On the approximation of electromagnetic fields by edge finite elements. Part 1: Sharp interpolation results for low-regularity fields

Patrick Ciarlet 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We propose sharp results on the numerical approximation of low-regularity electromagnetic fields by edge finite elements. We consider general geometrical settings, including topologically non-trivial domains or domains with a non-connected boundary. In the model, the electric permittivity and magnetic per-meability are symmetric, tensor-valued, piecewise smooth coefficients. In all cases, the error can be bounded by h δ times a constant, where h is the mesh-size, for some exponent δ ∈]0, 1] that depends both on the geometry and on the coefficients. It relies either on classical estimates when δ > 1/2, or on a new combined interpolation operator when δ < 1/2. The optimality of the value of δ is discussed with respect to abstract shift theorems. In some simple configurations , typically for scalar-valued permittivity and permeability, the value of δ can be further characterized. This paper is the first one in a series dealing with the approximation of electromagnetic fields by edge finite elements.
Type de document :
Article dans une revue
Computers and Mathematics with Applications, Elsevier, 2016, <10.1016/j.camwa.2015.10.020>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01176476
Contributeur : Patrick Ciarlet <>
Soumis le : mercredi 23 décembre 2015 - 16:48:20
Dernière modification le : samedi 18 février 2017 - 01:12:44

Fichier

Jr15_EdgeElts_Part1-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Patrick Ciarlet. On the approximation of electromagnetic fields by edge finite elements. Part 1: Sharp interpolation results for low-regularity fields. Computers and Mathematics with Applications, Elsevier, 2016, <10.1016/j.camwa.2015.10.020>. <hal-01176476v4>

Partager

Métriques

Consultations de
la notice

119

Téléchargements du document

79