of the project was to develop techniques for reliable au-
tonomous navigation of a wheeled robot in rough, outdoor terrain. The
robot, named Artor, was much larger than NiftiBot, with a volume of
0.96 m3 and an approximate weight of 350 kg (Figure 3.9). Three wheels
on each side of the robot gave the same traction as tracked vehicles,
while simplifying the maintenance of the locomotion system. Odometry
su�ered from the same large rotation error problem as NiftiBot because
of the unknown friction between the ground and the wheels. The robot
can drive at a maximum speed of 4.5 m/s but was usually driven at
around 1.2 m/s during the presented experiments. The motion of the
platform can be smooth on the pavement but in o�-road situation,
the motion can be more rough, and at high speed the orientation can
change quickly. Odometry computation can lead to large error that is
mainly caused by the high friction of the wheels on the ground. Given
the early development stage of the platform, only the wheel odome-
try was available as prior information for the registration module. The
main sensor used in this experiment is the Velodyne HDL-32E, which
produces around 50,000 points per 3D scan (i.e., not all beams always
returned a range value) and were recorded at 5 Hz (i.e, half of the sensor
nominal frequency). Other sensors present on the platform were: two
SICK LMS-151 (front and rear), high-resolution zoom camera, thermal
camera and aGPS-aided IMU .

The critical element for real-time processing is the amount of points
that needs to pass at high rate through the registration module. The
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Figure 3.9: Photograph of Artor, a Search & Rescue robot specialized for outdoor
applications.

tuning evolved from the parameters and �lters selected for NiftiBot
with the aim of increasing the registration speed for Artor. We �rst
randomly removed 85 % of the points to ensure a stronger data re-
duction. We also kept a lower density of points because the platform
usually covered larger areas than the Ni�tBot during a typical deploy-
ment. The complete list of modules used with their main parameters
are listed in Table 3.3. The Artor robot was driven over di�erent types
of terrain in a specialized testing facility in Wachtberg, Germany. The
path of the platform was 340 m long, following a rectangular shape and
no noticeable errors were found at the loop closure. The robot real-
ized the same loop for a second time using the global representation
of the �rst loop without any problems. An overlay of the 3D map top
view with an orthogonal projection of an aerial image is provided in
Figure 3.10 - Top right .

The data were processed o�ine at the same rate as the recorded
one. The operator was driving the platform around to test the mobility
capability of the robot, without explicitly considering any registration
limitations. On an open terrain, the solution proposed can manage a
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Figure 3.10: Reconstruction of the testing facilities. Top right : Overlay of the 3D
map with an aerial view. Top left : Top view of the reconstruction. Bottom : Bird's-eye
view of the reconstruction. The color is based on the elevation of the points, light
gray being low, dark blue being high. The aerial image was provided by Bundesamt
für Kartographie und Geodäsie, Frankfurt, Germany - http://www.bkg.bund.de .

global and dense representation of the environment, even with the high
turn rate of the robot. This might be more challenging for a solution
based on visual odometry to avoid drift in those conditions.

3.2 Power Plant Inspection

In collaboration with Alstom Inspection Robotics ( AIR ), prototypes
were developed for the inspection and maintenance of industrial plants.
Some inspection tasks need to move inspection tools in environments
that are di�cult to access by human due to dimensional, temperature
or air quality constraints. The use of mobile systems for inspection can
not only deal with those constraints, but also can reduce the time and
costs of inspections. This would, for example, allow for the inspection of
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Table 3.3: Con�guration of the ICP chain for the Artor mapping applications.
The de�nition of the column Step follows Section 2. The names used in the col-
umn Module refer to speci�c implementation documented in the open source library
libpointmatcher .

Step Module Description

DF read RandomSampling Keep randomly 5 % of the points.
SurfaceNormal Compute normal with 20 NN and an approx-

imation factor � = 3 :16.
ObservationDirection Add vector pointing toward the origin of the

sensor.
OrientNormals Orient surface normals toward the observa-

tion direction.
MaxDensity Subsample to keep point with density of

50 pts/m 3 .

DF ref MaxDist Keep points within a radius of 70 m from the
last sensor pose.

SurfaceNormal Compute normal and density with 20 NN
and an approximation factor � = 3 :16.

MaxDensity Subsample to keep point with density of
10 pts/m 3 .

MaxPointCount Subsample 70 % if there is more than 600,000
points.

MF KDTree Use an approximate kD-tree with a maxi-
mum matching distance of 0.5 m and an ap-
proximation factor of � = 3 :16.

OF TrimmedDist Keep 80 % closest paired points.
SurfaceNormal Remove paired points with normals angle

larger than 90� .

EM PointToPlane Objective function using point-to-plane
error.

TC Differential Stop after a minimum error below 0.01 m
and 0.001 rad.

Counter Stop after the iteration count reached 40.
Bound Stop if transformation increases beyond

5.0 m and 0.8 rad.
Legend :
DF read = Data Filters for readings, DF ref = Data Filters for references, MF = Matching
Function, OF = Outlier Filters, EM = Error Minimizer, TC = Transformation Checker.
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critical pieces of equipment on location, without the need to dismantle
any structures. Similarly, the installation of sca�olding around a struc-
ture becomes unnecessary, thus saving inspection time. The typical
environments encountered during inspection procedures are con�ned
spaces (indoors) with well structured, static surfaces.

Figure 3.11: Three prototypes of chest inspection robots without the sensors, in a
mock-up of a steam chest. The sensor was not installed at the time of the photograph.

