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COMBINATORICS ON PARTIAL SUM OF THE
LIOUVILLE FUNCTION UP TO A PRIME

SUPERIOR QUOTA, LIMITING AND
SUBSIDIARY COMPLEMENTS

The Liouville function λ (n) depending on the variable
n ∈ N = {1, 2, 3, 4, · · · } (in this paper, 0 /∈ N) is given
by:

λ (n) = (−1)
ω(n)

, (1)

where:

ω (n) = Number of prime factors of n, (2)

being these prime fators not necessarily distinct, counted
with multiplicity. Hence, the image of λ (n) is {1,−1}.
E.g.: λ (1) = 1, since 1 has not got any prime factors
(ω (1) = 0); λ (2) = −1, since 2 has got just one prime
factor (itself, since 2 is a prime number), from which
ω (2) = 1; λ (20) = −1, since, counted with multiplicity,
20 has got 3 prime factors (20 = 2 × 2 × 5), from which
ω (20) = 3. Of course, all the numbers n ∈ N, except the
number 1, will have prime factors, being such quantity
of prime factors, exactly ω (n), either odd or even. A
prime number has got itself as its prime factor, hence
λ (p) = −1, i.e., being p ∈ N prime: ω (p) = 1.

By virtue of these considerations, one may be inter-
ested in a generic factorization with an even number of
prime factors and also be interested in a factorization
with an odd number of prime numbers. The presence
of 1 as a factor in a given factorization does not mat-
ter, as well as for any quantity of the number 1 as a
factor, except for the unique case of the factorization of
the number 1, this latter being trivial and unique, once
a consideration of 1 factor(s) in a given natural number
n 6= 1 contributes nothing to ω (n), viz.:

ω (n) = ω (1× 1× · · · × 1× · · · × 1× n) , (3)

by the very elementary fact that we just count the quan-
tity of prime factors of an n. Also, once a factorization
is unique, except for the order of the prime factors of a
given natural number, a given even (or odd) factoriza-
tion with 2k (or 2k − 1), k ∈ N, factors turns out to be

unique under a combinatorial (combination) considera-
tion with repetition with 2k (or 2k − 1) elements. As a
matter of fact and clarification, here, we should start to
put these assertions under a more mathematically gener-
alized sound.

Let PN = {p1, p2, · · · , pN} be the set of all the first N
prime numbers, so that P = P∞ is the set of the prime
numbers. One may consider 2k, k ∈ N, slots filled with
any pl element, l ∈ {1, 2, · · · , N}, from the PN set, e.g.:

p3 × p5 × p5 × p2 × p3 × p3 × p8 × · · · × p2︸ ︷︷ ︸
(2k)−slots

(4)

Of course, any permutation of (4) generates the very
same configuration, generates the very same number due
to the multiplication (× between slots). One should in-
fer that repetition is allowed, viz., the elements in (4) do
not need to be different. However, for an instantaneously
fixed order of (4), a change in a given slot element (choos-
ing a different one from PN ), with the elements within
the remaining slots not changed, would lead to a new
configuration for (4). A permutation of this latter new
configuration does not change it. A given configuration
represents a unique natural number with an even number
of prime factors, since, in spite of permutation, its factor-
ization (configuration) is unique. Simmilarly, One may
consider 2k − 1, k ∈ N, slots filled with any pl element,
l ∈ {1, 2, · · · , N}, from the PN set, e.g.:

p3 × p5 × p5 × p3 × p3 × p8 × · · · × p2︸ ︷︷ ︸
(2k−1)−slots

(5)

Of course, any permutation of (5) generates the very
same configuration, generates the very same number due
to the multiplication (× between slots). One should in-
fer that repetition is allowed, viz., the elements in (5) do
not need to be different. However, for an instantaneously
fixed order of (5), a change in a given slot element (choos-
ing a different one from PN ), with the elements within
the remaining slots not changed, would lead to a new
configuration for (5). A permutation of this latter new
configuration does not change it. A given configuration
represents a unique natural number with an odd num-
ber of prime factors, since, in spite of permutation, its
factorization (configuration) is unique.
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To consider the totality of numbers in N, one needs
to impose N → ∞, N ∈ N, hence PN → P∞ = P, and
to consider the totality of 2k slots and to consider the
totality of 2k−1 slots, these latter totalities by completely
considering k (viz.: ∀k ∈ N).

