Groups with infinitely many ends acting analytically on the circle

Abstract : This article is inspired by two milestones in the study of non-minimal group actions on the circle: Duminy's theorem about the number of ends of semi-exceptional leaves, and Ghys' freeness result in real-analytic regularity. Our first result concerns groups of real-analytic diffeomorphisms with infinitely many ends: if the action is non expanding, then the group is virtually free. The second result is a Duminy type theorem for minimal codimension-one foliations: either non-expandable leaves have infinitely many ends, or the holonomy pseudogroup preserves a projective structure.
Type de document :
Pré-publication, Document de travail
49 pages. 2015
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger
Contributeur : Marie-Annick Guillemer <>
Soumis le : lundi 17 juillet 2017 - 02:48:17
Dernière modification le : jeudi 15 novembre 2018 - 11:56:47
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 23:34:57


AFKMMNT Infinitely many ends-r...
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01178641, version 1
  • ARXIV : 1506.03839


Sébastien Alvarez, Dmitry Filimonov, Victor Kleptsyn, Dominique Malicet, Carlos Meniño, et al.. Groups with infinitely many ends acting analytically on the circle. 49 pages. 2015. 〈hal-01178641〉



Consultations de la notice


Téléchargements de fichiers