For the speci�c task of steam chest inspection, a robot was devel-
oped with high mobility capabilities and a compact size [Tâche et al.,
2009]. The robot, named Magnebike, moved around a metallic, cylindric
environment by using its two magnetic wheels positioned in the same
con�guration as a bike (Figure 3.11). Those specialized wheels coupled
with small lever arms allowed the platform to move up-side-down, pass
90� edges and navigate in high curvature tube. A considerable amount
of e�ort were invested in reducing the size of the platform, which ulti-
mately gave a small volume of 0.006 m3 and a weight of 0.34 kg. The
platform was the slowest presented in this section, with a maximal
velocity value of only 0.045 m/s. The robot gathered high-resolution
scans (340,000 points) with a refresh time of 50 s. The 3D scans were
assembled from a 2D Hokuyo URG-04LX. Pre-alignment of the scans
were ensured by wheel odometry, which displays virtually no slip be-
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cause of the magnetic force hold the wheels on the surfaces. AnIMU
was used in conjunction with the odometry to cope with the 3D nature
of the motion [Tâche et al., 2011]. The main sources of pre-alignment
errors were: (1) motions perpendicular to the gravity vector that were
not observable with the sensor used, and (2) the rapid cumulation of
errors by the low-cost IMU used on the slow-moving robot.

During inspection, the robot is intended to be tethered for safety
reason, which solved the communication problem between the embed-
ded computer and a faster system used as control station. Because the
system must not damage the inspected structure in any case, it trav-
eled slowly in the environment, reducing the pressure on the real-time
requirement for the registration. However, the operator might not have
a visual contact with the robot at all times during inspection. There-
fore, the map resolution must be high enough to detect obstacles and
holes during remote operations. The number of points produced by
the scanner was signi�cantly larger than strictly necessary for a proper
registration. To reduce rapidly this number of points, we randomly re-
moved 90 % of the point as soon as the scan were recorded. We used
a maximal density of 20000 points per m3 to cope with the small size
of inspected environments. For the registration, we did not use any
pre-alignment to test the worst case scenario (i.e., when the rotation
is not observable by theIMU ). This forced us to extend the maximal
matching distance to 0.5 m, even if a scan was taken roughly at every
0.30 m. Given that scans are taken by an operator at a �x and short
interval, we used an outlier ratio of 80 %. The complete list of modules
used with their main parameters are listed in Table 3.4.

To test the mapping capability of the platform, a real steam chest
was made available byAIR . This part was actually removed from
a power plant for reparation purpose. Multiple inspection runs were
executed, each run starting from one of the seven entry points (Fig-
ure 3.12). We only present here the results from the longest path since
it covered the entire environment. The robot started on one side of
the steam chest, situated on the left of Figure 3.12. Each 3D scan was
taken on a stop-and-go strategy at every 0.1 m. The total path covered
a distance of 5.8 m for a total of 59 scans. All runs were registered of-
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Table 3.4: Con�guration of the ICP chain for the Magnebike mapping applica-
tions. The de�nition of the column Step follows Section 2. The names used in the
column Module refer to speci�c implementation documented in the open source
library libpointmatcher .

Step Module Description

DF read RandomSampling Keep randomly 10 % of the points.
SamplingSurfaceNormal Keep 80 % of the points, while extracting

surface normals based on 20NN .
ObservationDirection Add vector pointing toward the origin of

the sensor.
OrientNormals Orient surface normals toward the observa-

tion direction.
MaxDensity Subsample to keep point with density of

20000 pts/m3 .

DF ref SurfaceNormal Compute normal and density with 20 NN
and an approximation factor � = 3 :16.

MaxDensity Subsample to keep point with density of
20000 pts/m3 .

MF KDTree Use an approximate kD-tree with a max-
imum matching distance of 0.5 m and an
approximation factor of � = 3 :16.

OF TrimmedDist Keep 80 % closest paired points.
SurfaceNormal Remove paired points with normals angle

larger than 50� .

EM PointToPlane Objective function using point-to-plane
error.

TC Differential Stop after a minimum error below 0.01 m
and 0.001 rad.

Counter Stop after the iteration count reached 100.
Bound Stop if transformation increases beyond

5.0 m and 0.8 rad.
Legend :
DF read = Data Filters for readings, DF ref = Data Filters for references, MF = Matching
Function, OF = Outlier Filters, EM = Error Minimizer, TC = Transformation Checker.
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�ine approximately 10 times faster than the rate at which they were
recorded. Based on this reconstruction, it was possible to have full 3D
path planning and navigation in this environment [Stumm et al., 2012].

Figure 3.12: Deployment results of Magnebike in a real steam chest. Top: Cut
view of the reconstructed environment. The light gray line correspond to the path
of the robot, with the sphere being the positions where the robot stopped to take a
3D scan. The colors of the map follow the discreet time (from 0 to 58) at which the
scans where taken.Bottom : The actual steam chest removed for maintenance.

3.3 Shoreline Monitoring

In order to support environmental monitoring of freshwater bodies,
an autonomous surface vessel named Lizhbeth was developed at the
ASL in collaboration with the Limnological Station of the University
of Zurich. Although the vessel was initially developed to deploy bio-
logic sensors in water (see [Hitz et al., 2012, 2014] for details on this
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application), a 3D laser was installed on its top to complement the
analysis of the ecosystem with geological information. For example, 3D
mapping of the shoreline could help to determine the volume of organic
material (leaves) falling in a lake, accurately identify in�ows of water,
quantify coastal erosion, etc. The observation of coastal erosion using
range�nder laser is already an active �eld in geology [Mitasova et al.,
2009], relying mainly on airborne surveys. However, this survey method
can not provide a good viewpoint of a cli�, and the deployment costs
are quite high. The use of a boat as carrier is comparatively a low-
cost method that can give better vantage points in certain situations.
Beyond the geological applications, localization on the shore with cen-
timeters precision can increase the autonomy of the system by allowing
it to navigate to the sampling point from a parked position in a con-
�ned area, such as a boat house, or from its docking recharge station.
One of the requirement of such application is to have long range mea-
surements, given that shores imply shallow water, which poses a limit
on how close the boat can be without touching the bottom. The type
of outdoor environments expected when surveying a water body can
vary from structured to unstructured, depending on the intensity of
the recreational use by the local people. For example scanned elements
can be dams, bridges, houses, beaches, rocky shores, sparse to dense
vegetation, etc. Except for other boats, most of the environment is ex-
pected to be static with potential for seasonal changes (global motion)
monitoring.