Since a given configuration does not change with a per-
mutation of its elements, we are dealing with a problem
of combination (the order does not matter). However,
elements may be repeated, hence the combinatorics in-
volved is neither CN,2k nor CN,2k−1. To uniquely repre-
sent a configuration, we may define a convention. In fact,
considering an hypothetical factorization with q ∈ N fac-
tors, e.g., as represented below:

pN × p5 × p1 × p2 × p3 × p3 × p8 × · · · × p2︸ ︷︷ ︸
(q)−slots

, (6)

it may rearranged respecting the order of the indexes:

p1 × p2 × p2 × p3 × p3 × p5 × p8 × · · · × pN︸ ︷︷ ︸
(q)−slots

, (7)

which is the very same factorization preserving its same
elements, now written in increasing order of indexes,
which, to uniquely be represented, may have each index
increased by an amount exactly equal to the quantity of
previous elements (which is a unique characteristic per
element), also changing the label to x, viz.:

x1 × x3 × x4 × x6 × x7 × x10 × x14 × · · · × xN+q−1︸ ︷︷ ︸
(q)−slots

(8)
With this convention, each q-combination turns out to
have got all of its elements with different indexes, with
the maximum index ocurring when a q-combination has
got its last slot accupied by pN , from which we turn out
to have a problem of simple q-combination of N + q − 1
elements. Hence, the quantity QNq of unique factoriza-
tions having q prime, with multiplicity allowed, factors
taken from PN is:

QNq = CN+q−1, q =
(N + q − 1) !

(N − 1) ! q !
, (9)

and the quantity QN
q of unique factorizations having q

prime factors turns out to be:

QN
q = lim

N→∞
CN+q−1, q = lim

N→∞

(N + q − 1) !

(N − 1) ! q !
= |Nq| ,

(10)

the totality of distinct numbers belonging to N and hav-
ing got q prime, with multiplicity allowed, factors. The
totality of numbers belonging to N turns out to be:

QN = 1 +

∞∑
q=1

QN
q

= 1 +

∞∑
q=1

lim
N→∞

CN+q−1, q

= 1 +

∞∑
q=1

lim
N→∞

(N + q − 1) !

(N − 1) ! q !
(11)

= 1 +

∞∑
q=1

|Nq| = |N| = ℵ0.

We will be interested in the infinite sum:

∞∑
n=1

λ (n) = λ (1) +

∞∑
n=2

λ (n)

= 1 +

∞∑
n=2

λ (n)

= 1 +

∞∑
k=1

QN
2k −

∞∑
k=1

QN
2k−1, (12)

where:

QN
2k = lim

N→∞
CN+2k−1, 2k

= lim
N→∞

(N + 2k − 1) !

(N − 1) ! (2k) !
, (13)

and:

QN
2k−1 = lim

N→∞
CN+(2k−1)−1, 2k−1

= lim
N→∞

(N + 2k − 2) !

(N − 1) ! (2k − 1) !
, (14)

k ∈ N. Considering the partial difference:

DN
k = QN2k −QN2k−1, (15)

which, by virtue of the Eq. (9), leads to:
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DN
k = CN+2k−1, 2k − CN+(2k−1)−1, 2k−1 =

(N + 2k − 1) !

(N − 1) ! (2k) !
− (N + 2k − 2) !

(N − 1) ! (2k − 1) !

=
(N + 2k − 1) !− 2k(N + 2k − 2) !

(N − 1) ! (2k) !
=

(N + 2k − 1) (N + 2k − 2) !− 2k(N + 2k − 2) !

(N − 1) ! (2k) !

=
(N + 2k − 1− 2k) (N + 2k − 2) !

(N − 1) ! (2k) !
=

(N − 1) (N + 2k − 2) !

(N − 1) ! (2k) !
=

(N − 1) (N + 2k − 2) !

(N − 1) (N − 2) ! (2k) !

=
(N + 2k − 2) !

(N − 2) ! (2k) !
=

[(N − 2) + 2k] !

(N − 2) ! (2k) !
=

2k factors︷ ︸︸ ︷
[(N − 2) + 2k] [(N − 2) + 2k − 1]× · · · × [(N − 2) + 1] (N − 2) !

(N − 2) ! (2k) !

=

2k factors︷ ︸︸ ︷
[(N − 2) + 2k] [(N − 2) + 2k − 1]× · · · × [(N − 2) + 1]

(2k) !

=
1

(2k) !

2k∏
j=1

[(N − 2) + j]

> dNk , (16)

where:

dNk =
(N − 2)

2k

(2k) !
. (17)

Hence, from the Eqs. (15), (16) and (17):

∞∑
k=1

DN
k =

∞∑
k=1

QN2k −
∞∑
k=1

QN2k−1

=

∞∑
k=1

1

(2k) !