The platform was deployed several times in Lake Zurich (Fig-
ure 3.13) and once in the alpine Lake Cadagno, both located in Switzer-
land. It had a volume of 6.75 m3 and weighted approximately 120 kg.
The motion of the robot was ensured by two electrical propellers posi-
tioned in the custom-built hulls of the catamaran. This gave di�erential
drive motion capability to the platform, allowing it to turn on spot. The
typical velocity of the robot is 0.7 m/s when surveying away from the
shore. The main sensor used for 3D reconstruction was a Velodyne
HDL-32E, which produced in average 45,000 points. Compare to the
application presented with Artor (Section 3.1.5), the laser return less
points in average due to the open horizon of the lac. The point clouds
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were recorded at 1.6 Hz. A single-beam underwater sonar was used to
produce bathymetric maps. The localization sensors included anIMU ,
a magnetic compass and aGPS. The GPS was mainly used for o�shore
navigation because its precision of 5 m made it dangerous for nearshore
navigation. The odometry can hardly be computed based on the motor
inputs because of the high inertia of the boat in water, and the unknown
wind-driven surface currents. Among the main sources of localization
perturbations are the waves that may change rapidly the platform ori-
entation, which can be evaluated by the gravity vector measured by
the IMU . The smooth motion of the platform rendered di�cult to
extract reliable translation information without adding any registra-
tion algorithms. Nevertheless, a predictive model implying smooth 2D
translations on the xy-plane can be used to pre-align scans [Hitz et al.,
2014].

Figure 3.13: The autonomous surface vessel, named Lizhbeth, during one of its sur-
vey environment: pre-alpine Lake Zurich, Switzerland. The sensor was not installed
at the time of the photograph.

While keeping the constraints of Lizhbeth in mind, we ran prelim-
inary mapping experiments using the Velodyne installed on a small
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watercraft (7 m long). The substitute boat was a monohull and thus,
was considered less stable on water than Lizhbeth, which is a two-
hull vessel. As no external sensors were available, the full solution was
tuned to not rely on any pre-alignment of the scans. The input �lters
applied ensured that the watercraft was removed from the scans, and
a fast random subsampling reduced the number of points to ensure
registration at every 0.6 s. The watercraft recorded scans while sailing,
and its movements depended on water motions. Since waves induced
fast changes in the watercraft's orientation, the matching of the scans
needed to be fast enough to keep the error on the initial orientation
small. The size of the survey area was expected to be large, so a low
density of points was forced. When the laser hits the water it is usually
not re�ected back to the sensor, as opposed to solid ground. Unfor-
tunately, some waves can be detected by the laser because of their
variable surface orientations. To reduce wave-re�ectance e�ect, we ap-
plied a strict shadow point �lter that removes 3D points that display
an angle di�erence larger than 17� between surface normals and the
direction of observation. The complete list of modules used with their
main parameters are listed in Table 3.5.

The experiment executed with the watercraft was recorded on Lake
Zurich, in front of the Limnological Station, the typical operating area
of Lizhbeth. The boat started away from the shore moving towards
a harbor where multiple boats were parked side by side. This starting
position is located on the lower left corner of Figure 3.14. The boat �rst
passed between the harbor and boats anchored on buoys and turned
right to continue between the anchored boats and the shore. The boat
sailed parallel to the shore up to a boat house situated within an arti-
�cial small canal leading to the entrance of the boat house. On the re-
constructed environment, one can notice the noise around the anchored
boats that was caused by their movements during the experiment, es-
pecially around the white one, at the bottom left corner. Also seen in
that corner are the noisy light gray points that were generated by the
re�ection of the laser on the waves. The �nal map covered an area of
280 by 130 m without displaying any major defects.



3.3. Shoreline Monitoring 71

Table 3.5: Con�guration of the ICP chain for the Lizhbeth mapping applications.
The de�nition of the column Step follows Section 2. The names used in the col-
umn Module refer to speci�c implementation documented in the open source library
libpointmatcher .

Step Module Description

DF read BoundingBox Remove points in a box of 7� 7� 2 m to avoid
self-scanning.

RandomSampling Keep randomly 20 % of the points.
SurfaceNormal Compute normal and density with 20 NN

and an approximation factor � = 3 :16.
ObservationDirection Add vector pointing toward the origin of the

sensor.
OrientNormals Orient surface normals toward the observa-

tion direction.
MaxDensity Subsample to keep point with density of

50 pts/m 3 .
Shadow Remove points with angle between surface

normals and observation direction larger
than 17� .

DF ref MaxDist Keep points within a radius of 70 m from the
last sensor pose.

SurfaceNormal Compute normal and density with 20 NN
and an approximation factor � = 3 :16.

MaxDensity Subsample to keep point with density of
50 pts/m 3 .

MaxPointCount Subsample 70 % if there is more than 600,000
points.

MF KDTree Use an approximate kD-tree with a maxi-
mum matching distance of 5.0 m and an ap-
proximation factor of � = 3 :16.

OF TrimmedDist Keep 90 % closest paired points.
SurfaceNormal Remove paired points with normals angle

larger than 90�

EM PointToPlane Objective function using point-to-plane
error.

TC Differential Stop after a minimum error below 0.01 m
and 0.001 rad.

Counter Stop after the iteration count reached 40.
Bound Stop if transformation increases beyond

5.0 m and 0.8 rad.
Legend :
DF read = Data Filters for readings, DF ref = Data Filters for references, MF = Matching
Function, OF = Outlier Filters, EM = Error Minimizer, TC = Transformation Checker.
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Figure 3.14: Reconstruction of the shoreline from a boat. Top: Overlay of the 3D
map with an aerial view. Bottom : Top view of the 3D map with point colors based on
elevation, light gray being low and dark blue being high. The orthogonal projection
of the aerial image was provided by the Bundesamt für Landestopogra�e swisstopo
(Art. 30 GeoIV): 5704 000 000
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The �nal solution must take into consideration that elements lo-
cated o�shore can have multiple possible positions. By keeping the
global map updated at every uses, those multiple positions will be re-
tained in the map, thus reducing the chances of large drifts in cases
where, for example, only the boats on the buoys were scanned.

3.4 Autonomous Driving

The recent expansion of the autonomous driving �eld have been pushed
forwards by car companies that teamed up with research partners, like
Volkswagen in the EU project V-Charge, or by large company like
Google hiring roboticists to develop new car prototypes. The Ameri-
can state of Nevada even o�cially delivered its �rst license for driverless
car in May 2012. Although photometric registration is more attractive
from the industry point of view, due to the potential low cost of cam-
eras, geometric dense maps can support other activities. For example,
road inspection is a tedious task that is mainly realized visually by
operators driving on the roads. Large-scale road construction sites can
also pro�t from a fast monitoring of the work progress. Applications
usually target urban environments, which are mostly structured (e.g.,
road, buildings) or semi-structured when the vegetation is more promi-
nent. The environment is predominantly static, but a large part of the
�eld of view can be occupied by other cars such as in dense tra�c
situations.

The SmartTer (Figure 3.15) was a modi�ed version of a Smart
Fortwo. The car was developed by theASL and served in 2006 has a
technological demonstrator in the European SPARC project realized
in collaboration with Daimler Chrysler. The Smart is one of the most
compact car with a volume of 6.38 m3 and a weight of 730 kg. Two SICK
LMS-291 laser range�nders were mounted on a vertical rotating axis,
each of them providing 14,000 points every second. Motion compensa-
tions were applied to the 3D scans to cope with the high speed of the
vehicle (15 km/h). Other sensors included navigation laser, omnidirec-
tional camera, monocular camera,GPS and IMU . The overall motion
of the vehicle is expected to be smooth, with a strong assumption of
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translation on the xy-plane. For a deeper description of the vehicle, we
refer the reader to the publication of Lamon et al. [2006].

Figure 3.15: The autonomous car, named SmartTer, with its suite of �ve SICK
LMS-291 laser range�nders. Larger wheels were installed to allow o�-road driving.

The solution selected for this application had to deal with a large
scanned volume and noises caused by the velocity of the vehicle. We
drastically reduced the number of inputted points by keeping a maximal
density of 0.5 points per m3. For the registration, we cut points beyond
the maximal reach of the sensor to reduce theNN searching space. The
pre-alignment of the scans was fairly accurate, but we kept a maximum
matching distance of 1.5 m to recover from loop-closing error. Many
large trees along the road were having their surface normal wrongly
estimated due to their unstructured nature, which increased the point-
to-plane alignment error. With that in mind, we used a point-to-point
error metric for the minimization, as opposed to other solutions pre-
sented in this section. A denser global representation was maintained
to ensure for more stability of the registration, especially on the ground
where the density of a single scan was dropping rapidly.

The completeICP solution ran at 3 Hz, which permits the registra-
tion to run in real-time with a bit of margin. As showed in Figure 3.16,
the SmartTer started and ended its path in a street situated at the top
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Table 3.6: Con�guration of the ICP chain for the SmartTer mapping applications.
The de�nition of the column Step follows Section 2. The names used in the col-
umn Module refer to speci�c implementation documented in the open source library
libpointmatcher .

Step Module Description

DF read SurfaceNormal Compute normal with 20 NN and an approximation
factor � = 3 :16.

MaxDensity Subsample to keep point with density of 5 pts/m 3 .

DF ref MaxDist Keep points within a radius of 40 m from the last
sensor pose.

SurfaceNormal Compute normal and density with 20 NN and an
approximation factor � = 3 :16.

MaxDensity Subsample to keep point with density of 10 pts/m 3 .
MaxPointCount Subsample 70 % if there is more than 900,000 points.

MF KDTree Use a kD-tree with a maximum matching distance of
1.5 m.

OF TrimmedDist Keep 70 % closest paired points.

EM PointToPlane Objective function using point-to-point error.

TC Differential Stop after a minimum error below 0.01 m and
0.001 rad.

Counter Stop after the iteration count reached 100.
Bound Stop if transformation increases beyond 5.0 m and

0.8 rad.
Legend :
DF read = Data Filters for readings, DF ref = Data Filters for references, MF = Matching
Function, OF = Outlier Filters, EM = Error Minimizer, TC = Transformation Checker.

left corner of the aerial view. During the drive, a total of four loops were
realized: two loops were made counterclockwise around the Eidgenös-
sische Technische Hochschule (ETH ) main building ( Hauptgebäude),
and two other loops clockwise around the Hospital (Universitätsspital
Zürich ). Even with the low density of point used, a reasonable amount
of details could be preserved, as depicted in Figure 3.17, where even
wires powering trams are visible over the street junction at the bottom
of the image. At the �rst loop-closing point after 660 m, ICP -based
odometry had accumulated an alignment error of 4.5 m on the z-axis.
At the second loop-closing point after 920 m, the error on the z-axis was
14.3 m. In both cases, the error was recovered and registration could
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proceed further without any problem It is interesting to note that, at
those two closing points, errors on z-axis were the most predominant of
the 6 DoF possible. When looking at each scan separately, we observed
that the ground area displaying a usable density of points had a radius
of 20 m around the car. Also, the distance between two scans was often
8 m, going as high as 17 m when accelerating. Urban environment are
often referred as canyon-shaped, which means that the sides are well
constrained by the buildings, but lacking points on the ground can lead
to drift on pitch angle or/and on z-axis. The fast motion of the car cou-
pled with the short range measurements gave little overlap to stabilize
the elevation or the pitch angle and the error cumulated during each
loop. When the car was passing again in streets previously explored,
the global map was reused successfully by recovering the large o�set
at loop closure points. Although the 3D map mainly follows the aerial
map, the combined impact of scanning rate and velocity of the plat-
form brings the utility of laser odometry to its limit. This application
results are the largest presented in this section, with a total path length
of 3.8 km.