2k∏
j=1

[(N − 2) + j]

>

∞∑
k=1

dNk =

∞∑
k=1

(N − 2)
2k

(2k) !
= cosh (N − 2)− 1.

(18)

Now, consider the set N−{1}, hence N−{1} exhausts
any prime factorization. This is so, since a given prime
factorization represents one and only one element in N−
{1} and a given element of N − {1} has got one and
only one prime factorization. Hence, all the factorizations
exhaust N − {1}. N − {1} is the entire set of possible
prime factorizations and the entire set of possible prime
factorizations is N− 1. The arithmetic progression:

an = 1 + (n− 1)1 = n⇔ an = n, (19)

with an ∈ N− 1, shows that the number of possible fac-
torizations grows as n grows. Hence, since this is essen-
tially the set N−1, the quantity of possible factorizations
exhaustively grows [a given finite set of factorizations will
have a factorization, say f , representing a greatest fac-
torized number in this set and being one-to-one to an
an = f for this set, with the remaining factorizations
(< an)] as n→∞. Hence:

n→ 1 +

∞∑
k=1

lim
N→∞

QN2k +

∞∑
k=1

lim
N→∞

QN2k−1, (20)

viz.:

n→ 1 +

∞∑
k=1

(
QN

2k +QN
2k−1

)
=∞. (21)

By virtue of Eq. (21):

n
1
2+ε →

[
1 +

∞∑
k=1

(
QN

2k +QN
2k−1

)] 1
2+ε

=∞. (22)

Considering the partial sum:

sNk = QN2k +QN2k−1, (23)

which, by virtue of the Eq. (9), leads to:
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sNk = CN+2k−1, 2k + CN+(2k−1)−1, 2k−1 =
(N + 2k − 1) !

(N − 1) ! (2k) !
+

(N + 2k − 2) !

(N − 1) ! (2k − 1) !

=
(N + 2k − 1) ! + 2k(N + 2k − 2) !

(N − 1) ! (2k) !
=

(N + 2k − 1) (N + 2k − 2) ! + 2k(N + 2k − 2) !

(N − 1) ! (2k) !

=
(N + 2k − 1 + 2k) (N + 2k − 2) !

(N − 1) ! (2k) !
=

(N + 4k − 1) (N + 2k − 2) !

(N − 1) ! (2k) !
=

(N + 4k − 1) [(N − 1) + (2k − 1)] !

(N − 1) ! (2k) !

=
(N + 4k − 1)

2k−1 factors︷ ︸︸ ︷
[(N − 1) + (2k − 1)] {(N − 1) + [(2k − 1)− 1]} × · · · × [(N − 1) + 1] (N − 1) !

(N − 1) ! (2k) !

=
(N + 4k − 1)

2k−1 factors︷ ︸︸ ︷
[(N − 1) + (2k − 1)] {(N − 1) + [(2k − 1)− 1]} × · · · × [(N − 1) + 1]

(2k) !

=
N + 4k − 1

(2k) !

2k−1∏
j=1

[(N − 1) + j] <
N + 4k − 1 + 1

(2k) !
[(N − 1) + 2k − 1]

2k−1

<
N + 4k

(2k) !
[(N − 1) + 2k − 1 + 2k]

2k−1
<
N + 4k

(2k) !
(N + 4k − 2 + 2)

2k−1

∴

sNk < SNk , (24)

where:

SNk =
N + 4k

(2k) !
(N + 4k)

2k−1
=

(N + 4k)
2k

(2k) !
, (25)

remembering: k ∈ N. Furthermore:

SNk < ΞNk , (26)

where:

ΞNk =
(N +N/α)

2k

(2k) !
=

(
1 +

1

α

)2k
N2k

(2k) !
, (27)

∀ fixed α ∈ R∗+. The Eq. (26) follows from the proposi-
tion:

4αk < N, ∀α ∈ R∗+. (28)

Since N is to exhaustively cover the set P∞ = P, this
latter being the entire set of prime numbers, viz., in:

PN = {p1, p2, p3, · · · , pN} = {2, 3, 5, · · · , pN} , (29)

N has been taken, defined, to exhaustively cover on de-
mand the set of prime numbers, as we have defined from
the beginning of this paper. Now, to conversely suppose
the condition stated by the Eq. (28), i.e.:

∃ α ∈ R∗+| 4αk ≥ N, (30)

one turns out to be, by hypothesis, considering an im-
plied superior quota for the existence of prime numbers.