3.5 Summary

This section covered a wide range of applications that were performed
by di�erent types of robotic platforms. The key characteristics of the
robots employed in those applications are recapitulated in Table 3.7.
We presented registration utilizations in situation awareness for Search
& Rescue activities. The feasibility of real-time mapping deployments
was demonstrated in a con�ned staircase, in open outdoor areas and
in a collapsed church. We also demonstrated that surveying images
recorded by an aerial vehicle and scans from ground vehicle can be
gathered to enhance a scene reconstruction of a heavily damaged de-
ployment site. A solution based on compact inspection systems was also
suggested for mapping unreachable components in power plants. Such
solutions could help reducing costs, time and dangers for the operators
by bringing 3D informations from inside the part inspected, without
the need for complex structures to support the operators. Finally, large-
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Figure 3.16: Overlay of a large scale reconstruction of the ETH main building and
its surroundings with an aerial view. Colors represent the elevation, dark blue being
low and dark red being high. Loop closing points are marked by numbers in circle,
(1) being the small loop, (2) being the larger loop. The orthogonal projection of the
aerial image was provided by the Bundesamt für Landestopogra�e swisstopo (Art.
30 GeoIV): 5704 000 000

Figure 3.17: Bird's-eye view of the ETH main building. Colors represent elevation,
light gray being low, dark blue being high.
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scale environmental surveys were shown to be successful without the
need for speci�c loop closure algorithms, whether the survey is on water
or roads.

Table 3.7: Summary of the robot key characteristics in�uencing the proposed reg-
istration solutions.

Magnebike NiftiBot Lizhbeth Artor SmartTer

Weight (kg) 0.34 20 120 300 730
Volume (m 3) 0.006 0.17 0.96 6.75 6.38
Speed (m/s) 0.045 0.3 0.7 1.2 4.17

Depth Sensor URG-04LX LMS-151 HDL-32E HDL-32E LMS-291
Nb of Points 340,000 55,000 45,000 50,000 28,000
Scan Rate (Hz) 0.02 0.35 1.6 5 1
Point Rate (Hz) 6,800 19,250 72,000 250,000 28,000

Based on the realized Search & Rescue deployments, we observed
that most of the exploration activities are linear or expend following
a star shape. Most of the tasks imply: (1) going somewhere where no
direct sight is possible from a safe zone, (2) assessing the situation and
damages, and (3) backtracking the robot's path to the control station.
Those tasks rarely imply loop closing and a coherent representation
will be enough to bring the robot back to the control station even with
some drift. Although none of the applications described in this section
used loop closure, the street survey with the SmartTer would not be
the appropriate solution in its current form. It is a good example of the
utility of error relaxation and loop closing. Nevertheless, having more
accurate local registrations relaxes the pressure on loop closing, thus
extending its reach to even larger loop.

Some lessons were learned while tuning the registration solutions
for each one of the applications. One of the main parameter to tune
�rst would be the maximal density required by the application. It can
rapidly resolve real-time issues and remove local minima from the regis-
tration minimization. The maximal density and the maximum number
of points in the global map depend on the expected size of the ex-
plored zone. For the speci�c case of exploration using NiftiBot, the
fact that the sensor is 0.21 m above the ground greatly reduces the
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range at which the density of the points is su�cient for motion plan-
ning on a cluttered �oor. Also, speed reduction should automatically be
applied when the elements around the robot get too close, e.g., when
crossing doorways. This would avoid the rapid decrease of the over-
lap between scans, which would drag down the registration quality. As
for Artor, its fast motion capability required the handling of real-time
processing in priority. During tuning, the fact that 3D scans jumped
in critical situations (e.g., quick rotations) was enough to break the
chain of registrations. In the case of inspection using the Magnebike,
our evaluations provided better speci�cations for the construction of a
new compact rotating laser. This new sensor will rotate faster (10 rpm)
and will read from a UTM-30LX instead of the more noisy URG-04LX.
This should bring the quality of inspection closer to the goal of 0.01 m
precision that is required for defect detection. The preliminary work
on the autonomous surface vessel, Lizhbeth, lead to a prioritization
on the orientation estimation. For next applications, we decided to re-
place the Velodyne by a cheaper UTM-30LX moved by a custom tilting
mechanism, allowing variable vertical scanning angles. This would give
faster scanning rates when the obstacles are far away, while having the
possibility to scan overhead vegetation when close to the shore. Those
advantages come at the expense of range. The lessons learned with this
use case lead to the monitoring of lake shore over seasonal changes
based on laser points and motivated a more accurate state estimation
solution for autonomous surface vessel [Hitz et al., 2014]. The Smart-
Ter project �nished a few years ago, but it was nevertheless interesting
to push the capabilities of local registration to its limit. One of main
observation is that even though the SICK LMS-291 speci�cations men-
tioned a maximal range of 70 m, the usable range remains under 20 m
on concrete roads. Velodyne sensors can exceed this reach by three to
four times, which can lower the cumulated error over large distances.
Although more powerful, Velodyne sensors produce dense reading that
are shaped like concentric disks, which can create local minima when
registered. Matching against a group of past scans, instead of only
the last one, helps to overcome this problem. In our case, we matched
against a global map (i.e., all the past scans), but the use of a tempo-
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ral window or spacial window can keep the computation time constant
instead of growing with the number of points [Pomerleau et al., 2014].

Based on the multiple use cases presented in this section, a number
of similar registration challenges emerged. First, solutions can be spe-
cialized for a givenenvironment type. Indoor environments are most of
the time man-made and is constituted of many large surfaces easy to
model. On the other side, environment with a large variety of structures
or with complex and detailed surfaces (e.g., leafs on a tree) will lead to
reconstruction errors. Material properties of a given environment will
also be challenging when it comes to high re�ectivity values. Certain
type of applications need to be deployed in busy environment (i.e.,dy-
namic scene). Pedestrians, cars and even wind on trees may alter the
scene slightly generating larger registration error. Also, thescene size
depend of the application. It is often limited the duration of a phenom-
ena of interest, coverage speed of the robot and its power autonomy.
The overlap between point clouds (i.e., the information relevant to the
error minimization) is challenging to asses and to control in many ap-
plications. Occlusions caused obstacles in the environment can cause
variable overlapsand in the worst cases, toosmall overlapswon't have
enough information to ensure a proper registration. Key components
of the overlap ratio are also the velocity of the robot, the scanning rate
of the sensor and the sensorFoV . Applications guide also thereal-time
need for a registration algorithm. Surface reconstruction applications,
where the visual quality or high precision is required, are often run
o�ine. When it comes to user situation awareness or to robot motion
in�uenced by its environment, a trade-o� between accuracy and com-
putation speed must be made. The sensor modality (e.g., triangulation,
time-of-�ight, phase-shift) selected in�uences the range, the uncertainty
on depth measurements and other characteristics in�uencing the reg-
istration outcome. Applications limiting the robot size and power or
the environment conditions (e.g., water, dust) reduce the sensor selec-
tion forcing registration solutions to cope with sensor noiselarger than
wanted. Finally, the quality of the initial transformations provided is
highly in�uenced by the interaction between the environment and the
robot. Forces lost can be challenging to estimate during navigation and
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depend of the availability and accuracy of other sensors to roughly mea-
sure the pose of the robot. Table 3.8 relates all those challenges with
the use cases presented in this section. This overview provides support
to new applications by dressing a list of concrete elements one should
be careful and linking them to real deployment scenarios.

All examples demonstrate the added value of a modularICP chain
as each application has a speci�c set of requirements, that can still
be ful�lled with the same open-source ICP library. The text-based
parameter con�gurations combined with visual debugging tools allowed
us to rapidly tune and understand limitations of con�gurations in order
to achieved fast and accurate solutions.
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Table 3.8: Relation between the use cases presented in this section and common registration challenges. When applicable,
elements listed after (+ ) improve the situation with respect to a given challenge, while elements after ( � ) degrade it. The color
of a cell represents the qualitative level of registration di�culty, with red being critical, yellow being important and green being
low.

Challenges

Registration Use Cases

Section 3.1 Section 3.1.4 Section 3.1.5 Section 3.2 Section 3.3 Section 3.4

Search & Rescue Collaborative
Mapping

Artor Inspection Shoreline
Monitoring

Autonomous
Driving

Environment
type

( � ) thin walls,
multiple ground
elevation, large
range of
structures

(+ ) buildings,
large open space;
( � ) vegetation

(+ ) planar
structures,
rusted surfaces
(old pipes);
( � ) shiny
surfaces (new
pipes)

(+ ) buildings,
large open space;
( � ) vegetation,
water re�exions

(+ ) buildings,
roads;
( � ) trees

Dynamic scene ( � ) operators
moving around

( � ) operators
moving around

( � ) moored
boats, water
waves

(+ ) no tra�c

Scene size (+ ) limited by
the navigation
complexity

( � ) large ( � ) large (+ ) small
volumes to
inspect

( � ) large ( � ) multiple
roads

Variable overlap (+ ) low robot
speed;
( � ) turning
around sharp
corners,
concealed areas,
low scanning rate

(+ ) high
scanning rate,
open space

(+ ) scanned
position
manually
controlled

(+ ) high
scanning rate,
open space

( � ) large range
of acceleration

Continued on next page...
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Table 3.8: continued.

Challenges

Registration Use Cases

Section 3.1 Section 3.1.4 Section 3.1.5 Section 3.2 Section 3.3 Section 3.4

Search & Rescue Collaborative
Mapping

Artor Inspection Shoreline
Monitoring

Autonomous
Driving

Small overlap ( � ) turning
sharp corners,
concealed area,
teleoperator
focussing on
safety instead of
the robot
mapping
capability

( � ) di�erent
types of
locomotion,
di�erent areas
covered

(+ ) high
scanning rate

(+ ) driver
focussing on the
robot mapping
capability

(+ ) high
scanning rate

( � ) fast vehicle
coupled with low
scanning rate

Real-time (+ ) low scanning
rate;
( � ) critical for
teleoperation

( � ) high
scanning rate,
quick attitude
change

(+ ) slow robot
motion

( � ) high
scanning rate, no
prior on
transformation

(+ ) low scanning
rate, good prior
on
transformation;
( � ) large map

Sensor noise ( � ) high noise on
map from
cameras

( � ) compact
sensor with high
noise

Initial
tranformation
noise

( � ) high ground
friction

(+ ) manually
pre-aligned

( � ) high ground
friction, quick
pitch motion

( � ) no prior, full
3D path

( � ) no prior (+ ) precise wheel
odometry

Point
distribution

( � ) sensor low
on the ground

( � ) sparse rings ( � ) sparse rings



4
Conclusion

In this review, we presented the problem of geometric registration and
the classicalICP algorithm. They are common to a few research �eld
but we focus on mobile robotics. Even then, the problem is still complex
and presents multiple facets. There is a large number of publications
with a lack of a general comparison methodology. This is understand-
able given the diversity of applications, characteristics of the sensors,
motion capabilities of the robotic platform, characteristics of the envi-
ronments, but it hinders the selection process of an appropriate instance
of the algorithm. This review tackles this challenge by three means: (1)
a wide literature review with a historical perspective, (2) the elabo-
ration of a theoretical descriptive framework of geometric registration
grounded in the literature review, and (3) the analysis of practical use
cases covering a wide diversity of mobile robotics applications.