Suppose the Eq. (30) is correct. Hence, there exists, by
virtue of the Eq. (30), an α0 ∈ R∗+ such that the suc-
cessive values of N to exhaustively cover the set of prime
numbers never exceed 4α0k. Putting such 4α0k, with the
obeyer number of the Eq. (30), a fortiori :

4α0k = [4α0k] + {4α0k} , (31)

with [4α0k] and {4α0k} being, respectively, the integer
and the fractionary parts of 4α0k, one is led to a superior
quota:

N = [4α0k] , (32)

since N ∈ N. By virtue of this superior quota for the
quantity of prime numbers, there exist only finitely many
primes p1 < p2 < · · · < pN . Hence, let η =

∏N
f=1 pf > 2,

and consider η − 1 ∈ N. Since η − 1 is a product of
primes, it turns out to have a common prime divisor pf
with η, implying this common prime divisor pf divides
η − (η − 1) = 1: an absurd! Henceforth, Eq. (30) is an
absurd, the proposition given by the Eq. (28) is correct
∀ fixed k ∈ N and, by virtue of the Eqs. (23), (24), (26)
and (27), one turns out to be led to:

sNk = QN2k +QN2k−1 < ΞNk =
1

(2k) !

[(
1 +

1

α

)
N

]2k
.

(33)
Back to the interest carried from the Eqs. (20), (21)

and (22), now, we consider the consequence to the sum:

∞∑
k=1

sNk =

∞∑
k=1

QN2k +

∞∑
k=1

QN2k−1, (34)
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i.e.:

∞∑
k=1

sNk =

∞∑
k=1

QN2k +

∞∑
k=1

QN2k−1

<

∞∑
k=1

ΞNk =

∞∑
k=1

1

(2k) !

[(
1 +

1

α

)
N

]2k
= cosh

[(
1 +

1

α

)
N

]
− 1 (35)

From the reasonings we have carried throughout the
march that has been led from that Eq. (12), accom-

plished from its previous combinatorics, to the Eq. (35),
one reaches, a fortiori, the following implied consequence:

lim
n→∞

∑n
l=1 λ (l)

n
1
2+ε

= lim
n→∞

1 +
∑n
l=2 λ (l)

n
1
2+ε

> lim
N→∞

1 + [cosh (N − 2)− 1]{
1 + cosh

[(
1 +

1

α

)
N

]
− 1

} 1
2+ε

= lim
N→∞

cosh (N − 2){
cosh

[(
1 +

1

α

)
N

]} 1
2+ε

∴

lim
n→∞

∑n
l=1 λ (l)

n
1
2+ε

>
2ε√

2
lim
N→∞

e(N−2) + e(2−N)[
e(1+1/α)N + e−(1+1/α)N

] 1
2+ε

=
2ε√

2
lim
N→∞

e(N−2)
(
1 + e−2(N−2)

)[
e(1+1/α)N

(
1 + e−2(1+1/α)N

)] 1
2+ε

∴

lim
n→∞

∑n
l=1 λ (l)

n
1
2+ε

>
2ε

e2
√

2
lim
N→∞

eN
(
1 + e−2(N−2)

)[
e(1+1/α)N

(
1 + e−2(1+1/α)N

)] 1
2+ε

∴

lim
n→∞

∑n
l=1 λ (l)

n
1
2+ε

>
2ε

e2
√

2
lim
N→∞

1 + e−2(N−2)(
1 + e−2(1+1/α)N

) 1
2+ε

eN [1−(ε+1/2)(1+1/α)]. (36)

Since the Riemann Hypothesis is true if and only if :

lim
n→∞

∑n
l=1 λ (l)

n
1
2+ε

= 0, ∀ fixed ε > 0, (37)

it follows that the convergence of the right-hand side of
the Eq. (36), ∀ fixed ε > 0, is a necessary condition for
the validity of the Riemann Hypothesis. It follows, then,
that:

• If there exists some ε > 0 such that the right-hand
side of the Eq. (36) diverges, then, the Riemann
Hypothesis turns out to be false.

Supposing the Riemann Hypothesis is true, the condition:

1− (ε+ 1/2) (1 + 1/α) < 0 (38)

holds ∀ fixed ε > 0. Hence:

(ε+ 1/2) (1 + 1/α) > 1, (39)

∀ fixed ε > 0. But this latter condition is an absurd,
since, for ε = 1/8 and α = 2, e.g.:

(ε+ 1/2) (1 + 1/α)|(α,ε)=(2,1/8) =
15

16
< 1, (40)

implying the Riemann hypothesis turns out to be false.
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