Literature review

The �rst contribution of this review is then an extensive literature re-
view about registration problems. This problem is common to several
research �elds but as been separated in their own communities. The
respective developments have focused on di�erent constraints and fol-

84
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lowed more or less independent pathways. For instance, it is manifest
that medical imaging reported their advancements in a more structured
manner than in robotics We believe that, after the exploratory bloom
of new developments, robotics is now ripe for a consolidation of the
algorithms.

This work proposes a formalization of geometric registration pri-
mary based on the literature of robotics. However, although we covered
a considerable mount of publications, many more remain unlisted.

Theoretical framework

Our second contribution is a theoretical framework into which vari-
ations of geometric registration algorithms can be cast. On the one
hand, it helps structure the analysis of a speci�c solution by providing
a systematic grid to be �lled from the description of algorithm. On the
other hand, for a researcher facing a problem, it provides a directory of
modules to choose from in order to assemble a speci�c solution to this
problem. Instead of the complex process of designing ad-hoc variations
of the ICP algorithm, we propose to select data �lters, matching func-
tion, outlier �lters, and error minimization according to the problem
at hand.

This approach in itself does not solve the problem of the compari-
son of di�erent modules. But instead of comparing full algorithms with
several di�erences, we can assess the merit of each independent varia-
tion. In past works, we have proposed a methodology for this assess-
ment [Pomerleau et al., 2013] based on real-world datasets [Pomerleau
et al., 2012b]. Those works attempt to consolidate the advantages and
disadvantages of di�erent algorithms. It is expected that as the �eld
matures more works will utilize this type of analysis.

Robotics application

As choosing from many modules still requires a good understanding
and intuition of the algorithm, we have presented the design of solu-
tions to several scenarios. The applications included search and rescue,
power plant inspection, shoreline monitoring, and autonomous driving
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with robots as diverse as a tracked or wheeled rovers, a magnetic two-
wheeled mini-robot, a boat, and a car. The diversity of applications,
velocities, environments, locomotion types, sensors, etc. provides a wide
sample of use cases to serve as a guide for the reader own needs.

All those solutions were implemented using the same modular open
source library1, designed according to our theoretical framework. Many
modules, de�ned in this review, have already been implemented. De-
spite its modular design, this library can be seen to provide strong
computational performance in our applications.

Guidelines for solution implementations

Bringing the proposed framework of solutions presented in Section 2
with the main challenges highlighted in Section 3, Table 4.1 proposes a
high level guideline based the experience developed over several years
implementing, tuning and testing registration solutions. It should be
use as an investigation starting point when problems arise from a given
application. For a more quantitative interpretation of the impact of a
speci�c module and its parameters on registration quality, we direct
readers toward [Pomerleau et al., 2013]. Three modules from Section 2
are missing in the table as their selections mainly depends more on the
context of an application than on registration tuning. Reading and ref-
erence sourcesfollow the sensors at hand and can be upgraded based on
their speci�cations but hardly simply for tuning a registration solution.
Transformation parameters follow the data acquisition process and the
deformation resulting from moving a given sensor in the environment.
Lastly, transformation checkers depend on transformation parameters
used and the application. Detecting convergence, divergence or timeout
of the algorithm can be implemented in a generic way, but the actions
resulting of such events (e.g., discarding the result, restarting with other
parameters or another solution) depend on the application. Moreover,
it worth noting that some suggestions are contradictory when address-
ing a given challenge. For example, the rowReal-time highlights the
fact that point-to-plane error has a faster convergence rate, but at the

1 libpointmatcher : https://github.com/ethz-asl/libpointmatcher



87

same time, highlight that surface reconstruction is expensive to com-
pute. The general registration strategy selected for an application may
require to balance advantages and disadvantages of the proposed solu-
tions. Table 4.1 is also an opening for future works, where the knowl-
edge on a given cell can be enhanced by more researches on a speci�c
sub-registration problem. Also, grey cells represent con�gurations that
were not encountered in this work, which could be an opportunity for
innovation.

With this work, we hope to provide a clear overview of geometric
registration for mobile robotics, as well as a method to solve it in spe-
ci�c instances. We invite fellow researchers to describe and compare
their algorithms following our framework, and even, when possible to
contribute code to the open source library.
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Table 4.1: Relations between the di�erent framework modules presented in Section 2 and common challenges highlighted
with the applications described in Section 3. Cell information proposes guidelines for readers facing similar challenges. Element
emphasizedcorrespond to speci�c cases. Shaded areas represent either no link or that more investigation is required.

Challenges
Framework Modules

Section 2.3 Section 2.4 Section 2.5 Section 2.6

Data Filters Association Solver Outlier Filters Error Minimization

Environment
type

Double sided surfaces :
extract normal vectors and
orient them.

Augment the number of
matches to cover noise in
surface reconstruction.

Weight wrong surface
normal associations.

Unstructured environments :
point-to-point relies on less
reconstruction assumptions.

Dynamic
scene

Removed identi�ed dynamic
points (e.g., scanner
self-reading). Use algorithms
to identify dynamic points
based on prior registrations.

Augment the number of
matches to augment the
change of matching with a
static structure.

Weight association using an
identi�ed dynamic point.

Use weighted error metric
emphasizing static
associations.

Scene size Down sample large point
clouds. Roughly extract the
zone of interest.

Variable
overlap

Avoid using distance
approximations.

Hard rejection : �x threshold
using adaptive techniques.
Quartile based solutions :
use the lowest expected
overlap as a threshold.

Small overlap Apply �lters with leading to
a uniform sampling in
Euclidean space.

Avoid using distance
approximations.

Hard rejection : use a strict
threshold.

Continued on next page...
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Table 4.1: continued.

Challenges

Registration Use Cases

Section 2.3 Section 2.4 Section 2.5 Section 2.6

Data Filters Association Solver Outlier Filters Error Minimization

Challenges

Real-time Reduce the number of
points with random
sampling (low computation
footprint). Reduce the
number of needed �lters.
Reduce the use of surface
reconstruction �lters based
on NN search. Use �lters
relying on the assumption
that the ordering of the data
is known.

Use kD-tree or other space
partitioning techniques. Use
distance approximation.
Limit the maximal search
range. Use NN search
relying on the assumption
that the ordering of the data
is known. Limit the search
to one NN per points.

Remove any point with zero
weight before minimizing
the error. Point-to-plane
error converge in fewer
iterations than
point-to-point.

Sensor noise Compute point uncertainty
based on speci�c sensor
noise model. Handle shadow
points.

Weight association based on
the combination of both
points uncertainties.

Use weighted error metric
using sensor noise
information.

Initial
tranformation
noise

Use distance metric relying
on spaces independent from
the transformation
parameters (i.e.,
descriptors). Increase the
number of matches per
points.

Weight associations based
more on descriptors than
features.

Point-to-plane has a larger
convergence space than
point-to-point. Error metrics
rely on entropy have a larger
convergence space in
general. Use weighted error
metric dealing with match
uncertainties.

Point
distribution

Apply �lters with leading to
a uniform sampling in
Euclidean space. Avoid
using �lters relying on �x
distance thresholds.

Avoid search relying on a
maximal search radius.

Avoid using threshold based
on �x distances of
associated points.
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A
Derivation for Point-to-Plane Error

This appendix presents a solution for minimizing the point-to-plane
error in 3D. We �rst de�ne our transformation parameter set T as a
6D vector:

T = � =

"
r
t

#

=

2

6
6
6
6
6
6
6
6
4

�
�

tx

ty

tz

3

7
7
7
7
7
7
7
7
5

; (A.1)

where � , � and  are the rotational components, while tx , ty and tz

are the translation components. We also de�ne the objective function
for point-to-plane:

ep� =
KX

k=1

k[(Rp k + t ) � qk ] � n kk2 ; (A.2)

where n k is the normal vector representing the surface at the pointqk

and the index k represents paired points. The method presented here
rely on rotation matrix linearization. This linearization can be achieved
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using the small-angle approximation:

R = R(�; �;  ) �

2

6
4

1 �  �
 1 � �

� � � 1

3

7
5 = [ r ]� + I ; (A.3)

where [r ]� is a cross-product operator transforming the vectorr to
a 3 � 3 skew-symmetric matrix. In the context of ICP , the impact
of linearization is reduced through the iterative process of the whole
registration algorithm. Combining Equation A.2 with Equation A.3,
we can approximate the objective function as

ep� �
KX

k=1

k[([r ]� + I )pk + t � qk ] � n kk2

�
KX

k=1

k(r � pk ) � n k + pk � n k + t � n k � qk � n kk2 ;

which can be rewritten using the scalar triple product and by reorga-
nizing the terms

ep� �
KX

k=1








r � (pk � n k )

| {z }
ck

+ t � n k � (qk � pk )
| {z }

dk

�n k









2

�
KX

k=1

kr � ck + t � n k � dk � n kk2 ;

We can then minimize the errorep� with respect to r and t and setting
the partial derivatives to zero

@ep�

@r
=

KX

k=1

2ck (r � ck + t � n k � dk � n k ) = 0

@ep�

@t
=

KX

k=1

2n k (r � ck + t � n k � dk � n k ) = 0
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We can assemble those derivative under the linear formA� = b, by
bringing the independent variables on the right side of the equation

KX

k=1

"
ck (r � ck ) + ck (t � n k )
n k (r � ck ) + n k (t � n k )

#

=
KX

k=1

"
ck (dk � n k )
n k (dk � n k )

#

KX

k=1

"
ckc>

k r + ckn >
k t

n kc>
k r + n kn >

k t

#

=
KX

k=1

"
ck (dk � n k )
n k (dk � n k )

#

KX

k=1

"
ckc>

k ckn >
k

n kc>
k n kn >

k

# "
r
t

#

=
KX

k=1

"
ck

n k

#

(dk � n k )

which brings us to the linear system of equations that we were looking
for

KX

k=1

"
ck

n k

#
h

c>
k n >

k

i

| {z }
A 6� 6

� =
KX

k=1

"
ck

n k

#

(dk � n k )

| {z }
b6� 1

(A.4)

Once the matrix A and the vector b can be constructed, the linear
system of Equation A.4 can be resolved for� using the Cholesky de-
composition. Implementing such solution will require a loop for the
summations overK to build A and b. An alternative formulation re-
lying on dense matrix multiplication can be computed by assembling

G =

"

� � �
pk � n k

n k
� � �

#

| {z }
6� K

and

h =

2

6
6
6
4

...
(qk � pk ) � n k

...

3

7
7
7
5

| {z }
K � 1

leading to

A� = b

m

GG > � = Gh ;

which is the same formulation as proposed in Section 2.6.2
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